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Abstract. We prove, under suitable non-resonance and non-degeneracy “twist”
conditions, a Birkhoff-Lewis type result showing the existence of infinitely many
periodic solutions, with larger and larger minimal period, accumulating onto ellip-
tic invariant tori (of Hamiltonian systems). We prove the applicability of this result
to the spatial planetary three-body problem in the small eccentricity-inclination
regime. Furthermore, we find other periodic orbits under some restrictions on the
period and the masses of the “planets”. The proofs are based on averaging theory,
KAM theory and variational methods.
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Introduction

A classical problem in Hamiltonian dynamical systems concerns, since the
researches of Poincaré, the existence of periodic orbits in the vicinity of invariant
submanifolds.

Poincaré wrote:

“...voici un fait que je n’ai pu démontrer rigoureusement, mais qui me parait pourtant
très vraisemblable. Étant données des équations de la forme définie dans le n. 13(1)

et une solution particulière quelconque de ces équations, on peut toujours trouver
une solution périodique (dont la période peut, il est vrai, être très longue), telle
que la différence entre les deux solutions soit aussi petite qu’on le veut, pendant un
temps aussi long qu’on le veut.” ([P], Tome 1, ch. III, a. 36).

This conjecture was often quoted by Birkhoff as a main motivation for his
works. In the thirties, Birkhoff and Lewis [B]-[BL]-[L] established the existence
of infinitely many periodic solutions in a neighborhood of an elliptic equilib-
rium whose linear frequencies are sufficiently non-resonant. This theorem also
requires a non-degeneracy –“twist”– condition, involving finitely many Taylor
coefficients of the Hamiltonian at the equilibrium, and implying the system to
be genuinely non-linear. In addition, if the Hamiltonian is sufficiently smooth,
KAM theory ensures, in a neighborhood of the equilibrium small enough, the
existence of invariant Lagrangian tori filling up a set of positive Lebesgue mea-
sure, see [Pö]. Furthermore, close to any KAM torus, it has been proved in
[CZ] the existence of infinitely many others periodic orbits with larger and
larger minimal period accumulating to the torus itself (as a consequence, the
closure of the periodic orbits has positive Lebesgue measure). The result of
[CZ] is proved considering the normal form Hamiltonian which describes the
dynamics near each torus, checking the “twist condition”, and, then, applying
the Birkhoff-Lewis type theorem of [Mo].

Actually, Birkhoff and Lewis established also the existence of infinitely
many periodic solutions close to a non-constant periodic elliptic solution.

The question of the existence of periodic orbits with larger and larger min-
imal period clustering to elliptic lower dimensional invariant tori (of dimension
greater than one) has not been yet investigated. An invariant torus is called
elliptic, or linearly stable, if the linearized system along the torus, possesses
purely imaginary eigenvalues.

A main motivation for studying such problem is Celestial Mechanics,
which, indeed, inspired the whole development of KAM theory (Arnold [A]
devoted one of the fundamental papers of this theory to the planar n-body
problem).

Consider, in particular, the non-planar planetary three body problem, namely
one “star” and two “planets” interacting through a Newtonian gravitational field
in the three dimensional space. The masses of the planets are regarded as small

(1)Hamilton’s equations.
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parameters. According to Poincaré and Delaunay this system is described by
a nearly-integrable Hamiltonian on a eight dimensional phase space, equipped
with real-analytic action-angle variables. Such system turns out to be properly
degenerate, i.e. the integrable limit (in which the three-body problem is de-
scribed by two decoupled and integrable two-body systems) depends only on
two action variables. Hence, in the integrable limit all bounded motions lie
on two-dimensional invariant tori supporting periodic or quasi-periodic motions
according the ratio between the two frequencies (related, by Kepler’s law, to
the major semi-axis of the two limiting Keplerian ellipses) is a rational or ir-
rational number. Furthermore, in the small eccentricity-inclination regime (of
astronomical interest) these unperturbed two-tori are elliptic: the spatial plan-
etary three-body problem calls for a perturbation theory for continuing elliptic
lower-dimensional tori.

In the last years, an exhaustive perturbation theory for elliptic tori has
indeed been developed by many authors, see [M], [E], [W], [K], [Pö1], [Pö2],
[Bo] and [XJ]. The persistence of elliptic tori is ensured requiring “Melnikov
non-resonance conditions” among the frequencies and further non-degeneracy
conditions.

In light of these results, the spatial planetary three body problem (in the
small eccentricity-inclination regime) has been recently reexamined in [BCV],
where the persistence of two-dimensional elliptic invariant tori –with Diophantine
frequencies– has been proved, provided the Keplerian major semi-axes belong
to a two dimensional set of positive measure.

Previous works on the spatial planetary three-body problem are [JM], for
large inclinations (in this case the two-tori are hyperbolic), and [LR]-[R], for
maximal dimensional tori (the proofs are computer assisted).

In the present paper we first prove, under suitable non-resonance and non-
degeneracy “twist” conditions, a general Birkhoff-Lewis type result showing the
existence of infinitely many periodic solutions, with larger and larger minimal
period, accumulating onto elliptic lower dimensional invariant tori, see Theo-
rem 1.1 for the precise statement.

Furthermore we prove the applicability of Theorem 1.1 to the spatial
planetary three-body problem, showing the existence of infinitely many peri-
odic(2) solutions minimal accumulating on the elliptic KAM tori of [BCV],
see Theorem 0.2. Such periodic orbits revolve around the star close to Kep-
lerian ellipses with small eccentricities and small non-zero mutual inclinations.
The verification of the “twist” condition (Lemma 5.1) is based on a KAM
analysis.

Finally, in Theorems 0.3, 0.4 we prove the existence of other periodic
solutions of the spatial planetary three-body problem, the “periodic analogue”
of the elliptic tori of [BCV], see Theorem 6.1 for a more general statement.

We now present a simplified version of our results.

(2)The orbits found for the three-body problem are periodic in a suitable reduced set of coordinates.
We refer to [BCV] for the physical interpretation of these coordinates.
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Periodic orbits accumulating on elliptic tori

As already said, the persistence of elliptic invariant tori is ensured assum-
ing “Melnikov non-resonance conditions” among the frequencies. In particular,
under the “second order Melnikov conditions” (see precisely (4)), the surviving
tori are still elliptic and the normal form Hamiltonian describing the dynamics
in a neighborhood is

H∗(I∗, ϕ∗, Z∗, Z∗) = ω · I∗ + �Z∗ · Z∗ +
∑

2|k|+|a+a|≥3

R∗
k,a,a(ϕ∗)Ik

∗ Za
∗ Z

a
∗ ,

where (I∗, ϕ∗) ∈ R
n ×T

n and (Z∗, Z∗) ∈ C
2m . In these coordinates T := {I∗ =

0, ϕ∗ ∈ T
n , Z∗ = Z∗ = 0} is the invariant and elliptic torus. ω ∈ R

n are the
torus frequencies and � ∈ R

m the elliptic one’s.
We refer to [JV] and [BHS] for many results concerning the dynamics of

an Hamiltonian system close to an elliptic torus, in particular for the existence,
under appropriate non-resonance and non-degeneracy conditions, of Cantor fam-
ilies of other invariant tori of dimensions greater than n.

Also for proving the existence of periodic orbits accumulating onto the
elliptic torus T we need to assume suitable non-resonance and non-degeneracy
“twist” conditions. Roughly (see Theorem 1.1 for the detailed statement) we
have:

Theorem 0.1. Under suitable non-resonance and non-degeneracy conditions,
the Hamiltonian system generated by H∗ affords infinitely many periodic solutions,
with larger and larger minimal period, accumulating on the invariant elliptic torusT .

The precise Theorem 1.1 and a description of its proof are given in Section 1.
Theorem 1.1 implies, in particular, the result of [CZ] for maximal dimensional
tori.

The planetary, spatial three-body problem

Let ε > 0 denote the small parameter measuring the ratios between the
masses of the planets and the mass of the star (see (93)). The existence of
two-dimensional elliptic invariant tori has been proved in [BCV]. Roughly (see
Theorem 5.2 for a precise statement and proof) their result states:

Theorem ([BCV]). The spatial planetary three-body problem affords, for ε

small enough, a family F of two-dimensional, elliptic invariant tori, traveled with
Diophantine quasi-periodic frequencies, provided the osculating Keplerian major
semi-axes belong to a two-dimensional set of density close to one (as ε tends to 0).

We will prove, in Section 5, that:

Theorem 0.2. The spatial planetary three-body problem affords, for ε small
enough, infinitely many periodic solutions, with larger and larger minimal period,
accumulating onto each elliptic invariant torus of the family F .
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The proof of Theorem 0.2 boils down to check that the non-resonance
and non-degeneracy twist conditions of Theorem 1.1 are fulfilled for the spatial
planetary three-body problem. This task is accomplished by estimates based on
a careful KAM analysis.

Finally, in Section 6, we prove the existence of other periodic orbits of
the spatial planetary three-body problem, the “periodic analogue” of the elliptic
tori of [BCV]. More precisely, let consider the integrable (i.e. ε = 0) three-
body problem when the two planets revolve around the star along circular
orbits without interacting (decoupled two-body systems). Some of these motions
will be periodic with, say, minimal period T . Taking into account the mutual
interaction between the planets (i.e. ε > 0) we prove the existence of, at least,
two, slightly deformed, T -periodic orbits. The parameter ε must belong to a
suitable interval of values depending on the period T .

Theorem 0.3. There exist T0 > 0 and functions 0 < ε(T ) < ε(T ), defined
for T ∈ [T0, ∞) and decreasing to zero as T → +∞ such that, for any circular
periodic orbits of the decoupled three-body problem with minimal period T ≥ T0,
for all ε(T ) ≤ ε ≤ ε(T ), there exist at least two, ε-close, geometrically distinct
T -periodic orbits of the spatial planetary three-body problem.

The following theorem can be seen as an ε-fixed version of Theorem 0.3,
requiring, for fixed small values of the masses of the planets, restrictions on
the period T .

Theorem 0.4. There exist ε1 > 0 and functions 0 < T (ε) < T (ε), defined
for ε ∈ (0, ε1] and tending to infinity as ε → 0, such that, for all 0 < ε ≤ ε1 and
for any circular periodic orbit of the decoupled three-body problem with minimal
period T (ε) ≤ T ≤ T (ε), there exist at least two, ε-close, geometrically distinct
T -periodic orbits of the spatial planetary three-body problem.

A more general theorem implying Theorems 0.3 and 0.4 is given in Theorem 6.1.
The paper is organized as follows. In Section 1, we give the detailed

statement of Theorem 0.1, namely Theorem 1.1, and we discuss its proof.
Section 2 collects some number theoretical Lemmata used in Section 4 for
defining the “non-resonant” periods T . Section 3 is devoted to a normal form
averaging result. The proof of Theorem 1.1 is addressed in Section 4. In Section
5, after recalling the Poincaré-Delaunay formulation of the spatial planetary
three-body problem, we prove, first, a finer version of the KAM result of [BCV]
and, finally, Theorem 0.2. Section 6 contains the proof of Theorems 0.3, 0.4
and 6.1 where we study the persistence, for ε > 0, of the circular decoupled
periodic motions of the planets around the star, once suitable conditions on the
period and the masses of the bodies are satisfied.

Acknowledgements. We thank P. Bolle and L. Chierchia for many inter-
esting discussions. Part of this paper was written when the last two authors
were visiting SISSA in Trieste. They thanks SISSA for its kind hospitality.
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Notations: We denote by O(ξ) a real analytic function whose norm is bounded
by Cξ , for a suitable constant C > 0 and ∀ 0 < ξ ≤ ξ0. Mat(n × n, R) (resp.
Mat(n ×n, C)) is the set of n ×n matrices with real (resp. complex) coefficients
and 1n the n×n identity matrix. Br denotes the (closed) ball of radius r centered
at 0, Bn

r the closed ball of radius r centered at 0 using the | · |2 norm, and
Dd

ρ the complex d-ball of radius ρ centered at 0. �A is the cardinality of the
set A. gcd is the greatest common divisor and lcm the least common multiple.
We set ei := (0, . . . , 1, . . . , 0) ∈ Z

n the i-th unit vector and |a|1 := ∑n
i=1 |ai |

norm. Through the paper Ci , ci , const. will denote positive constants possibly
depending n, m, ω, �, γ , τ , r , s, ρ, R∗, etc.

1. – Periodic orbits accumulating on elliptic tori

We now give the precise statement concerning the existence of periodic
orbits close to elliptic tori (Theorem 1.1). Let consider Hamiltonians of the
form

(1) H∗(I∗, ϕ∗, Z∗, Z∗) = ω · I∗ + �Z∗ · Z∗ +
∑

2|k|+|a+a|≥3

R∗
k,a,a(ϕ∗)Ik

∗ Za
∗ Z

a
∗,

where (I∗, ϕ∗) ∈ R
n × T

n are action-angle variables and (Z∗, Z∗) ∈ C
2m are

called the normal (or elliptic) coordinates. The phase space R
n ×T

n ×C
m ×C

m

is equipped with the symplectic form(3) dI∗ ∧ dϕ∗ + id Z∗ ∧ d Z∗.
ω ∈ R

n is the frequency vector and � :=diag(�1, . . . , �m) is the m × m
diagonal matrix of the normal (or elliptic) frequencies. Hence �Z∗ · Z∗ denotes∑

1≤ j≤m �j Z∗ j Z∗ j . We will often identify the diagonal matrix � with the
vector (�1, . . . , �m) ∈ R

m . For the multi-indexes k ∈ N
n, a, a ∈ N

m we define
|k| := ∑n

i=1 ki , |a| := ∑m
j=1 aj , |a| := ∑m

j=1 aj .

The Hamiltonian H∗ is assumed to be real analytic for (I∗, ϕ∗, Z∗, Z∗) ∈
Dn

r∗ ×T
n
s∗ × D2m

ρ∗ ⊂ C
2n+2m for some positive constants r∗, s∗, ρ∗.(4) Real analytic

means that H∗ is real analytic in the real and imaginary parts of Z∗. The
functions R∗

k,a,a(ϕ∗) can be expanded in Fourier series as

(2) R∗
k,a,a(ϕ∗) =

∑

∈Zn

R∗
k,a,a,
 ei
·ϕ∗ .

Since H∗(I∗, ϕ∗, Z∗, Z∗) ∈ R for all (I∗, ϕ∗) ∈ R
n×T

n and for all Z∗ ∈ C
m ,

the Taylor-Fourier coefficient R∗
k,a,a,
 satisfy

(3) R∗
k a,a,
 = R∗

k,a,a,−
 .

(3)We denote the imaginary unit by i (not to be confused with i often used as an index).
(4)We have used the following standard notations: for a given set A ⊂ R

d , d ∈ N
+ and δ, s > 0,

we denote by Ad
δ := {z ∈ C

d | dist(z, A) < δ} and T
d
s := {z ∈ C

d | |Im zj | < s, ∀ 1 ≤ j ≤ d}.
Moreover Dd

δ := {z ∈ C
d | |z| < δ}.
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The frequency vector (ω, �) is assumed to satisfy the “second order Mel-
nikov non-resonance conditions”

(4) |ω ·
+� ·h| ≥ γ

1 + |
|τ , ∀ 
 ∈ Z
n , h ∈ Z

m , |h| ≤ 2 , (
, h) 
= (0, 0)

for some positive constants γ, τ . We will use such condition in order to perform
the averaging procedure of Section 3.

