On the Hodge cycles of Prym varieties
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 3 (2004) no. 3, p. 625-635

We show that the NĂ©ron-Severi group of the Prym variety for a degree three unramified Galois covering of a hyperelliptic Riemann surface has a distinguished subgroup of rank three. For the general hyperelliptic curve, the algebra of Hodge cycles on the Prym variety is generated by this group of rank three.

Classification:  14H40,  14C30
@article{ASNSP_2004_5_3_3_625_0,
     author = {Biswas, Indranil},
     title = {On the Hodge cycles of Prym varieties},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 3},
     number = {3},
     year = {2004},
     pages = {625-635},
     zbl = {1112.14032},
     mrnumber = {2099252},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2004_5_3_3_625_0}
}
Biswas, Indranil. On the Hodge cycles of Prym varieties. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 3 (2004) no. 3, pp. 625-635. http://www.numdam.org/item/ASNSP_2004_5_3_3_625_0/

[BN] I. Biswas - M. S. Narasimhan, Hodge classes of moduli spaces of parabolic bundles over the general curve, J. Algebraic Geom. 6 (1997), 697-715. | MR 1487231 | Zbl 0891.14002

[BP] I. Biswas - K. H. Paranjape, The Hodge conjecture for general Prym varieties, Jour. Alg. Geom. 11 (2002), 33-39. | MR 1865912 | Zbl 1060.14044

[Ho] R. E. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539-570. | MR 986027 | Zbl 0674.15021