By condition (4), the frequency ω is rationally independent(5) (actually
Diophantine), while the vector (ω, �) can possess some resonance relations.
In other words, some resonances between the “linear frequencies” ω and the
“normal frequencies” � are allowed, provided they happen at a sufficiently large
order, in order to have some ergodization property of the linear flow {(ω, �)t}t∈R

on the torus T
n+m , see the comment before Lemma 2.3. Let us now describe

these possible resonance relations in detail. Possibly reordering the frequencies
�j , there exists 0 ≤ m̂ ≤ m such that(6) ω̂ := (ω, �m̂+1, . . . , �m) is rationally
independent on Z

n̂ , where n̂ := n + m − m̂, but (ω̂, �j ) is rationally dependent
for all 1 ≤ j ≤ m̂ (m̂ is the number of resonances). This means that there exist
Mj ∈ N

+ and aj ∈ Z
n̂ such that(7)

(5) Mj�j = aj · ω̂ with gcd (aj1, . . . , ajn̂, Mj ) = 1, ∀1 ≤ j ≤ m̂.

The Hamiltonian system(8)

(6) İ∗ = −∂ϕ∗H∗ , ϕ̇∗ = ∂I∗H∗ , Ż∗ = i∂Z∗H∗ , Ż∗ = −i∂Z∗H∗

possesses the elliptic invariant torus

T :=
{
(I∗, ϕ∗, Z∗, Z∗) ∈ R

n × T
n × C

2m
∣∣∣ I∗ = 0, Z∗ = Z∗ = 0

}
supporting the quasi-periodic solutions (0, ϕ∗0 + ωt, 0, 0).

We define the symmetric “twist” matrix R ∈ Mat(n × n, R)

(7)

Ri,i ′ := (1 + δi,i ′)R∗
ei +ei ′ ,0,0,0

−
∑

1≤ j≤m

∈Z

n

1

ω · 
 + �j

(
R∗

ei ,ej ,0,
 R∗
ei ′ ,0,ej ,−
 + R∗

ei ,0,ej ,−
 R∗
ei ′ ,ej ,0,


)
,

(5)I.e. ω · 
 
= 0, ∀
 ∈ Z
n .

(6)If m̂ = m we set ω̂ := ω.
(7)We denote by gcd and lcm the greatest common divisor and the least common multiple,
respectively.
(8)Setting Z∗ = (P∗ + iQ∗)/

√
2, Z∗ = (P∗ − iQ∗)/

√
2 with (P∗, Q∗) ∈ R

2m the last two
equations are equivalent to Q̇∗ = ∂P∗H, Ṗ∗ = −∂Q∗H.
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where R∗
k,a,a,
 are the Fourier coefficients, introduced in (2), of R∗

k,a,a(ϕ∗) and
δi,i ′ := 1 if i = i ′ and 0 if i 
= i ′. We also define the matrix Q ∈ Mat(m ×n, R)

as

(8)

Qj i := R∗
ei ,ej ,ej ,0

−
∑

1≤i ′≤n

∈Z

n


i ′
ω · 
+�j

(
R∗

ei ,ej ,0,
 R∗
ei ′ ,0,ej ,−
+ R∗

ei ,0,ej ,−
 R∗
ei ′ ,ej ,0,


)

−
∑

1≤ j ′≤m

∈Z

n

1

ω · 
 + �j ′

(
R∗

0,ej ,ej +ej ′ ,−
 R∗
ei ,ej ′ ,0,
 + R∗

0,ej +ej ′ ,ej ,

R∗

ei ,0,ej ′ ,−


)
.

for 1 ≤ j ≤ m, 1 ≤ i ≤ n. We stress that R and Q are real matrices by (3).
We now give the precise statement of Theorem 0.1.

Theorem 1.1. Let the HamiltonianH∗ in (1) be real analytic in Dn
r∗ ×T

n
s∗ ×D2m

ρ∗
and satisfy condition (4). Assume the “twist” condition det R 
= 0 and one of the
following “non-resonance” conditions:
(a) one of the three cases below holds:

(i) m = 1, 2 (low number of elliptic directions),
(ii) m̂ = 0 (no resonances among (ω, �)),

(iii) Mj ≥ m̂ ≥ 1, ∀1 ≤ j ≤ m̂ ;
(b) α := min

1≤ j≤m
|(� − QR−1ω)j | > 0 ;

where m̂ and Mj are defined in (5).
Then, there exist η0, C0, C1 > 0(9) such that: ∀η ∈ (0, η0], there exist an open

set of periodsAη ⊆ [ 1
η2 , 1

η2 +C0] with measure greater than 1/C0 such that ∀T ∈ Aη

there exist k := k(T ) ∈ Z
n, ω̃ := ω̃(T ) ∈ R

n, with ω̃T = 2πk, |ω̃ − ω| ≤ C1η
2,

and at least n geometrically distinct T -periodic solutions ζη(t) = (I∗η(t), ϕ∗η(t),
Z∗η(t), Z∗η(t)) of the Hamiltonian system (6) satisfying

(i) supt∈R

(
|I∗η(t)| + |Z∗η(t)| + |Z∗η(t)|

)
≤ C1η

2 ;

(ii) supt∈R
|ϕ∗η(t) − (ϕ∗η(0) + ω̃t)| ≤ C1η.

In particular, the closure of the family of periodic orbits ζη of (6) contains the elliptic
torus T . Moreover the minimal period Tmin of ζη satisfies Tmin ≥ T 1/(τ+1)/C1 =
O(η−2/(τ+1)).

Idea of the proof of Theorem 1.1. Since (ω, �) satisfy the second or-
der Melnikov non-resonance conditions (4), in view of an averaging procedure
(Proposition 3.1), the normal form Hamiltonian H∗ is, in a suitable set of co-
ordinates (I, φ, z, z) ∈ R

n × T
n × C

2m , and sufficiently close to the torus T , a
small perturbation of the integrable Hamiltonian

Hint := ω · I + η2

2
RI · I + �zz + η2QI · zz,

(9)Such constants may depend on n, m, ω, �, γ , τ , r∗, s∗, ρ∗, R∗
k,a,a,


, m̂, Q, α.
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where η > 0 is a small rescaling parameter measuring the distance from T . The
Hamiltonian system generated by Hint possesses the elliptic tori T (I0) := {I =
I0, φ ∈ T

n, z = 0} supporting the linear flow t → {I0, φ0 + (ω + η2RI0)t, 0}.
On the normal space the dynamics is described by ż = i�η(I0)z where �η(I0) :=
�+η2QI0 is the vector of the “shifted elliptic frequencies”. Our task is to find
periodic solutions bifurcating from the ones of Hint .

The system is properly nonlinear by the “twist condition” det R 
= 0 (see
Remarks 4.3 and 4.4 for a comment). Such condition involves only finitely many
Taylor coefficients R∗

k,a,a of the normal form Hamiltonian H∗ and ensures, in
particular, that the frequencies ω + η2RI0 vary with the actions I0. When

ω̃ := ω + η2RI0 ∈ 1

T
2πZ

n,

T (I0) is a completely resonant torus, supporting the family of T -periodic motions
P := {I (t) = I0, φ(t) = φ0 + ω̃t , z(t) = 0} (completely resonant frequencies
ω̃ ∈ (2π/T )Zn always exists for some T = O(η−2) and I0 = O(1), see (70),
(71)). The family P , diffeomorphic to T

n , will not persist in its entirety for
the complete Hamiltonian system due to resonances among the oscillations.

The key point to continue some periodic solutions of the family P is to
choose properly the “1-dimensional parameter” T (the period) and the actions
I0: the period T and the “shifted elliptic frequencies” �η(I0) must satisfy a
suitable non-resonance property, see (69).

In Lemma 4.1 (resp. 4.2) we actually show the existence, assuming con-
dition (a) (resp. (b)) in Theorem 1.1, of “non resonant” periods T . Note that
in condition (a) the “coupling matrix” Q does not play any role (in particular
for m = 2 which is the case of the spatial three body problem). If conditions
(a)-(ii)-(iii) are not verified, the system possesses “lower order” resonances (see
equation (5)), which are an obstruction for finding “non-resonant” periods T . In
this case one needs, in order to “move away” from the resonances, to evaluate
the matrix Q and check condition (b). Conditions (a)-(b) are, indeed, sharp: if
violated, it is not possible, in general, to find any “non-resonant” period T , see
Remark 4.1.

After the previous construction, the proof of Theorem 1.1 is based on a
Lyapunov-Schmidt reduction, variational in nature, inspired to [ACE]-[AB]. The
non-resonance property (69) and the “twist condition” detR 
= 0, allow to build,
by means of the Contraction Mapping Theorem, a suitable family of pseudo-
T -periodic solutions branching off the family P , see Lemma 4.3. Finally, by
a variational argument, we will select at least n (= cat T

n−1) geometrically
distinct T -periodic solutions from them.

Finally, we recall that, for strictly convex nearly integrable Hamiltonian
systems, [BK] have proved, via a variational argument, the existence of periodic
orbits with arbitrarily large minimal periods. We have not tried to extend
their approach in the present case, since the unperturbed Hamiltonian Hint is
not-strictly convex (it is linear in the elliptic action variables zz). Moreover
the previously described phenomenon of resonances between the period T and
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the “shifted elliptic frequencies” is hardly recognizable by a purely variational
approach (which works well for finding periodic orbits near maximal dimensional
tori and probably near hyperbolic one’s).

2. – Study of the resonances and technical Lemmata

In this section we first collect some number theoretical Lemmata that will
be used in section 4 for defining the “non-resonant periods” T (Lemma 2.3
will be used in Lemma 4.1).

Lemma 2.1. Let a1, . . . , an ∈ Z, M ∈ N with gcd (a1, . . . , an, M) = 1. Then,
∀ b ∈ Z, the congruence a1k1 + · · · + ankn ≡ b modM has Mn−1 solutions.

Proof. Recall a well known result from number theory: let a, b, M ∈ Z

and c := gcd (a, M); then the congruence ak ≡ b modM , k ∈ Z, has solution if
and only if(10) c|b and in this case it has exactly c solutions. It means that there
exist integers 0 ≤ k1 < · · · < kc ≤ M − 1 such that akh − b ∈ MZ ∀1 ≤ h ≤ c,
but ak − b /∈ MZ ∀ k ∈ {0, . . . , M − 1}, k 
= kh ∀1 ≤ h ≤ c.

We now prove the Lemma by induction over n. The case n = 1 is the above
mentioned result. We now suppose the statement true for n and prove it for
n +1. Let c := gcd (an+1, M). Our congruence is equivalent to an+1kn+1 ≡ (b−∑n

i=1 ai ki ) modM which has exactly c solutions if and only if c|(b−∑n
i=1 ai ki ).

Hence we have only to prove that the number of integers 0 ≤ k1, . . . , kn ≤ M−1
for which c|(b −∑n

i=1 ai ki ) is exactly Mn/c = cn−1(M/c)n . This amounts to
prove that the number of integer solutions of

∑n
i=1 ai ki ≡ b modc, is exactly

cn−1. This is true, by the inductive hypothesis, if gcd (a1, . . . , an, c) = 1. The last
equality is actually true since, by hypothesis, gcd (a1, . . . , an+1, M) = 1; hence
if d|a1, . . . , an, c, since c|an+1, M , then d|an+1, M and it follows d =1.

Lemma 2.2. Let m̂, n̂ ∈ N
+. Let ω̂ ∈ R

n̂ rationally independent. Let �̂ ∈ R
m̂

with Mj �̂j = aj · ω̂ for Mj ∈ N, aj ∈ Z
n̂ . Suppose that gcd (aj1, . . . , ajn̂, Mj ) = 1.

Let M := lcm (M1, . . . , Mm̂) and K := {0, . . . , M − 1}n̂. Suppose Mj ≥ m̂,

∀ 1 ≤ j ≤ m̂. Moreover, in the case m̂ = 1, suppose also M1 ≥ 2. Then there exists
k ∈ K such that aj · k/Mj /∈ Z, ∀ 1 ≤ j ≤ m̂.

Proof. Let �j := {k ∈ K s.t. aj ·k ∈ Mj Z}, �∗
j := {k ∈ Kj s.t. aj ·k ∈ Mj Z},

where Kj := {0, . . . , Mj − 1}n̂. Since Mj |M we have(11) ��j = (M/Mj )
n̂��∗

j .

Using Lemma 2.1 with the substitutions n → n̂, b → 0, ai → aji , M → Mj

we obtain that ��∗
j = Mn̂−1

j . Hence we have ��j = Mn̂/Mj . Observing that

(10)c|b means that there exists n ∈ Z such that b = cn.
(11)We denote by �A the cardinality of the set A.
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{0} ∈ �j ∀ 1 ≤ j ≤ m̂, we have

(9) �

m̂⋃
j=1

(�j \ {0}) ≤
m̂∑

j=1

�(�j \ {0}) =
m̂∑

j=1

(
Mn̂

Mj
− 1

)
= −m̂ + Mn̂

m̂∑
j=1

1

Mj
.

If m̂ ≥ 2, since Mj ≥ m̂ by hypothesis, then −m̂ + Mn̂ ∑m̂
j=1

1
Mj

≤ −m̂ + Mn̂ <

−1 + Mn̂ . If m̂ = 1, since M1 = M ≥ 2 by hypothesis, −m̂ + Mn̂ ∑m̂
j=1

1
Mj

=
−1 + Mn̂−1 < −1 + Mn̂ . In both cases, from (9), we get

�

m̂⋃
j=1

(�j \ {0}) < Mn̂ − 1 = �(K \ {0})

and the conclusion of the Lemma follows from � ∪m̂
j=1 �j < �K .

In view of the next Lemma we recall the definition of the ergodization
time of a torus with linear flow. For any vector ξ ∈ R

n̂ the ergodization time
Terg(ξ, ε) required to fill T

n̂ within ε > 0 is defined as
(10)
Terg(ξ, ε) := inf

{
t ∈ R+

∣∣∣ ∀x ∈ R
n̂, ∀ 1 ≤ i ≤ n̂, dist(xi , Ai +[0, t]ξi +Z) ≤ ε

}
where A is some point of R

n̂ . Terg(ξ, ε) is clearly independent of the choice
of A.

If (ω, �) are rationally independent or are resonant only at a sufficiently
high order, namely if (ω, �) · p 
= 0, ∀p ∈ Z

n+m with 0 < |p| ≤ a/δ for some
constant a := an,m , then the trajectories of the linear flow {(ω, �)t}t∈R will
make an arbitrarily fine δ-net of T

n+m , see Theorem 4.1 of [BBB]. This non-
resonance assumption on (ω, �) is clearly sufficient to prove (13)-(14) below.
In the present case, however, the weaker non-resonance assumptions (11), (12)
are sufficient.

Lemma 2.3. Let Mj , aj , m̂ as in (5) and suppose that

(11) Mj ≥ m̂ ∀ 1 ≤ j ≤ m̂ .

In the case m̂ = 1 = M1 suppose also

(12) ∃ n + 1 ≤ i∗ ≤ n̂ = n + m − 1 such that a1i∗ 
= 0 .

∀0 < δ ≤ 1/(2β), where β := 2max1≤ j≤m̂ |aj |1, and ∀ t0 > 0, there exists τ ≥ t0
such that

dist(ωiτ, Z) ≤ δ ∀ 1 ≤ i ≤ n ,(13)

dist(�jτ, Z) ≥ min

{
1

2β
,

1

4 max1≤ j≤m̂ Mj

}
=: d0 ∀ 1 ≤ j ≤ m .(14)

Moreover τ − t0 ≤ Terg(ω̂/M, δ/M) where M := lcm (M1, . . . , Mm̂).
If (ω, �) are rationally independent, namely m̂ = 0, (13)–(14) are still verified
setting β := 2, d0 := 1/4, M := 1.
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Proof. We first consider the cases m̂ ≥ 2 or m̂ = 1 < M1. We are in the
hypotheses of Lemma 2.2. Hence there exists k ∈ K := {0, . . . , M − 1}n̂ such
that aj · k/Mj /∈ Z, ∀ 1 ≤ j ≤ m̂. Let(12)

x :=
〈 1

M

(
k + 1

β

n̂∑
i=n+1

ei

)
− ω̂

M
t0
〉

∈ [−1/2, 1/2)n̂ .

Since ω̂/M is rationally independent, its linear flow ergodizes the torus
R

n̂/Z
n̂ . Let t0 ≤ τ ≤ t0 + Terg(ω̂/M, δ/M) the first instant for which ∃h ∈ Z

n̂

with | ω̂
M (τ − t0)− x −h|∞ ≤ δ/M. If y := ω̂τ − k − 1

β

∑n̂
i=n+1 ei − Mh′ then, by

a suitable choice of h′ ∈ Z
n̂ , we obtain by the construction above that |y|∞ ≤ δ.

Hence, by definition of ω̂, ∀ 1 ≤ i ≤ n, ωiτ = ω̂iτ = yi + ki − Mh′
i and (13)

holds.
Moreover, from the resonance relation (5), ∀ 1 ≤ j ≤ m̂,

(15) �jτ = aj · ω̂τ

Mj
= aj · y

Mj
+ aj · k

Mj
+ 1

βMj

n̂∑
i=n+1

aji + M

Mj
aj · h′ .

We observe that aj ·k/Mj /∈ Z implies dist(aj ·k/Mj , Z) ≥ 1/Mj . Also, |aj · y| ≤
|aj |1δ, |∑n̂

i=n+1 aji | ≤ |aj |1. Hence, collecting these observations and (15), we
have

(16) dist(�jτ, Z) ≥ 1

Mj
− |aj |1δ

Mj
− |aj |1

βMj
≥ 1

4Mj
∀ 1 ≤ j ≤ m̂,

recalling also that 0 < δ ≤ (1/2β) and the definition of β. Finally, by definition
of ω̂, for m̂ +1 ≤ j ≤ m, we have �jτ = ω̂n+ j−m̂τ = yn+ j−m̂+ kn+ j−m̂ +1/β+
Mh′

n+ j−m̂ , which implies

(17) dist(�jτ, Z) ≥ 1

β
− δ ≥ 1

2β
∀ m̂ + 1 ≤ j ≤ m ,

and (14) follows from (16)-(17).
We now consider the case m̂ = 1, M1 = 1. We have M = M1 = 1. We

set a := a1 to simplify the notation. Let

x :=
〈 n̂∑

i=n+1

bi ei − ω̂t0
〉

,

(12)We define 〈(y1, . . . , yn)〉 := (〈y1〉, . . . , 〈yn〉) where the function 〈·〉 : R → [−1/2, 1/2) is
defined as 〈y〉 := y for y ∈ [−1/2, 1/2) and it is 1-periodically extended for y ∈ R. Note that,
for y 
= (1/2) + Z, 〈y〉 = y − [y] where [y] is the closest integer to y.
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where

bi :=


sign(ai )

2
∑n̂

i=n+1 |ai |
if ai 
= 0 ,

1

2|a|1 if ai = 0 .

Note that |bi | ≥ 1/(2|a|1) for all i . Proceeding exactly as above we find
t0 ≤ τ ≤ t0 + Terg(ω̂, δ) and an h′ ∈ Z

n̂ such that, defining

y := ω̂τ −
n̂∑

i=n+1

bi ei − h′,

we have |y|∞ ≤ δ and (13) holds. The proof of (14) is slightly different. For
j = 1 we have

�1τ = a · ω̂τ = a · y + a ·
n̂∑

i=n+1

bi ei + a · h′ = a · y + 1

2
+ a · h′ ,

where, in the last equality we have used (12) and the definition of bi . Since
a · h′ ∈ Z and |a · y| ≤ |a|1δ ≤ 1/4 we have

(18) dist(�1τ, Z) ≥ 1

2
− 1

4
= 1

4
.

Instead, for 2 ≤ j ≤ m we have �jτ = ω̂n+ j−1τ = yn+ j−1 + bn+ j−1 + h′
n+ j−1

which implies

(19) dist(�jτ, Z) ≥ bn+ j−1 − δ ≥ 1

2|a|1 − δ = 1

β
− δ ≥ 1

2β
∀ 2 ≤ j ≤ m ,

and (14) follows from (18)-(19).
We finally consider the case m̂ = 0, which is the simplest one since the

linear flow of ω̂ = (ω, �) ergodizes the whole torus T
n+m . Let define

x :=
〈1

2

n+m∑
i=n+1

ei − ω̂t0
〉
.

There exists t0 < τ < t0+Terg(ω̂, δ) and h ∈ Z
n+m such that |ω̂(τ−t0)−x−h|∞ ≤

δ, with 0 < δ ≤ 1/4. Arguing as before we get |ω̂τ −(1/2)
∑n+m

i=n+1 ei −h′|∞ ≤ δ

for a suitable h′ ∈ Z
n+m and the estimates (13)-(14) follow. The Lemma is

proved.

The next two Lemmata, whose proof is omitted, will be used in the proofs
of Theorems 1.1 and 0.2, for constructing the pseudo periodic solutions through
the Contraction Mapping Theorem.
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Lemma 2.4. Let (X, | · |X ) and (Y, | · |Y ) be Banach spaces, L : Y −→ X be a
linear bounded operator and P : X −→ Y be a C1 map. Assume that

(20) δ0 ≥ 2 |L(P(0))|X

and

(21) sup
x∈Bδ0

|D P(x)| ≤ 1

2 |L| .

Then, there exists a unique x� ∈ Bδ0 such that x� = L(P(x�)).

The next Lemma defines a suitable “Green operator” L associated to the linear
system (26) below.

Lemma 2.5. Let T > 0, � ∈ Mat(m × m, R), M ∈ Mat(n × n, R) and define
M := 1m − ei�T ∈ Mat(m × m, C). Assume that M and M are invertible. Let

Y := C
(

[0, T ], R
n × T

n × C
m
)

,(22)

X :=
{
(J, ψ, z) ∈ Y s.t. ψ(0) = ψ(T ) = 0 , z(0) = z(T )

}
.(23)

X and Y , endowed with the sup-norm ‖( Ĵ , ψ̂, ẑ)‖ := supt∈[0,T ](| Ĵ (t)|, |ψ̂(t)|,
|ẑ(t)|), are Banach spaces.

For any ( Ĵ , ψ̂, ẑ) ∈ Y define the constants

α( Ĵ , ψ̂) := − 1

T

( ∫ T

0

∫ s

0
Ĵ (θ) dθ ds + M−1

∫ T

0
ψ̂(θ) dθ

)
∈ R

n ,

β(ẑ) := M−1ei�T
∫ T

0
e−i�θ ẑ(θ) dθ ∈ C

m

and the linear “Green” operator L : Y −→ X by

(24) L

( Ĵ
ψ̂

ẑ

)
:=


α( Ĵ , ψ̂) + ∫ t

0 Ĵ (s) ds

Mαt + M
∫ t

0

∫ s
0 Ĵ (θ) dθ ds + ∫ t

0 ψ̂(θ) dθ

ei�t
(
β(ẑ) + ∫ t

0 e−i�θ ẑ(θ) dθ
)

 .

The Green operator L satisfies

(25) |L| ≤ C
(
|M−1| + |M | T 2 + |M | |M−1| T + |M−1|T

)
,

for a suitable constant C > 0 depending on supt∈[0,T ] |ei�t |, n and m.

Setting (J, ψ, z) = L( Ĵ , ψ̂, ẑ), then (J, ψ, z) ∈ C1 and

(26)


J̇ = Ĵ ,

ψ̇ − M J = ψ̂,

ż − i�z = ẑ .

The straightforward proof is omitted. We only point out that L(Y ) ⊆ X by
definition of the constants α( Ĵ , ψ̂) and β(ẑ).
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3. – Normal form around an elliptic torus

In order to study the dynamics of the Hamiltonian system (6) in a small
neighborhood of T it is a convenient device to perform the following rescaling

(27) I∗ := η2I , ϕ∗ := ϕ , Z∗ := ηZ , Z∗ := ηZ ,

where η > 0 is a positive small parameter. Note that the linear transformation
(27) preserves the torus T and that a domain of order one in the new variables
(I, ϕ, Z , Z) correspond to a domain in the old variables (I∗, ϕ∗, Z∗, Z∗) that
shrinks towards T for η tending to zero.

The new Hamiltonian H(I,ϕ, Z , Z) = η−2H∗(η2I, ϕ, ηZ , ηZ) writes

(28) H(I,ϕ, Z , Z) = ω · I + �Z · Z +
∑

2|k|+|a+a|≥3

η2|k|+|a+a|−2 R∗
k,a,a(ϕ)Ik Za Z

a

and it is analytic on
Dn

r∗/η2 × T
n
s∗ × D2m

ρ∗/η .

In order to find periodic solutions with large period close to the elliptic torus T
we will apply in Section 4 a finite dimensional reduction of Lyapunov-Schmidt
type. For this purpose (see Remark 4.2) we need first to perform a symplectic
change of variables which eliminates from the Hamiltonian H defined in (28)
the following terms(13)

η
∑

1≤i≤n
|a+a|=1

R∗
ei ,a,a(ϕ)Ii Za Z

a
,(29)

η2
∑

|k|=2,

=0

R∗
k,0,0,
Ikei
·ϕ ,(30)

η2
∑

1≤i≤n
|a+a|=2

a 
=a or 

=0

R∗
ei ,a,a,
Ii Za Z

a
ei
·ϕ ,(31)

η3
∑

2|k|+|a+a|=5
|a+a|=1

R∗
k,a,a(ϕ)Ik Za Z

a
.(32)

This task will be accomplished in the next proposition. The term (30) will be
“averaged out” since ω is Diophantine; the terms (29) and (32) using the first
order Melnikov non-resonance conditions (namely conditions (4) for |h| ≤ 1),
and, finally, the term (31) using the second order Melnikov non-resonance
conditions (4).

(13)For short, in the sequel we will often omit the summation over 
 ∈ Z
n .
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Proposition 3.1 (Averaging). Let the Hamiltonian H, defined in (28), be real
analytic on Dn

r × T
n
s × D2m

ρ and satisfy the second-order Melnikov non-resonance
conditions (4). Then, for η small enough, depending on n, m, ω, �, γ , τ , r , s, ρ, there
exists an analytic canonical change of coordinates � : (I, φ, z, z) → (I, ϕ, Z , Z),
η-close to the identity,

� : Dn
r/2 × T

n
s/2 × D2m

ρ/2 −→ Dn
r × T

n
s × D2m

ρ ,

transforming the Hamiltonian H into the Hamiltonian(14)

(33)

H = H ◦ � = ω · I + �zz + η
∑

|a+a|=3

R∗
0,a,a(φ)zaza

+ η2
[1

2
RI · I + QI · zz +

∑
|a+a|=4

R0,a,a(φ)zaza
]

+ η3
∑

2|k|+|a+a|=5
|a+a|=3,5

Rk,a,a(φ)I k zaza + O(η4) ,

for suitable Rk,a,a ∈ C, Rk,a,a(φ) analytic on T
n
s/2, and where R is the symmetric

twist matrix defined in (7) and Q ∈ Mat(m × n, R) is defined in (8).

Proof. We rewrite the Hamiltonian (28) in the form

(34) H(I,ϕ, Z , Z) =
∑
j≥0

η j R( j)
∗ (I,ϕ, Z , Z)

with

(35) R(0)
∗ := ω ·I +�Z · Z and R( j)

∗ :=
∑

2|k|+|a+a|= j+2

R∗
k,a,a,
Ik Za Z

a
ei
·ϕ

where we have expanded in Fourier series the functions R∗
k,a,a(ϕ) as in (2).

We want to define a canonical change of variables � from the new variables
ζ := (I, φ, z, z) to the old ones Z := (I, ϕ, Z , Z), as the flow at time 1 of
a suitable Hamiltonian χ . Precisely � := �1

χ , where �t
χ (ζ0) := ζ(t) is the

unique solution of the Hamiltonian system

İ (t)=−∂φχ(ζ(t)) , φ̇(t)=∂I χ(ζ(t)) ,

(36)

ż(t)= i∂zχ(ζ(t)) , ż(t)=−i∂zχ(ζ(t))

with initial conditions ζ(0) = ζ0.

(14)We denote QI · zz :=∑ 1≤ j≤m
1≤i≤n

Qj i Ii z j z j .
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The Lie operator (Poisson brackets), acting on a function g := g(ζ ), is
defined as

(37) Lχ g := {g, χ} := ∂φg∂I χ − ∂I g∂φχ + i∂zg∂zχ − i∂zg∂zχ.

For every integer j ≥ 0 we also set

(38) L0
χ g := g , L j

χ g := Lχ L j−1
χ g .

The new Hamiltonian H = H ◦ � can be developed, for all j0 ∈ N
+, as

(39) H := H ◦ � =
j0∑

j=0

1

j!
L j

χH + 1

j0!

∫ 1

0
(1 − ξ)L j0+1

χ H ◦ �ξ
χ dξ .

We look for a Hamiltonian χ of the form

(40)

χ =
j0∑

j=1

η jχ( j) , where

χ( j) := χ( j)(I, φ, z, z) :=
∑

2|k|+|a+a|= j+2

χk,a,a,
 I k zazaei
·φ

will be chosen later on. For the sake of simplicity we will often omit in the
notation the summation over 
 ∈ Z

m . Inserting (40) in (39) we obtain

(41) H =
j0∑

d=0

ηd R(d)+
j0∑

d=1

ηd
j0∑

j=0

1

j!

d−1∑
h=0

∑
h+i1+···+i j =d

1≤i1,...,i j ≤d

L
χ(i1) . . . L

χ
(i j ) R(h)

∗ +O(η j0+1)

Denoting [ · ]d the d-th order in η, we obtain

(42) [H ]1 = R(1)
∗ + Lχ(1) R(0)

∗

and

(43) [H ]d = R(d)
∗ + Lχ(d) R(0)

∗ +
j0∑

j=0

1

j!

d−1∑
h=0

∑
h+i1+···+i j =d
1≤i1,...i j ≤d−1

L
χ(i1) . . . L

χ
(i j ) R(h)

∗ .

Observe that ∑
2|k|+|a+a|=h+2

2|k′|+|a′+a′|=h′+2

{I k zazaei
·φ , I k′
za′

za′
ei
′·φ}(44)

∑
2|k′′|+|a′′+a′′|=h+h′+2

ck′′,a′′,a′′,
′′ I
k′′

za′′
za′′

ei
′′·φ ,(45)



104 MASSIMILIANO BERTI, LUCA BIASCO, ENRICO VALDINOCI

for suitable constants ck′′,a′′,a′′,
′′ , which are explicitly given by the following
formula:

(46)

{I k zazaei
·φ,I k′
za′

za′
ei
′·φ}= i

[
n∑

i=1

(
i k
′
i −
′

i ki )I k+k′−ei za+a′
za+a′

+
m∑

j=1

(aj a
′
j −aj a

′
j )I k+k′

za+a′−ej za+a′−ej

]
ei(
+
′)·φ.

Thus, we obtain that

(47) L
χ(i1) . . . L

χ
(i j ) R(h)

∗ =
∑

2|k|+|a+a|=h+i1+···+i j +2

ck,a,a,
 I k zazaei
·φ

for suitable constants ck,a,a,
. Hence,

(48) [H ]d = Lχ(d) R(0)
∗ +

∑
2|k|+|a+a|=d+2

Rk,a,a,
 I k zazaei
·φ

for suitable Rk,a,a,
 with

(49) Rk,a,a,
 := Rk,a,a,
(χ
(1), . . . , χ(d−1), R(0)

∗ , . . . , R(d)
∗ ) ;

we note that, by means of (42) and (48)

(50) 2|k| + |a + a| = 3 �⇒ Rk,a,a,
 = R∗
k,a,a,
 ,

(recall also the setting in (35)). We also evaluate

(51)

Lχ(d) R(0)
∗ = {ω · I + �zz, χ(d)}

=
∑

2|k|+|a+a|=d+2

−i(ω · 
 + � · (a − a))χk,a,a,
 I k zazaei
·φ.

We define the following “resonant” set:

(52) S := S1∪S2∪S3 ⊂
{
(k, a, a, 
) s.t. 3 ≤ 2|k|+|a+a| ≤ 5 , 
 ∈ Z

n
}

,

with S2 = S0
2 ∪ S1

2 ∪ S2
2 and

S1 := {k = 0, |a + a| = 3, 
 ∈ Z
n}

S0
2 := {k = 0, |a + a| = 4, 
 ∈ Z

n}
S1

2 := {k = ei , a = a = ej , 1 ≤ i ≤ n, 1 ≤ j ≤ m, 
 = 0}
S2

2 := {|k| = 2, a = a = 0, 
 = 0}
S3 := {2|k| + |a + a| = 5, |a + a| = 3, 5, 
 ∈ Z

n} .
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Let j0 = 3. ∀ 1 ≤ d ≤ 3, ∀(k, a, a, 
) such that 2|k| + |a + a| = d + 2, 
 ∈ Z
n ,

one can check, by condition (4), that

(53) (k, a, a, 
) /∈ S �⇒ |ω · 
 + �(a − a)| ≥ γ

1 + |
|τ ,

and hence we can define

(54) χk,a,a,
 :=
{

0 if (k, a, a, 
) ∈ S

−i[ω · 
 + �(a − a)]−1 Rk,a,a,
 otherwise

In light of this construction, using (48) and (51), we have(15)

(55) [H ]d = �Sd

( ∑
2|k|+|a+a|=d+2

Rk,a,a,
 I k zazaei
·φ
)

=
∑

(k,a,a,
)∈Sd

Rk,a,a,
 I k zazaei
·φ.

Define
Rk,a,a := Rk,a,a,0 , Rk,a,a(φ) :=

∑

∈Zn

Rk,a,a,
ei
·φ .

By recurrence, using (48), it is possible to evaluate the terms Rk,a,a explicitly.
From (43) and (50) we have

[H ]2 = �S2

(
1

2
{{R(0)

∗ , χ(1)}, χ(1)} + {R(1)
∗ , χ(1)} + R(2)

∗

)
.

Noting that
{R(0)

∗ , χ(1)} = −R(1)
∗ + �S1 R(1)

∗ ,

we have

[H ]2 = �S2

(
1

2
{R(1)

∗ + �S1 R(1)
∗ , χ(1)} + R(2)

∗

)
.

In order to prove (33) we only need to show that

1

2
RI · I = �S2

2
[H2] = 1

2
�S2

2

(
{R(1)

∗ , χ(1)}
)

+ �S2
2

R(2)
∗ ,(56)

QI · zz = �S1
2
[H2] = �S1

2

(
1

2
{R(1)

∗ + �S1 R(1)
∗ , χ(1)}

)
+ �S1

2
R(2)

∗

= �S1
2

({
1

2
�Sc

1
R(1)

∗ + �S1 R(1)
∗ , χ(1)

})
+ �S1

2
R(2)

∗ ,(57)

(15)We denote by �S , where S ⊂ N
n+2m × Z

n , the projection on S i.e.

�S

( ∑
k,a,a,


ck,a,a,
 I k zazaei
·φ
)

:=
∑

(k,a,a,
)∈S

ck,a,a,
 I k zazaei
·φ .
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where Sc
1 := {k = ei , |a + a| = 1, 
 ∈ Z

n, 1 ≤ i ≤ n}.
We first prove (56). Using (40), (54) and (46), we have

(58)

�S2
2
[H2] =

m∑
j=1

∑
|k|=|k′|=1

|a+a|=|a′+a′|=1
a+a′=a+a′=ej

1

2
·

R∗
k,a,a,
 R∗

k′,a′,a′,−


−ω · 
 + �(a − a)
(aj a

′
j − aj a

′
j )I k+k′

+
∑
|k|=2

R∗
k,0,0,0 I k

=
m∑

j=1

∑
1≤i,i ′≤n

|a+a|=|a′+a′|=1
a+a′=a+a′=ej

1

2
·

R∗
ei ,a,a,
 R∗

ei ′ ,a′,a′,−


−ω · 
 + �(a − a)
(aj a

′
j − aj a

′
j )Ii Ii ′

+
n∑

i,i ′=1

1 + δi,i ′
2

R∗
ei +ei ′ ,0,0,0 Ii Ii ′

= 1

2

n∑
i,i ′=1

m∑
j=1

(
R∗

ei ,ej ,0,
 R∗
ei ′ ,0,ej ,−


−ω · 
 − �j
−

R∗
ei ,0,ej ,


R∗
ei ′ ,ej ,0,−


−ω · 
 + �j

)

+
n∑

i,i ′=1

1 + δi,i ′
2

R∗
ei +ei ′ ,0,0,0 Ii Ii ′ = 1

2
RI · I ,

where δi,i ′ = 1 if i = i ′ and 0 if i 
= i ′. Here, we observe that, since
|a + a| = |a′ + a′| = 1, if a + a′ = a + a′ = ej , then (a, a, a′, a′) = (ej , 0, 0, ej )

or (0, ej , ej , 0). So (56) directly follows from (58).
We now prove (57). Using again (40), (54) and (46), we have

�S1
2
[H2] = −i �S1

2

({
1

2
�Sc

1
R(1)

∗ + �S1 R(1)
∗ ,

∑
1≤i ′≤n
1≤ j ′≤m

 R∗
ei ′ ,ej ′ ,0,
′

ω · 
′ + �j ′
zj ′ +

R∗
ei ′ ,0,ej ′ ,
′

ω · 
′ − �j ′
zj ′

 Ii ′e
i
′·φ

})
+ �S1

2
R(2)

∗

= 1

2
�S1

2

∑
1≤i,i ′≤n
1≤ j ′≤m
|a+a|=1

(
i ′ Ii +
i Ii ′)R∗
ei ,a,a,
zaza

(
R∗

ei ′ ,ej ′ ,0,−


−ω · 
 + �j ′
zj ′ +

R∗
ei ′ ,0,ej ′ ,−


−ω · 
′−�j ′
zj ′

)
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+�S1
2

 ∑
1≤i≤n

1≤ j, j ′≤m

R∗
0,ej ,ej +ej ′ ,
zj ′zj z j e

i
·φ,

R∗
ei ′ ,ej ′ ,0,
′

ω · 
′+�j ′
zj ′ Ii ′e

i
′·φ


+
∑

1≤i≤n
1≤ j, j ′≤m

R∗
0,ej +ej ′ ,ej ,


zj ′zj z j e
i
·φ ,

R∗
ei ′ ,0,ej ′ ,
′

ω · 
′−�j ′
zj ′ Ii ′e

i
′·φ

+�S1

2
R(2)

∗

= 1

2

∑
1≤i,i ′≤n
1≤ j≤m


i ′

(
R∗

ei ,0,ej ,

R∗

ei ′ ,ej ,0,−


−ω · 
 + �j
+

R∗
ei ,ej ,0,
 R∗

ei ′ ,0,ej ,−


−ω · 
 − �j
(59)

+
R∗

ei ,0,ej ,

R∗

ei ′ ,ej ,0,−


−ω · 
 + �j
+

R∗
ei ,ej ,0,
 R∗

ei ′ ,0,ej ,−


−ω · 
 − �j

)
Ii zj z j

−
∑

1≤i≤n
1≤ j, j ′≤m

1

ω · 
+�j ′

(
R∗

0,ej ,ej +ej ′ ,−
 R∗
ei ,ej ′ ,0,
+R∗

0,ej +ej ′ ,ej 

R∗

ei ,0,ej ′ ,−


)
Ii zj z j

+ �S1
2

∑
2|k|+|a+a|=4

R∗
k,a,a,
 I k zazaei
·φ.

So (57) directly follows from (59).
The estimate on the new analyticity radii follows from (53) and from the

fact that χ = O(η) (see (40)).

4. – Periodic orbits winding along the torus

In this section we prove the existence of periodic solutions of longer and
longer (minimal) period shrinking closer and closer to the elliptic torus T
(Theorem 1.1).

By Proposition 3.1 the Hamiltonian (28) can be transformed, thanks to the
second order Melnikov non-resonance conditions (4), into the Hamiltonian

(60)

H(I, φ, z, z) = ω · I + �zz + η
∑

|a+a|=3

R∗
0,a,a(φ)zaza

+ η2

1

2
RI · I + QI · zz +

∑
|a+a|=4

R0,a,a(φ)zaza


+ η3

∑
2|k|+|a+a|=5

|a+a|=3,5

Rk,a,a(φ)I k zaza + O(η4) ,
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analytic on
Dn

r∗/(2η2)
× T

n
s∗/2 × D2m

ρ∗/(2η) .

The Hamilton’s equations of motion induced by the Hamiltonian (60)

(61) İ = −∂φ H, φ̇ = ∂I H, ż = i∂z H, ż = −i∂z H,

can be written as

(62)

İ = −η
∑

|a+a|=3

∂φ R∗
0,a,a(φ)zaza − η2

∑
|a+a|=4

∂φ R0,a,a(φ)zaza

− η3
∑

2|k|+|a+a|=5
|a+a|=3,5

∂φ Rk,a,a(φ)I k zaza + O(η4) ,

φ̇i = ωi + η2
[
(RI )i +

∑
1≤ j≤m

Qj i z j z j

]
+ η3

∑
2|k|+|a+a|=5

|a+a|=3,5

Rk,a,a(φ)ki I k−ei zaza + O(η4) ,

ż j = i�j z j + iη
∑

|a+a|=3

R∗
0,a,a(φ)aj z

aza−ej

+ iη2
[
(QI )j z j +

∑
|a+a|=4

R0,a,a(φ)aj z
aza−ej

]
+ iη3

∑
2|k|+|a+a|=5

|a+a|=3,5

Rk,a,a(φ)I kaj z
aza−ej + O(η4) ,

for i = 1, . . . , n, j = 1, . . . , m.
Critical points of the Hamiltonian action functional

(63) A(I (t), φ(t), z(t), z(t)) :=
∫ T

0
I · φ̇ + izż − H(I (t), φ(t), z(t), z(t)) dt,

in a suitable space of T -periodic functions, are T -periodic solutions of (61).

4.1. – The pseudo periodic solutions

We will find periodic solutions of the Hamiltonian system (61) close to
periodic solutions of the integrable Hamiltonian

(64) Hint := ω · I + η2

2
RI · I + �zz + η2QI · zz.
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The manifold {z = 0} is invariant for the Hamiltonian system generated by
Hint

(16)

(65) İ = 0, φ̇ = ω + η2(RI + QT zz), ż = i(� + η2QI )z

and it is completely filled up by the invariant tori T (I0) := {I = I0, φ ∈
T

n, z = 0}. On T (I0) the flow is t → {I0, φ0 + (ω + η2RI0)t, 0} and in
its normal space it is determined by ż = i�η(I0)z where �η(I0) is the m × m
diagonal matrix with real coefficients associated to the vector of the “shifted
elliptic frequencies”

(66) �η(I0) := � + η2QI0 ,

For any I0 ∈ R
n , �η(I0) is a real matrix, since Q is real (see page 94).

For suitable T > 0, I0 ∈ R
n , k ∈ Z

n , namely when

(67) ω̃ := ω + η2RI0 = 1

T
2πk ∈ 1

T
2πZ

n,

the torus T (I0) is completely resonant, supporting the family of T -periodic
motions

(68) P :=
{

I (t) = I0, φ(t) = φ0 + ω̃t, z(t) = 0
}
.

The family P will not persist in its entirety for the complete Hamiltonian
system (61). However, the non-resonance property (69) below, between the
period T and the “shifted elliptic frequencies” �η(I0), is sufficient to prove
the persistence of at least n geometrically distinct T -periodic solutions of the
Hamiltonian system (61), close to P . Precisely, the required non resonance
property is

(69) M := M(I0, T ) := 1m −ei�η(I0)T is invertible and |M−1(I0, T )| ≤ const.

Our aim is then to find I0 and T so that (67) and (69) hold: we will define
I0 := I0(T ) in dependence on the “1-dimensional parameter” T in such a way
that (67) is identically satisfied and then we will find T so that the non resonance
property (69) holds. Moreover, for our perturbative arguments of Lemma 4.3,
we want I0 = O(1) and T < 2/η2.

(16)We recall the usual notation for the vector QT zz ∈ R
n whose components are (QT zz)i :=∑m

j=1 Qj i Ii z j z j , 1 ≤ i ≤ n and for the m × m diagonal matrix � + η2QI := diag
(
�1 +

η2(QI )1, . . . , �m + η2(QI )m

)
.
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Define, for T ≥ 1/η2,

I0 := I0(T ) := − 2π

η2T
R−1

〈ωT

2π

〉
,(70)

k := k(T ) = ωT

2π
−
〈ωT

2π

〉
,(71)

where 〈(x1, . . . , xn)〉 := (〈x1〉, . . . , 〈xn〉) and the function 〈·〉 : R → [−1/2, 1/2)

is defined as 〈x〉 := x for x ∈ [−1/2, 1/2) and it is 1-periodically extended for
x ∈ R. Notice that I0 ∈ R

n since R is a real matrix (see page 94). With the
choice (70), (71), ωT + η2RI0(T ) = 2πk, and then (67) holds. In addition, for
T ≥ 1/η2, I0(T ) = O(1). Moreover

(72) �ηT = �η(I0(T ))T = �T + η2QI0T = 2π

(
�

T

2π
− QR−1

〈
ω

T

2π

〉)
.

In order to prove the non-resonance property (69), we note that

(73) |M−1|≤ 1

min
1≤ j≤m

|ei�η j T − 1| ≤ 1

min
1≤ j≤m

| sin(�η j T )| ≤ 2

min
1≤ j≤m

dist(�η j T, 2πZ)
.

Lemma 4.1. Suppose that condition (a) of Theorem 1.1 hold. Define, for
m̂ ≥ 1,

(74)

d0 := min

 1

4 max
1≤ j≤m̂

|aj |1 ,
1

4 max
1≤ j≤m̂

Mj

 ,

δ := min

 d0

2 max
1≤ j≤m

|(QR−1)j |1
,

1

4 max
1≤ j≤m̂

|aj |1


where (QR−1)j is the j-row of the matrix QR−1, and, for m̂ = 0,

(75) d0 := 1

4
, δ := min

 1

8 max
1≤ j≤m

|(QR−1)j |1
,

1

4

 .

Let M := lcm (M1, . . . , Mm̂), for m̂ ≥ 1, and M = 1 for m̂ = 0. Finally let(17)

(76) Te := Terg

(
ω̂

M
,

δ

M

)
, � := min

 δ

4 max
1≤i≤n

|ωi | ,
d0

8 max
1≤ j≤m

|�j |

 .

(17)The ergodization time Terg was defined in (10).
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Then ∀ t0 ≥ 0, there exists an interval J ⊂ [t0 −2π�, t0 +2πTe +2π�] of length,
at least 4π�, such that ∀ T ∈ J , M−1 := M−1(I0(T ), T ) satisfies

(77) |M−1| ≤ 4

πd0

Proof. In order to define the periods T we want to use Lemma 2.3. Let
us verify that its hypothesis are fulfilled. If (ω, �) are rationally independent,
i.e. m̂ = 0, we can apply it directly. If m̂ = 1 we observe that (11) holds
by definition, since Mj ≥ 1 = m̂. If m̂ = 1 = M1 we have also to show that
(12) is satisfied. This is true: indeed, by contradiction, if (12) were false then
�1 = ∑n

i=1 a1iωi violating the first order Melnikov condition (namely (4) with
|h| ≤ 1). If m = 1 then m̂ = 0, 1 and we are in one of the previous cases. We
finally consider the case m̂ ≥ 2. We have to prove (11). Note first that it is
verified for m = 2. Indeed in this case m̂ = 2 and, hence, ω̂ = ω. By definition
Mj�j = aj · ω for j = 1, 2. Again by the first order Melnikov condition we
have, for j = 1, 2, that Mj ≥ 2 which implies Mj ≥ 2 = m̂ and (11) holds. All
the other cases are covered by the hypothesis (iii). We can apply Lemma 2.3.

Let t0 ≤ τ ≤ t0 + Te be the time found in Lemma 2.3 and consider the
interval J := 2πτ + 2π [−�, �] ⊂ [t0 − 2π�, t0 + 2πTe + 2π�]. ∀ T =
2πτ + 2πθ ∈ J (i.e. |θ | ≤ �) formula (72) becomes

(78) �η j T = 2π
(
�j (τ + θ) − (QR−1)j 〈ω(τ + θ)〉

)
∀ 1 ≤ j ≤ m.

By (13), ∀ 1 ≤ i ≤ n there exists a ki ∈ Z such that ωiτ = ki + 〈ωiτ 〉
with |〈ωiτ 〉| ≤ δ; moreover |ωiθ | ≤ δ/4 by definition of �. Hence we have
|ωi (τ +θ)−ki | ≤ δ+δ/4 < 1/2 being δ ≤ 1/4. So 〈ωi (τ +θ)〉 = ωi (τ +θ)−ki

and

(79) |〈ωi (τ + θ)〉| ≤ 5

4
δ , ∀ 1 ≤ i ≤ n .

For 1 ≤ j ≤ m, by (14) we have dist(�jτ, Z) ≥ d0, hence, by the definition
of �, dist(�j (τ + θ), Z) ≥ d0 − d0/8. Collecting the previous inequalities and
(79), from (78) we obtain

dist(�η j T, 2πZ) = 2πdist
(
�j (τ + θ) − (QR−1)j 〈ω(τ + θ)〉, Z

)
≥ 2π

(
d0 − d0

8
− 5d0

8

)
= πd0

2

by definition of δ. Finally, we recall (73) to end the proof.



112 MASSIMILIANO BERTI, LUCA BIASCO, ENRICO VALDINOCI

Lemma 4.2. Let condition (b) of Theorem 1.1 hold, namely α > 0. Let

θ := min
1≤i≤n

1

|ωi | and d1 := min
{ π

8m
,
παθ

2nm

}
.

Then ∀ t0 ≥ 0 there exists an open set A ⊂ [t0, t0 +4πθ ] of measure, at least, πθ/n,
such that ∀ T ∈ A, M−1 := M−1(I0(T ), T ) satisfies

(80) |M−1| ≤ 2

d1
.

Proof. The function T → �η(I0(T ))T is a piecewise smooth function
with discontinuities at the points Ti,k = 2π

ωi
(k + 1

2 ), 1 ≤ i ≤ n, k ∈ Z. Apart
these points �η(I0(T ))T is differentiable w.r.t. to T and has constant derivative
� − QR−1ω =: ξ ∈ R

m . By the definition of θ , in every interval of the type(
2πθ(h − 1/2), 2πθ(h + 1/2)

)
, h ∈ Z, fall at most n − 1 points of discontinuity

and, hence, there exists an interval J1 ⊆ (
2πθ(h − 1/2), 2πθ(h + 1/2)

)
of

length, at least, � := 2πθ/n, in which �η(I0(T ))T is smooth. Hence, on J1,
by (72), �ηT = x + ξT for a suitable x ∈ R

m .

For 1 ≤ j ≤ m, let define the sets

Bj :=


{

T ∈ J1 s.t. dist(�η j T, 2πZ) >
π

8m

}
if |ξj |� ≥ π

{
T ∈ J1 s.t. dist(�η j T, 2πZ) >

�

4m
α

}
if |ξj |� < π.

Remembering the definition α := min1≤ j≤m |ξj |, we note that meas(Bj ) ≥ �(1−
1

2m ), ∀1 ≤ j ≤ m. Let A := ∩m
j=1Bj , then A ⊆ J1 and meas(J1) ≥ �/2. By

construction ∀ T ∈ A , dist(�η j T, 2πZ) ≥ d1 , ∀ 1 ≤ j ≤ m. Finally the Lemma
follows from (73).

Remark 4.1. Our non resonance conditions (a)–(b) of Theorem 1.1 are
sharp: if (a)–(b) are violated, it is not possible in general to find a period T
is such a way that the matrix M defined in (69)–(72) is invertible (clearly it
must be m ≥ 3 and m̂ ≥ 1). As an example, consider the Hamiltonian H∗ =

ω · I∗ + �Z∗ · Z∗ + 1

2
|I∗|2 + 1

p

m̂∑
j=1

(aj1I∗1

+ aj2I∗2)Z∗ j Z∗ j +
∑

2|k|+|a+a|≥6

R∗
k,a,a(ϕ∗)Ik

∗ Za
∗ Z

a
∗ ,

with m ≥ 4 (m̂ ≤ m) and

aj1 :=
{

1 if 1 ≤ j ≤ m̂ − 1

0 if j = m̂
aj2 :=

{
j if 1 ≤ j ≤ m̂ − 1

1 if j = m̂.
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The Hamiltonian H∗ is in the form (1)–(5). We choose m̂ so that p := m̂ − 1
is a prime integer with 3 ≤ p ≤ m − 1 (we require p 
= 1, 2 since (ω, �) must
satisfy the second order Melnikov non-resonance conditions (4) and (ω, �) are
related by (81) below). Let also ω̂ = (ω, �m̂+1, . . . , �m) be any rationally
independent vector in R

n̂ and define

�j := 1

p
(aj1ω1 + aj2ω2) , ∀1 ≤ j ≤ m̂ .

Note that, by (81), the equations (5) are fulfilled with Mj = p, ∀1 ≤ j ≤ m̂.
Hence Mj = p = m̂ − 1 < m̂ and condition (a)-(iii) is violated. After the
rescaling in (27), the new Hamiltonian is H = ω · I + �Z · Z + η2( 1

2 |I|2 +QI ·
Z Z) + O(η4) where Q ∈ Mat(m × n, R) is defined by

Qj i =
{

aji/p if 1 ≤ j ≤ m̂ , i = 1, 2 ,

0 elsewhere .

Since the Hamiltonian H does not contain terms of the form (29)-(30)-(31)-
(32), H is yet in the normal form (33) (i.e. (60)) with R = 1n . Therefore
(� − QR−1ω)j = (� − Qω)j = 0, ∀1 ≤ j ≤ m̂, by (81), and also condition
(b) is violated. Now, whatever we choose T ∈ R, I0 ∈ R

n , n ∈ Z
n such

that ω + η2RI0 = 2πn/T , i.e. (67) is satisfied, we get, substituting I0 =
η−2R−1((2πn/T ) − ω) into (66), �η(I0)T = (� − Qω)T + 2πQn. Hence,
∀1 ≤ j ≤ m

�η j T = �η j (I0)T = 2π(Qj1n1 + Qj2n2) .

We claim that, for all ni ∈ Z, at least one �η j T is an integer multiple of 2π

and hence the matrix M := 1m − ei�ηT has a zero eigenvalue. In fact,

Qj1n1 + Qj2n2 =
{

(n1 + n2 j)/p if 1 ≤ j ≤ p ,

n2/p if j = m̂ .

Thus, if n2 is a multiple of p, then �ηm̂ T ∈ 2πZ. Otherwise, let j∗ be the
unique solution of the linear congruence n2 j∗ ≡ −n1 modp (recall that p is
prime). In this case �η j∗ T ∈ 2πZ. In both cases M is not invertible.

In the next lemma we prove the existence of suitable pseudo T -periodic
solutions of the Hamiltonian system (62) close to the manifold P . Roughly,
by the “twist condition” detR 
= 0 and the nonresonance property (69), the
manifold P is “non-degenerate”, i.e. the only T -periodic solutions of Hint ,
close to P , are the set P . This implies, by the Contraction Mapping Theorem,
the existence of a manifold of pseudo T -periodic solutions ζφ0 , close to P ,
diffeomorphic to T

n . ζφ0 are solutions of (61) for all t ∈ (0, T ) and satisfy
φ(T ) = φ(0) = φ0, z(T ) = z(0) but it may happen that I (T ) 
= I (0).
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Lemma 4.3. Assume that Condition (a) or (b) of Theorem 1.1 holds. Then,
there exist η0, C0, C > 0, such that: ∀η ∈ (0, η0], there exist an open set Aη ⊆
[ 1
η2 , 1

η2 + C0] of measure greater than 1/C0 such that ∀T ∈ Aη and ∀φ0 ∈ T
n there

exists a unique function

ζφ0 :=
(

Iφ0, φφ0, zφ0

)
∈ C

(
[0, T ], R

n ×T
n ×C

m
)

∩C1
(
(0, T ), R

n ×T
n ×C

m
)
,

smooth in φ0, such that
(i) ζφ0(t) solves (61) for all t ∈ (0, T );

(ii) ζφ0 satisfies φφ0(0) = φφ0(T ) = φ0, zφ0(0) = zφ0(T );

(iii) supt∈[0,T ]

(
|Iφ0(t) − I0| + |φφ0(t) − φ0 − ω̃t | + |zφ0(t)|

)
≤ Cη2 .

where I0 := I0(T ) is defined in (70) and ω̃ := ω̃(T ) := ω + η2RI0.

Proof. In order to define the set Aη ⊆ [ 1
η2 , 1

η2 + C0] of “non-resonant”
periods T , we use Lemmata 4.1 or 4.2 (according whether condition (a) or (b)
of Theorem 1.1 holds) with t0 := η−2. ∀T ∈ Aη we look for a solution ζφ0 of
(62) (i.e. (61)) of the form

(82) Iφ0(t) = I0 + ηJ (t), φφ0(t) = φ0 + ω̃t + ηψ(t), zφ0(t) = ηw(t),

for suitable functions (J , ψ , w) : [0, T ] → R
n × T

n × C
m satisfying ψ(0) =

ψ(T ) = 0 and w(0) = w(T ). The condition ψ(0) = 0 is a “transversality
condition”: we impose the “correction” (J, ψ, w) to belong to a supplementary
linear space to the tangent space of the unperturbed manifold P (see [BB] for
a discussion of the different supplementary spaces). The functions (J , ψ , w)
must satisfy the system

J̇ = O(η3) ,(83)

ψ̇ − η2 J = O(η3) ,(84)

ẇj −i�η jwj = iη2
∑

|a+a|=3

R∗
0,a,a(φ0+ω̃t)ajw

awa−ej +O(η3), j = 1, . . . , m(85)

where �η = �η(I0(T )) ∈ Mat(m × m, R) is the real diagonal matrix defined
in (66).

In order to find (J, ψ, w) we use Lemmata 2.4 and 2.5. In connection with
the notation of Lemma 2.5 we have here M = η2R and M = 1m − ei�ηT . Let
L denote the corresponding Green operator in (24) and P := P(J, ψ, w; φ0)

the right hand side of (83), (84), (85). It is sufficient to find a fixed point
(J, ψ, w) ∈ X , space defined in (23), of

(86) (J, ψ, w) = L
(

P(J, ψ, w; φ0)
)

.

If T is obtained in Lemma 4.1, resp. Lemma 4.2, we have, by (80), resp. (77),
that |M−1| ≤ 2/d1, resp. |M−1| ≤ 4/πd0. Moreover |M | = O(η2), |ei�η | =
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|diag{ei�η j }| ≤ m, T = O(η−2) and, hence, from (25), we get the estimate on
the Green operator |L| ≤ C ′η−2 for some C ′ > 0. Moreover P(0; φ0) = O(η3).
Then, for a constant C large enough we have δ0 := Cη ≥ 2|L(P(0))|. Finally,
since supBδ0

|D P| = O(η3), for η small enough, we verify also (21). Applying

Lemma 2.4 in the ball Bδ0 we prove the existence of a solution ζφ0 satisfying
||ζφ0 || ≤ Cη, and hence, by (82), we get the estimate (iii).

Since ζφ0 ∈ X solves the integral system (86), ζφ0(t) is actually C1 for all
t ∈ (0, T ) and solves (61).

Finally, since the operator φ0 → L P(J, ψ, w; φ0) is smooth, by the Implicit
Function Theorem, we also deduce that the function φ0 → ζφ0 is C1.

Remark 4.2. The terms (29), (30), (31), (32), that have been “averaged out”
in Proposition 3.1, could not have been treated perturbatively in the previous
Lemma. Indeed (29) (resp. (32)) would have given rise to a term O(1) (resp.
O(η2)) in (85); (30) to a term O(η) in (83); and (31) to a term O(η2) in (85).
Roughly speaking, since the period T ≥ 1/η2, only terms of magnitude o(η2)

can be dealt as perturbations.

Remark 4.3. The invertibility of the twist matrix R has been used in
two ways: to modulate the frequency ω yielding the existence of nearby reso-
nant frequencies, see (67), and to imply that the manifold P is non-degenerate
(together with the non-resonance property (69)). Weaker conditions could in
principle be used (if the elliptic variables were absent think to [CZ1]). However,
in this case, when R is degenerate one is forced to study the higher order terms
in the normal form of Proposition 3.1 making the perturbative analysis much
more difficult. Moreover in the three body problem application we will prove
that R is invertible, see Lemma 5.1.

Remark 4.4. When m = 0, namely in the case of maximal tori, the
twist matrix R reduces simply to the matrix of the second derivatives of H∗
w.r.t. the action variables I∗. This is not the case when m 
= 0. Consider the
Hamiltonian H∗ = ωI∗+ �Z∗Z∗+ I∗(Z∗+ Z∗)+ I2

∗/� where (I∗, ϕ∗) ∈ R×T,
(Z∗, Z∗) ∈ C

2 and � > 0. The twist matrix in (7) turns out to be R = 0
although the second derivative of H∗ w.r.t. I∗ equals to 2/� 
= 0. Heuristically,
for lower dimensional elliptic tori, the twist matrix R takes into account, with the
second addendum in the r.h.s. of (7), the interaction between the torus variables
(I∗, ϕ∗) and the elliptic variables Z∗. Finally observe that the symplectic map
I∗ = I, ϕ∗ = φ + (z − z)/(i�), Z∗ = z − I/� (which can be found through the
averaging procedure of Section 3) transforms H into the isochronous Hamiltonian
H = ωI + �zz.

4.2. – The variational principle

We now define the “reduced Hamiltonian action functional” E : T
n → R

as the Hamiltonian action functional A evaluated on the pseudo T -periodic
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solutions ζφ0 obtained in Lemma 4.3, namely(18)

(87)

E(φ0) := A(Iφ0, φφ0, zφ0, zφ0)

=
∫ T

0
Iφ0 · φ̇φ0 + izφ0 · żφ0 − H(Iφ0, φφ0, zφ0, zφ0) dt .

By Lemma 4.3 the reduced action functional E is smooth in φ0.
Critical points of E : T

n → R give rise to T -periodic solutions of the
Hamiltonian system (61), according to the following Lemma:

Lemma 4.4. ∂φ0E(φ0) = Iφ0(T ) − Iφ0(0). Hence, if φ� ∈ T
n is a critical point

of E , then ζφ�(t) can be extended to a T -periodic solution of the Hamiltonian system
(61).

Proof. Differentiating w.r.t. φ0 in (87) we get

∂φ0E(φ0) =
∫ T

0
∂φ0 Iφ0 · φ̇φ0 + Iφ0 · ∂φ0 φ̇φ0 + i∂φ0 zφ0 żφ0 + izφ0∂φ0 żφ0

− ∂I H∂φ0 Iφ0 − ∂φ H∂φ0φφ0 − ∂z H∂φ0 zφ0 − ∂z H∂φ0 zφ0 dt

= Iφ0(T )∂φ0φφ0(T ) − Iφ0(0)∂φ0φφ0(0) + i∂φ0 zφ0(T )zφ0(T )

− i∂φ0 zφ0(0)zφ0(0),

by an integration by parts, and since ζφ0(t) satisfies the Hamilton’s equations
(61) in (0, T ). Moreover, since ∀φ0 ∈ T

n , φφ0(T ) = φφ0(0) = φ0 and zφ0(T ) =
zφ0(0), deriving w.r.t. φ0, we get ∂φ0φφ0(T ) = ∂φ0φφ0(0) = 1n and ∂φ0 zφ0(T ) =
∂φ0 zφ0(0). This implies ∂φ0E(φ0) = Iφ0(T ) − Iφ0(0). Hence, if φ� ∈ T

n is a
critical point of E , ζφ�(T ) = ζφ�(0) and we deduce that ζφ�(t) can be extended
to a T -periodic solution of the Hamiltonian system (61).

The following Lemma, which is a consequence of the autonomy of the
Hamiltonian H , holds.

Lemma 4.5. ∀φ0 ∈ T
n there exists V (φ0, η) ∈ R

n with V (φ0, η) = ω̃ + O(η3)

such that

(88) V (φ0, η) · ∂φ0E(φ0) = 0, ∀φ0 ∈ T
n.

Proof. Since ζφ0 = (Iφ0, φφ0, zφ0) satisfies the Hamiltonian system (61) in
(0, T ) and φφ0(T ) = φφ0(0) = φ0, zφ0(T ) = zφ0(0), then

(89) H(Iφ0(T ), φ0, zφ0(0), zφ0(0)) = H(Iφ0(0), φ0, zφ0(0), zφ0(0)).

By the mean value theorem there exists ξφ0in the segment between [Iφ0(T ),Iφ0(0)]
such that

(90) ∂I H(ξφ0, φ0, zφ0(0), zφ0(0)) · [Iφ0(T ) − Iφ0(0)] = 0.

(18)E(φ0) ∈ R since
∫ T

0 Im (izφ0 żφ0) dt = ∫ T
0 Re (zφ0 żφ0) dt = ∫ T

0
1
2

d
dt (zφ0 zφ0) dt = 0.
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Define V (φ0, η) := ∂I H(ξφ0, φ0, zφ0(0), zφ0(0)). By Lemma 4.4 and (90),
formula (88) follows. Finally, since Iφ0(T ) − I0 = Iφ0(0) − I0 = O(η2),
zφ0(0) = O(η2) and ∂I H = ω+ η2RI+ η2QT zz+ O(η3), we deduce the
estimate V (φ0, η) = ω̃ + O(η3).

Proof of Theorem 1.1. By Lemma 4.4 the absolute minimum (and max-
imum) φ� ∈ T

n gives rise to a T -periodic solution ζφ� of (61). However one
expects the existence of at least n geometrically distinct T -periodic solutions of
(61), i.e. solutions not obtained one from each other simply by time-translations.

In order find multiple geometrically distinct periodic solutions of (61) we
restrict the reduced action function E to the plane E := [ω̃]⊥ orthogonal to the
periodic flow ω̃ = (1/T )2πk with k ∈ Z

n . The set Z
n ∩ E is a lattice of E ,

(see for example Lemma 8.2 of [BBB]) and hence E can be defined on the
quotient space � := E/(Zn ∩ E) ∼ T

n−1.
A critical point φ� of E : � → R is a critical point of E : T

n → R. Indeed,
since the tangent space Tφ0� = [ω̃]⊥, then

(91) ∂φ0E(φ�) = λ(φ�)ω̃

for some Lagrange multiplier λ(φ�) ∈ R. (91) and Lemma 4.5 imply that
λ(φ�)(|ω̃|2 + O(η3)) = 0 and so, for η small, λ(φ�) = 0.

By the Lusternik-Schnirelman category theory, see for example [Am], since
cat� = catTn−1 = n, we can define the n min-max critical values c1 ≤ c2 ≤ . . . ≤
cn for the reduced action functional E|� . Let φ�

1, . . . , φ�
n ∈ � be n corresponding

critical points. If the critical levels ci are all distinct, the T -periodic solutions
ζφ�

i
(t) = (I0, φ

�
i + ω̃t, 0) + O(η2) of (61) are geometrically distinct, since their

actions A(ζφ�
i
) = E(φ�

i ) = ci are different. On the other hand, if some min-
max critical level ci coincide, then E|� possesses infinitely many critical points.
However not all the corresponding T -periodic solutions of (61) are necessarily
geometrically distinct, since two different critical points could belong to the
same orbit. In any case, since one periodic solution can cross � at most a
finite number of times, the existence of infinitely many geometrically distinct
orbits of (61) follows(19).

Finally, under the inverse transformation of �, defined in Proposition 3.1,
η-close to the identity and the inverse transformation of (27), we find the T -
periodic solutions ζη of Theorem 1.1 satisfying the estimates (i)-(ii).

The statement on the minimal period descends from the following Propo-
sition.

Proposition 4.1. Let ζ(t) = (I (t), φ(t), z(t)) be a T -periodic solution of (62)

with Cη−2 ≥ T ≥ T0 for some T0 large, independent of η. Then the minimal period
Tmin of ζ satisfies Tmin ≥ const T 1/(τ+1).

(19)Non-degenerate critical points of the Poincaré-Melnikov primitive φ0 →∫ T
0 (H−Hint)(I0, φ0+

ω̃t, 0) dt could be continued to solutions of (61). However, it is very difficult to compute this
function, its critical points and check whether they are non-degenerate (if ever true).
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Proof. Since ζ is T -periodic, φ(T ) − φ(0) = 2πk for some k ∈ Z
n. We

claim that Tmin ≥ T/g where g := gcd(k1, . . . kn). Indeed Tmin ≥ T φ
min where

T φ
min is the minimal period of φ(t). Moreover T φ

min = T/n for some integer
n ≥ 1 and φ(Tmin) − φ(0) = 2π k̃ for some k̃ ∈ Z

n . It follows that k̃n = k and
so n ≤ g, proving the claim.

By the second equation in (62) we also have φ(T )−φ(0) = ωT + O(η2T )

and then, letting k̂ := k/g ∈ Z
n , 2πgk̂ = ωT + O(η2T ). We deduce that

(92) Tmin ≥ T

g
≥ 2π

|ω| |k̂| − O

(
η2T

|ω|g

)
≥ 2π

|ω| |k̂| − O
(

C

|ω|
)

,

since η2T ≤ C . Let now choose h ∈ Z
n \ {0} with |h| ≤ |k̂| such that

k̂ · h = 0. Multiplying by h we get 0 = 2πgk̂ · h = ω · hT + O(η2T |h|) and so
ω ·h = O(η2|h|). Using the Diophantine character of ω assumed in (4), namely
|ω ·h| ≥ γ (1+|h|)−τ , ∀h ∈ Z

n , we obtain |h|τ+1 ≥ const η−2 ≥ const T . Hence
|k̂|τ+1 ≥ |h|τ+1 ≥ const T and |k̂| ≥ const T 1/(τ+1). The proposition follows
from (92) for T ≥ T0 large enough.

Remark 4.5. The periodic orbits ζη found in Theorem 1.1 are O(η2) close
to the torus T since I0, defined in (70), satisfies I0 = O(1). We could also
try to find periodic solutions when e.g. I0 = O(1/η) and so T = O(1/η).
However the terms O(I k) = O(η−k) would be more difficult to control.

5. – The planetary spatial three-body problem

In this section we will prove the existence of periodic orbits of the planetary
non planar three body problem, with “small eccentricities” and “small mutual
inclinations”, accumulating onto two-dimensional elliptic invariant tori. We first
discuss the classical Hamiltonian formulation of this problem which dates back
to Delaunay and Poincaré. For a detailed treatment see the Appendix of [BCV].

The three massive points (“bodies”) P0, P1 , P2, with masses m0, m1 , m2,
interact one each other through gravity (with constant of gravitation 1). Assume
that the masses of the bodies satisfy, for some 0 < κ ≤ 1,

(93) κε ≤ m1

m0
,

m2

m0
≤ ε ≤ 1 .

The number ε > 0 is regarded as a small parameter: the point P0 represents
“the star” and the points P1 and P2 “the planets”.

We now recall the classical definition of the “osculating ellipses” (at time
t0) of the two-body problems associated to the planets Pi (i = 1, 2) and the
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star P0. Let u(0) and u(i) denote the coordinates of the points P0 and Pi at
time t0 and let u̇(0) and u̇(i) denote the respective velocities. The “osculating
plane” is defined as the plane spanned by (u(i) − u(0)) and (u̇(i) − u̇(0)); the
“osculating ellipse” is defined as the Keplerian ellipse (lying on the osculating
plane) defined by the Kepler solution, with initial data (u(0), u(i)) and (u̇(i)−u̇(0)),
of the two-body problem (P0, Pi ) obtained disregarding (for t ≥ t0) the third
body Pj ( j 
= i).

We assume that the eccentricities of such ellipses are small and that the
intersection angle between the two planes containing the two osculating ellipses
(usually referred as “mutual inclination”) is also small. It is customary in
celestial mechanics to denote the major semi-axes of such ellipses by ai and
their eccentricities by ei . Let

�∗
i := κ∗

i
√

ai , κ∗
i := mi

ε

1√
m0(m0 + mi )

,

(κ∗
i is a dimensionless constant satisfying κ√

2
< κ∗

i < 1). Since we are interested
in small eccentricities, collisions are avoided by requiring that the major semi-
axes ai = ai (�

∗) := (�∗
i /κ

∗
i )2, i = 1, 2, are different, and different from zero.

We, therefore, fix, once and for all,

(94) 0 < amin < amax

and, from now on, we shall consider (attaching the index 1 to the “inner planet”)
values of �∗ in the set

(95) L := {�∗ ∈ R
2 : amin ≤ a1 < a2 ≤ amax} .

The following classical result follows from the Delaunay-Poincaré theory,
see [BCV].

Theorem (Delaunay-Poincaré). Fix �∗
0 ∈ L. There exists a symplectic set of

variables(20)

(I0, ϕ0, p0, q0) ∈ R
2 × T

2 × R
2 × R

2

where I0 = �∗ ∈ I and I ⊂ L ⊂ R
2 is a suitable two-dimensional open cube

centered at�∗
0, such that the Hamiltonian of the spatial planetary three-body problem

takes the form

(96) H0(I0, ϕ0, p0, q0) = h0(I0) + f0(I0, ϕ0, p0, q0) ,

(20)With symplectic form d I0 ∧ dϕ0 + dp0 ∧ dq0.
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with

h0 := −1

2

2∑
i=1

κi

I 2
0i

, κi :=
(mi

ε

)3 1

m2
0(m0 + mi )

,

(
κ̄3

2
< κi < 1

)
,

f0 := ε f1(I0, p0, q0) + ε f2(I0, ϕ0, p0, q0) ,

f1 := f1,0(I0) +
2∑

j=1

�j (I0)(p2
0 j + q2

0 j ) + f̃1(I0, p0, q0) ,

∫
T2

f2 dϕ0 = 0 , sup
I2
σ0

| f̃1| ≤ const|(p0, q0)|4 .(97)

f1 and f2 are real-analytic and uniformly bounded on(21)

(98) D0 := I2
σ0

× T
2
s0

× D4
ρ0

⊂ C
8 ,

where σ0, s0, ρ0 are suitable positive numbers. Moreover f̃1 is even in (p0, q0) and

inf
I0∈I

�j (I0) > inf
I0∈I2

σ0

|�j (I0)| > const > 0 ,

inf
I0∈I

(
�2(I0) − �1(I0)

)
> inf

I0∈I2
σ0

|�2(I0) − �1(I0)| > const > 0 .(99)

We underline that the actions I0 are simply I0 = �∗ and we refer to
[BCV]-Theorem 1.1 for the complete expressions of the other Delaunay-Poincaré
variables (ϕ0, p0, q0).

We remark that the eccentricities ei are estimated as(22)

(100) c−
I |(p0, q0)| ≤ ei ≤ c+

I |(p0, q0)| , i = 1, 2

for two suitable constants 0 < c−
I < c+

I (depending only on I).
The Hamiltonian H0 in (96) describes a nearly-integrable, properly degen-

erate, system: the integrable Hamiltonian h0 depends only on the two action
variables (I01, I02). Such degeneracies are a typical feature of problems arising
in celestial mechanics and the source of the main difficulties (the application of
standard KAM theory for finding maximal tori require the Hamiltonian to be
non-degenerate). The frequency vector ∇h0(I0) is independent of ε, and then
the conjugated angles ϕ0 may be regarded as “fast angles” and, in “first approx-
imation” the H0-motions are governed by the averaged Hamiltonian h0 + ε f1.
By (97), for any fixed I0, {ϕ0 ∈ T

2} × {p0 = q0 = 0} is an elliptic in-
variant torus for the averaged Hamiltonian h0 + ε f1 run by the linear flow
ϕ0 → ϕ0 + ∇(h0 + ε f1,0)(I0) t . These are the quasi-periodic motions that will
persist, for ε small, and I0 in a nearly full (two-dimensional) measure set, as
proved in [BCV], see also Theorem 5.2.

(21) Dd
ρ ⊂ C

d denotes the open complex ball of radius ρ centered at the origin.
(22)See (1.5),(C.10),(C.15),(C.17) of [BCV].
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In the next proposition, through an appropriate averaging procedure, The
Hamiltonian (96) is casted into a suitable normal form.

Proposition 5.1. Fix N ∈ N
+. There exists a O(

√
ε)-close to the identity,

real analytic, symplectic change of variables (J, ψ, z, z) ∈ U 2
r̃

× T
2
s̃

× D4
ρ̃

→
(I0, ϕ0, p0, q0) ∈ D0 ⊂ C

8 transforming the Hamiltonian (96) into the real analytic
Hamiltonian

(101) H(J, ψ, z, z) = hε(J ) + ε�̃(J )zz + εg(J, z, z; ε) + εN f (J, ψ, z, z; ε)

where hε := h0 + O(ε),

r̃ = const
√

ε, s̃ = const, ρ̃ = const ,(102)

U :=
{

J ∈ I : |h′
0(J ) · 
| ≥ α0 , ∀ 
 ∈ Z

2 , 0 < |
| ≤ K
}

⊂ I,(103)

is a closed set and

(104) K := 6(N − 1)

s0
log

1

ε
, α0 := 2 sup

Iσ0

|h′′
0|r̃ K = const

√
ε log

1

ε
,

It results that

(105) meas(I \ U ) ≤ const α0 = O
(√

ε log
1

ε

)
.

Moreover

sup
J∈U2

r̃

|g(J, z, z)| ≤ const
(
|z| + |z|

)3
,(106)

inf
J∈U

�̃j (J ) ≥ inf
J∈U2

r̃

|�̃j (J )| ≥ χ0 > 0,

inf
J∈U

(
�̃2(J ) − �̃1(J )

)
≥ inf

J∈U2
r̃

|�̃2(J ) − �̃1(J )| ≥ χ0 > 0,(107)

for some positive constant χ0.

Proof. The Hamiltonian (101) has been deduced in [BCV] in the case N =3
and on the smaller domain U ′ :={J ∈ I | |h′

0(J )·
|≥const(
√

ε logτ+1(1/ε))/(1+
|l|τ ), ∀
 ∈ Z

2\{0}} ⊂ U , see formula (2.22) of [BCV] and introduce the complex
coordinates (171). Note also that the analyticity constant ρ̃ = const is bigger
than ρ̃ = log−1(1/ε) given in [BCV]. For the proof of the proposition see the
Appendix.



122 MASSIMILIANO BERTI, LUCA BIASCO, ENRICO VALDINOCI

The manifold {z = 0} is invariant under the Hamiltonian system generated
by the integrable Hamiltonian hε(J ) + ε�̃(J )zz,

(108) J̇ = 0, ψ̇ = ∂J hε(J ) + ε∂J �̃(J )zz, ż = iε�̃(J )z

and it is completely filled up by the invariant elliptic tori T (J0) := {J = J0,

ψ ∈ T
2, z = 0}, supporting the linear flow t → {J0, ψ0 + ωε(J0)t, 0} with

torus frequency ωε(J0) := ∂J hε(J0). This family of 2-dimensional tori will not
persist in its entirety for the complete Hamiltonian system generated by H

(109) J̇ = −∂ψH, ψ̇ = ∂JH, ż = i∂zH, ż = −i∂zH,

due to resonances among the oscillations. However, the persistence of a set of
positive (2-dimensional) measure of perturbed elliptic invariant tori – those with
Diophantine frequency ωε(J0) – has been proved in [BCV], using the KAM
theorem of [Pö2].

In Theorem 0.2 we will prove the existence of an abundance of periodic
solutions with larger and larger period accumulating on each perturbed elliptic
torus, applying Theorem 1.1. For this aim, we will first reprove (Theorem 5.2)
the existence of the [BCV]-elliptic tori, using the KAM theorem of [Pö1] and
furnishing also the KAM-normal form describing the dynamics in its neighbor-
hood (it will be of the form considered in (1)). Moreover, for proving that the
hypothesis of Theorem 1.1 are satisfied, we also need precise informations on
the form of the KAM-transformation bringing into the KAM normal form, see
Theorem 5.1-(ii).

For the existence result of the elliptic invariant tori (Theorem 5.2) and their
surrounding periodic orbits (Theorem 0.2) it is sufficient, and we will assume,
N = 3.

First of all we rewrite the Hamiltonian H in (101) in a form suitable to
apply the KAM theorem of [Pö1]. Introducing the coordinate y ∈ R

n around
each torus T (J0) in the usual way J = J0 + y, the Hamiltonian H can be
developed as

(110) H(y, ψ, z, z; ω) := H(J0 + y, ψ, z, z) = N + P

where N := hε(J0)+ h′
ε(J0) · y + ε�̃(J0)zz and P = P(y, ψ, z, z; J0) = P1 +

P2 + P3 + P4 with

(111)

P1 := hε(J0 + y) − hε(J0) − h′
ε(J0) · y = O(|y|2),

P2 := ε
(
�̃(J0 + y) − �̃(J0)

)
zz = O

(
ε|y||z||z|),

P3 := εg(J0 + y, z, z) = O
(
ε
(|z| + |z|)3

)
,

P4 := ε3 f (J0 + y, x, z, z) = O(ε3) .
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By the non-isocronicity property det h′′
ε (J0) 
= 0 there is a one-to-one

correspondence between the actions J0 ∈ U ⊂ R
2 and the torus frequency

ω := ω(J0) = h′
ε(J0) ∈ O ⊂ R

2 where

(112) O := {
ω = h′

ε(J0) : J0 ∈ U
}

.

By (105) we have

(113) meas
(
h′

ε(I) \ O
) ≤ const α0 = O

(√
ε log

(
1

ε

))
.

The frequencies ω := ω(J0) can be introduced as parameters: denoting J0 =
J0(ω) := (h′

ε)
−1(ω) its inverse function, the Hamiltonian (110) can be finally

written in the form

(114) H(y, ψ, z, z; ω) := N (y, z, z; ω) + P(y, ψ, z, z; ω)

where N (y, z, z; ω) := e(ω) + ω · y + �(ω)zz, e(ω) := hε(J0(ω)), �(ω) :=
ε�̃(J0(ω)) and the perturbation P(y, ψ, z, z; ω) is obtained by the one in (110)
just replacing J0 with J0(ω) := (h′

ε)
−1(ω). Recalling (102) the Hamiltonian H

in (114) is real analytic in

(115) (y, ψ, z, z; ω) ∈ U 2
r̃/2

× T
2
s̃
× D4

ρ̃
× O2

δ̃
, with δ̃ := const

√
ε

(since ω → J0(ω) := (h′
ε)

−1 is analytic).
H is in a suitable form to apply the KAM theorem of [Pö1] that we rewrite

in the next subsection.

5.1. – A KAM theorem for elliptic tori

The KAM theorem of [Pö1] applies to Hamiltonians like

H := H(y, ψ, z, z; ω) := N + P = e(ω) + ω · y + �(ω)zz + P(y, ψ, z, z; ω)

where (y, ψ, z, z) ∈ R
n× T

n× C
m× C

m and ω ∈ R
n is regarded as a parameter

varying over a compact subset O ⊆ R
n .

The functions P = P(y, ψ, z, z; ω) and �(ω) are real analytic on the
complex domain Dr ,s ×Oδ where Dr ,s := Dn

r2 × T
n
s × D2m

r and r , s, δ are
suitable positive constants.

The size of the perturbation P is measured by the following norm. Taking
the Fourier-Taylor expansions

P(y, ψ, z, z; ω) =
∑

∈Z

n
a,a∈N

m

Pa,a,
(y; ω) zaza ei
·ψ =
∑

∈Zn

P
(y, z, z; ω) ei
·ψ,

let define(23)

‖|P‖|r ,s,δ :=
∑

∈Zn

|MP
|r ,δe|
|s

where MP
 := ∑
a,a≥0 |Pa,a,
(y)|zaza and | · |r ,δ denotes the sup-norm over the

(y, z, z) ∈ Dn
r2 × D2m

r and ω ∈ Oδ . The following theorem follows from [Pö1].

(23)The relation with the usual Fourier norm (used in the Appendix) ‖P‖r ,s,δ :=∑
∈Zn |P
|r ,δe|
|s

is ‖|P‖|r/2,s,δ ≤ 22m‖P‖r ,s,δ and ‖|P‖|r ,s,δ ≥ 22m‖P‖r ,s,δ .
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Theorem 5.1 (Pöschel [Pö1]). Fix τ > n − 1. Suppose

(116) sup
ω∈Oδ

|∂ω�(ω)| ≤ M

for some 0 < M < +∞, and that the non-resonance condition

(117) |�(ω) · h| ≥ α , ∀ 1 ≤ |h| ≤ 2, h ∈ Z
n, ∀ω ∈ O,

is satisfied for some α > 0. Then, there exists a positive constant κ := κ(s) such
that, if P is sufficiently small,

(118) P := ‖|P‖|r ,s,δ ≤ κ

M + 1
αr2 ≤ δr2

16
,

then:
(i) there exist a normal formN∗ := e∗+ω·y∗+�∗(ω)z∗z∗, a Cantor setO(α) ⊂ O

on which

(119)
|ω · 
 + �∗(ω) · h| ≥ α

2(1 + |
|τ ) ,

∀
 ∈ Z
n , |h| ≤ 2 , |
| + |h| 
= 0 , ω ∈ O(α) ,

and a transformation F : Dr/2,s/2 × O(α) −→ Dr ,s × Oδ real analytic and
symplectic for each ω and Whitney smooth in ω, such that

(120) H∗ := H ◦ F = N∗ + R∗ wi th R∗ :=
∑

2|k|+|a+a|≥3

R∗
kaa(ψ∗)yk

∗za
∗za

∗;

(ii) F has the following form (omitting the dependence on ω)

(121)

y = y∗ + Y (y∗, ψ∗, z∗, z∗)
ψ = ψ∗ + X (ψ∗)
z = z∗ + Z(ψ∗, z∗, z∗)
z = z∗ + Z(ψ∗, z∗, z∗)

where

(122) Y :=
∑

2|k|+|a+a|≤2

Ykaa(ψ∗)yk
∗za

∗za
∗, Z :=

∑
|a+a|≤1

Zaa(ψ∗)za
∗za

∗,

and, denoting by ‖ · ‖∗ := supDr/2,s/2
| · |,

(123) ‖Y‖∗ ,
r2

s
‖X‖∗ , r‖Z‖∗ , r‖Z‖∗ ≤ const

P
α

;
(iii) if M is sufficiently small, i.e., if

(124) M < 1/4 ,

then

(125) meas
(
O \ O(α)

)
= O(αdn−1)

where d is the exterior diameter of O.
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By Theorem 5.1 the Hamiltonian system generated by H possesses a family of n-
dimensional elliptic invariant tori T :={(y,ψ,z)= (Y (0, ψ∗,0,0), ψ∗, z(ψ∗,0,0))}
traveled with frequencies ω, for each frequency vector in the Cantor set Oα .
The dynamics near each torus T is described by the normal form (120), which
in turn coincides with (1).

Let us make some comments on Theorem 5.1. Point (i) is Theorem A
of [Pö1] (we have fixed the constant ρ in the statement of Theorem A as
ρ := s/4).

Concerning point (ii), formula (121) follows from Section 4 of [Pö1] (see,
in particular, page 574 of [Pö1]). Formula (123) follows from Section 7 of
[Pö1] (see in particular the last estimate on page 592).

Point (iii) follows from Theorem B of [Pö1]. Indeed, from (116), (117)
and (124) O is essentially non-resonant according to the definition at page 565
of [Pö1]. For finite dimensional systems this reduces to verify only that O is
non-resonant (see again page 565 of [Pö1]), namely

(126) min
ω∈O |
 · ω + �(ω) · h| ≥ α

for all 0 < |h| ≤ 2 and 
 ∈ Kh, the closed convex hull of the gradient set
Gh := {∂ω(�(ω) · h) : ω ∈ O}. Since, by (116) and |h| ≤ 2,(24) Kh ⊆ Bn

2M ,

taking M < 1/4 as in (124), the unique integer vector l ∈ Kh is l = 0. Hence
condition (126) must be verified for 
 = 0 only, and this is condition (117).

5.2. – Abundance of periodic solutions in the three-body problem

In this section we prove the existence of periodic orbits accumulating on
elliptic 2-dimensional tori of the three-body problem.

First of all we show that the KAM-Theorem 5.1 applies to the Hamilto-
nian H in (114) reproving the existence of elliptic invariant tori in the spatial
planetary three body problem as in [BCV]. We assume the frequency parameter
ω ∈ R

2 to vary over the compact subset O.
By (115) and (102), the Hamiltonian H in (114) is real analytic on Dr ,s ×

Oδ := D2
r2 × T

2
s × D4

r × Oδ for

(127) r := √
c0ε , s := const , δ := const

√
ε ,

where c0 is a small constant which will be determined later on (we restrict the
domain of H w.r.t. to the larger one defined in (115) because with the choice
(127) the smallness KAM condition (118) is satisfied, see (132), (133)).

Applying the KAM-Theorem 5.1, we get

Theorem 5.2. Fix τ > n − 1. For c0 and ε small enough, there exists a Cantor
set O(ε) ⊂ O ⊂ h′

ε(I), with

(128) meas
(
h′

ε(I) \ O(ε)
) ≤ const

√
ε log

1

ε
,

(24) Bn
R ⊂ R

n is the closed ball of radius R and center 0 using the | · |2 norm.
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such that, for any ω = ω(J0) ∈ O(ε), there exists a symplectic transformation

� : Dr/2,s/2 −→ Dr ,s ,

of the form (121), transforming the three-body Hamiltonian H in (114) into the
normal form H∗ := H ◦ � as in (120). Moreover

(129)
|ω · 
 + �∗(ω) · h| ≥ const ε

1 + |
|τ ,

∀
 ∈ Z
n , |h| ≤ 2 , |
| + |h| 
= 0 , ω ∈ O(ε) .

In particular, the three-body problem Hamiltonian H possesses a family of 2-
dimensional elliptic invariant tori traveled with frequencies ω.

Proof. Recalling that �(ω) := ε�̃(J0(ω)), it is easy to see that
supω∈Oδ

|∂ω�(ω)| ≤ εC0 := M for some positive constant C0 and condition
(116) holds true. Moreover, for 0 < ε < 1/(4C0), M < 1/4 and also condition
(124) is satisfied.

We claim that condition (117) holds, with

(130) α := χ0ε,

namely,

(131) |�(ω) · h| ≥ α := χ0ε, ∀1 ≤ |h| ≤ 2, h ∈ Z
2, ∀ω ∈ O.

Indeed ∀ω ∈ O, �(ω) = ε�̃(J0) for some J0 ∈ U . Moreover, by (107), it is
easy to see that |�̃(J0) · h| ≥ χ0, ∀1 ≤ |h| ≤ 2, h ∈ Z

2, J0 ∈ U and the claim
follows.

It remains to check the smallness condition (118), i.e. P ≤ εr2, since
κ = O(1) and α := χ0ε. Note that, from (111) and (127),

(132) P ≤ const(r4 + εr4 + εr3 + ε3) ≤ const(r4 + ε3).

Hence, by (132), in order to check condition (118), it is sufficient that

(133) r4 + ε3 ≤ const εr2.

Since r := √
c0ε, (133) holds true for c0 and ε small enough. By Theorem 5.1

the result follows.
From (125), since d = O(1) and α = O(ε), meas (O \ O(ε)) = O(ε).

Moreover, since by (113), meas (h′
ε(I) \ O) = O(

√
ε log(1/ε)), the measure

estimate (128) follows.
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For proving that each elliptic invariant torus found in Theorem 5.2 lies in
the closure of periodic orbits of the three body problem, we will apply Theorem
1.1 to the normal form Hamiltonian H∗ := H ◦ � given in (120) (which has
the form (1)) corresponding to the three body problem.

The crucial hypothesis to verify in Theorem 1.1 is the non-degeneracy of
the twist matrix R defined in (7). We have to evaluate, for 1 ≤ i, i ′ ≤ n = 2
and 1 ≤ j ≤ m = 2

(134)

R∗
ei +ei ′ ,0,0(ψ∗) = 1

1 + δi,i ′
∂2 H∗

∂y∗i∂y∗i ′
(0, ψ∗, 0, 0) ,

R∗
ei ,ej ,0

(ψ∗) = ∂2 H∗
∂y∗i∂z∗ j

(0, ψ∗, 0, 0) .

R∗
ei ,0,ej

(ψ∗) can be computed as the R∗
ei ,ej ,0

(ψ∗) and their calculation is omitted.
Due to the special form (121)-(122) of the canonical transformation �, we have

(135) ∂y∗i (H ◦ �) = [(
∂y H

) ◦ �
]
∂y∗i y with ∂y∗i y = ei + Yei ,0,0(ψ∗) ,

from which

∂2
y∗i ′ y∗i

(H ◦�) =
[(

∂2
yy H

)
◦� ∂y∗i ′ y

]
∂y∗i y(136)

∂2
z∗ j y∗i

(H ◦�) =
[(

∂2
yy H

)
◦� ∂z∗ j Y +

(
∂2

zy H
)
◦�

(
ej + ∂z∗ j Z

)
(137)

+
(
∂2

zy H
)
◦� ∂z∗ j Z

]
∂y∗i y .

We are now able to prove that

Lemma 5.1. For c0 and ε small enough, the twist matrix R of the planetary
three body problem is invertible and |R−1| = O(1).

Proof. We need to evaluate (136)-(137) for (y∗,ψ∗,z∗,z∗)=(0, ψ∗, 0, 0)=: �.
By (121), (123), (132) and since r0 := √

c0ε and α := χ0 ε, it results

(138) |yi (�)| = |Yi (�)| ≤ const
P
α

≤ const
r4 + ε3

ε
= const

c2
0ε

2 + ε3

ε
≤ const ε.

Moreover, by (123) and standard “Cauchy estimates”(25), we have

(139) |∂y∗Y (�)| ,
1

r
|∂z∗Y (�)| , |∂z∗ Z(�)| , |∂z∗ Z(�)| ≤ const

P
αr2 = O(c0),

(for the second estimate note that ∂z∗Y is independent of y∗ due to (122)).

(25)Cauchy estimates allow to bound n-derivatives of analytic functions on a set A in terms of their
sup-norm on larger domains A ⊂ A′ divided by dist(∂ A, ∂ A′)n .
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From (136)-(137) we deduce, using (138), (139) and since H = h0(J0 +
y) + O(ε), with h0 defined in (97),

∂2
y∗i y∗i

H∗(�) = −3κi

((J0)i + yi (�))4
+ O�

( P
αr2

)
+ O�(ε) = −3κi

(J0)
4
i

+ O�(c0),

∂2
y∗i ′ y∗i

H∗(�) = O�(c0) + O�(ε) = O�(c0) if i 
= i ′,

∂2
z∗ j y∗i

H∗(�), = O�

( P
αr

)
+ O�(ε) = O�(c

3/2
0

√
ε),

where O�(c) denotes a function of ψ∗ with sup-norm for ψ∗ ∈ Ts/2 smaller
than a constant multiplied by c. It follows

R∗
2ei ,0,0(ψ∗) = −3κi

2(J0)
4
i

+ O�(c0), R∗
ei +ei ′ ,0,0(ψ∗) = O�(c0)

if i ′ 
= i, R∗
ei ,ej ,0

(ψ∗) = O�(c
3/2
0

√
ε) .

Evaluating the Fourier coefficients of the above function we obtain

R∗
2ei ,0,0,0 = −3κi

2(J0)
4
i

+ O(c0) , R∗
ei +ei ′ ,0,0,0 = O(c0) , for i ′ 
= i(140)

|R∗
ei ,ej ,0,
| , |R∗

ei ,0,ej ,

| ≤ const c3/2

0

√
ε e−|
|s/4.(141)

From (129), |ω ·
+�∗ j (ω)| ≥ const ε/(1+|
|τ ), ∀
 ∈ Z
n and then, from (141)

the second addendum in definition of the twist matrix R introduced in (7) is

(142)

∑
1≤ j≤m

∈Z

n

1

ω · 
 + �∗ j (ω)

(
R∗

ei ,ej ,0,
 R∗
ei ′ ,0,ej ,−
 + R∗

ei ,0,ej ,−
 R∗
ei ′ ,ej ,0,


)

= O
( ∑


∈Zn

1 + |
|τ
ε

c3
0ε e− |
|s

2

)
= O(c3

0).

Finally (140) and (142) imply that the entries of the twist matrix R correspond-
ing to the spatial three-body problem are

(143) Ri,i = −3κi

2(J0)
4
i

+ O(c0) + O(c3
0) , Ri,i ′ = O(c0) + O(c3

0) for i ′ 
= i.

By (143), for c0 small enough, the matrix R is invertible and |R−1| = O(1).

We can finally prove the abundance of periodic solutions in the spatial
planetary three body problem.

Proof of Theorem 0.2. Since the number of elliptic variables z is m = 2
condition (a)-(i) of Theorem 1.1 holds. Moreover, by Lemma 5.1, the twist
matrix R is invertible with |R−1| = O(1), and then we can apply Theorem 1.1,
proving the existence of an abundance of periodic solutions of the three body
problem. Theorem 0.2 is finally proved.
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6. – Periodic orbits near resonant elliptic tori

In this section we study the persistence, for ε > 0, of the circular decoupled
periodic motions of the planets around the star, once suitable conditions on the
period and the masses of the bodies are satisfied.

Let consider J0 ∈ I, T > 0 and k = (k1, k2) ∈ Z
2 with gcd(k1, k2) = 1,

such that

(144) ω := h′
0(J0) = 2πk

T
,

where h0 is the integrable Hamiltonian defined in (97). The decoupled three-
body problem possesses the family of (circular) periodic solutions

ζ̌ψ0(t) := (J0, ψ0 + ωt, 0, 0),

with minimal period T and parametrized by ψ0 ∈ T
2.

Since h0 is properly degenerate the persistence of these motions for ε > 0
can not be established without further informations on the perturbation f0. For
continuing some of these solutions we will exploit the normal form H defined
in (101) (with N = 4).

First of all, through a Lyapunov-Schmidt reduction similar to the one of
Lemma 4.3, we obtain the existence of suitable pseudo-T -periodic solutions.

Lemma 6.1. There exists c1, ε1 > 0, such that, for all T > 0, k ∈ Z
2 with

gcd(k1, k2) = 1, 0 < ε ≤ min
{
ε1,

1
c1T

}
, J0 ∈ U satisfying ω := h′

0(J0) = 2πk/T ,

and ∀ ψ0 ∈ T
2, there exists a unique function

ζψ0 = (Jψ0, ψψ0, zψ0) ∈ C0([0, T ], R
2 × T

2 × C
2) ∩ C1((0, T ), R

2 × T
2 × C

2),

smooth in ψ0, so that, ∀t ∈ (0, T ), ζψ0(t) is a solution of the Hamiltonian system
(109)(26) with ψψ0(0) = ψψ0(T ) = ψ0, zψ0(0) = zψ0(T ) and

sup
t∈[0,T ]

|ζψ0(t) − ζ̂ψ0(t)| ≤ c1ε
2 ,

where ζ̂ψ0(t) := (Jε, ψ0 + ωt, 0, 0) and Jε = J0 + O(ε) is the unique solution of
h′

ε(Jε) = ω.

Proof. We first note that, since det h′′
0(J ) 
= 0 (see (96)–(97)), by the

Implicit Function Theorem, Jε exists, is unique and is ε-close to J0 ∈ U .
Moreover, for ε1 small enough, Jε ∈ R

2 ∩ Uconst ε ⊂ Ur̃/4 (since r̃ = O(
√

ε)).

Define X and Y as in Lemma 2.5, with n = m = 2. Let also � := ε�̃(Jε),
M := ∂2

J hε(Jε) and M := 12 − eiε�̃(Jε)T . Notice that, if 0 < εT ≤ 1/c1 is

(26)For the Hamiltonian H defined in (101) with N = 4.



130 MASSIMILIANO BERTI, LUCA BIASCO, ENRICO VALDINOCI

small enough (namely c1 is large enough), then |M−1| is bounded by a constant
(independent on ε).

We look for T -periodic solutions of the Hamiltonian system (109) of the
form ζ = ζ̂ψ0+ ( J̃ , ψ̃, z̃, z̃) . Set

P

( J̃
ψ̃

z̃

)
=



−ε4∂ψ f (�)

−∂2
J hε(Jε) J̃ + ∂J hε(Jε + J̃ ) − ∂J hε(Jε) + ε∂J �̃(Jε + J̃ )z̃ · z̃+

+
(
ε∂J g + ε4∂J f

)
(�)

i
[
ε
(
�̃(Jε + J̃ ) − �̃(Jε)

)
· z̃ +

(
ε∂zg + ε4∂z f

)
(�)
]

,

where the star above denotes, for short, � := (Jε + J̃ , ψ0 + ωt + ψ̃, z̃, z̃). We
note that P(0) = O(ε4) by (106). We want to apply Lemma 2.4. From (25)
of Lemma 2.5 we find |L| = O(1/(c2

1ε
2)), hence δ0 := 2 |L(P(0))| = O(ε2/c2

1)

and supx∈Bδ0
|D P(x)| ≤ const (δ0 + ε4). Then, taking c1 big enough, we can

apply Lemma 2.4 proving the existence and uniqueness of a ζ �
ψ0

∈ Bρ0 so that

(145) ζ �
ψ0

= L(P(ζ �
ψ0

)).

Let ζψ0(t) := ζ̂ψ0 + ζ �
ψ0

. By means of (145) and (26), it follows that ζψ0
satisfies the Hamilton equations (109) in (0, T ) and the boundary conditions
ψψ0(0) = ψψ0(T ) = ψ0, zψ0(0) = zψ0(T ). As usual, by the Implicit Function
Theorem, ψ0 → ζψ0 is smooth.

Finally, critical points of the “reduced action functional” E : T
2 → R

defined by

E(ψ0) :=
∫ T

0
Jψ0 · ψ̇ψ0 + izψ0 · żψ0 − H(ζψ0) dt

give rise, arguing as in Lemma 4.4, to periodic solutions of (109). As in the
proof of Theorem 1.1 (see page 117) we deduce the existence of at least two
geometrically distinct periodic solutions of (109) (corresponding to the points
of maximum ψ+

0 and minimum ψ−
0 of E).

We can finally state the following result which, in particular, will imply
Theorems 0.3 and 0.4:

Theorem 6.1. There exists c1, ε1 > 0, such that, for all T > 0, k ∈ Z
2

with gcd(k1, k2) = 1, 0 < ε ≤ min
{
ε1,

1
c1T

}
, J0 ∈ U satisfying ω := h′

0(J0) =
2πk/T , there exist at least two geometrically distinct T -periodic solutions ζ

ψ±
0

=
(J

ψ±
0

, ψ
ψ±

0
, z

ψ±
0

) of the Hamiltonian system (109)(27) with

sup
t∈R

|ζ
ψ±

0
(t) − ζ̂

ψ±
0

(t)| ≤ c1ε
2 ,

where ζ̂
ψ±

0
(t) := (Jε, ψ±

0 +ωt, 0, 0) and Jε = J0 + O(ε) is the unique solution of

h′
ε(Jε) = ω = 2πk/T . Note that supt∈[0,T ] |ζψ±

0
(t)−(J0, ψ±

0 +ωt, 0, 0)| = O(ε).

(27)For the Hamiltonian H defined in (101) with N = 4.
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Remark 6.1. The condition 0 < εT < 1/c1 (for c1 large enough) required
in the theorem is sharp. Indeed, for εT = O(1) some further resonance phe-

nomenon can appear, destroying any periodic solution: note that eiε�̃(Jε)T − 12
could be degenerate. It is for reaching this estimate that we take N = 4 in the
Hamiltonian (101).

We now show that Theorems 0.3 and 0.4 follow from Theorem 6.1.
Consider J0 ∈ I, T > 0, k = (k1, k2) ∈ Z

2 with gcd(k1, k2) = 1, such that
ω := h′

0(J0) = 2πk/T , i.e. (144) holds. Under suitable restrictions on ε and
T we shall prove that J0 ∈ U where U = U (ε) ⊂ I is the domain defined in
(103).

First of all we claim that there exists a constant c2 > 0 large enough such
that

(146) ε ≥ e−T/c2 �⇒ ω · 
 
= 0 , ∀ 0 < |
| ≤ K

where K = K (ε)=const log(1/ε) is defined in (104). In fact, since gcd(k1, k2)=1,

(147) ω · 
 = 0 �⇒ k · 
 = 0 �⇒ 
 ∈ Z(−k2, k1) �⇒ |
| ≥ |k|.

Moreover

(148) |k| = T
|h′

0(J0)|
2π

≥ cIT

where cI := (1/2π) minJ0∈I |h′
0(J0)| > 0 (note that h′

0(J0) = (κ1 J−3
01 , κ2 J−3

02 ) 
=
0 and I is compact).

From (147)-(148) and the hypothesis ε ≥ e−T/c2 , we obtain that k · 
 = 0,

 
= 0, imply |
| ≥ cIT > cIc2 log(1/ε). For c2 large enough, cIc2 log(1/ε) >

K = const log(1/ε), and we conclude that k · 
 
= 0 for all 0 < |
| ≤ K . The
claim is proved.

It follows that ∀ 0 < |
| ≤ K , k · 
 ≥ 1 and hence |ω · 
| = 2π |k · 
|T −1 ≥
2πT −1. Moreover, if ε log2(1/ε) ≤ c3T −2, then 2πT −1 ≥ 2π

√
ε/c3 log(1/ε) ≥

α = const
√

ε log(1/ε) (the constant α is defined in (104)) for a suitable c3 > 0
large enough.

We have proved that conditions ε ≥ e−T/c2 and ε log2(1/ε) ≤ c3T −2 imply
J0 ∈ U . In conclusion, defining the functions

(149)
ε(T ) := min

{
e−T/c2, (c1T )−1, ε1

}
and ε(T ) := min

{
F(c3T −2), (c1T )−1, ε1

}
,

where F is the inverse of G(ε) := ε log2(1/ε) and c1, ε1 are defined in Lemma
6.1, we have proved:
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Lemma 6.2. Let T > 0, k = (k1, k2) ∈ Z
2, with gcd(k1, k2) = 1, and J0 ∈ I

such that ω := h′
0(J0) = 2πk

T holds. Then

(150) ε(T ) ≤ ε ≤ ε(T ) �⇒ J0 ∈ U .

We can finally deduce Theorems 0.3 and 0.4.

Proof of Theorem 0.3. It is a direct consequence of Lemma 6.2 and of
Theorem 6.1 taking ε(T ), ε(T ) as in (149) and T0 > 0 as the last instant for
which ε(T0) = ε(T0).

Proof of Theorem 0.4. Define

T (ε) := min
{

c2 log
1

ε
,

1

c1ε1

}
and T (ε) := min

{ √
c3√

ε log(1/ε)
,

1

c1ε1

}

with ε1, c2, c3 defined above. Theorem 0.4 is a direct consequence of Lemma
6.2 and of Theorem 6.1.

7. – Appendix: Proof of Proposition 5.1

We first recall the following Averaging Theorem, the proof of which can
be found in [BCV]. We first introduce some notations. For r, ρ, s > 0 and
U ⊂ R

2 we denote the complex set Wr,ρ,s := Ur × T
2 × D4

ρ. For a function
f := f (I, ϕ, p, q) real analytic for (I, ϕ, p, q) ∈ Wr,ρ,s we denote by ‖ f ‖r,ρ,s

its “sup-Fourier” norm given by

‖ f ‖r,ρ,s :=
∑
k∈Z2

 sup
(I,p,q)∈Ur ×D4

ρ

| fk(I, p, q)|
 e|k|s .

Proposition 7.1 Averaging Theorem. LetH0 := h0(I0)+ f0(I0, ϕ0, p0, q0) be
a real-analytic Hamiltonian on Wr,ρ,s . Assume that there exist α0, K > 0, satisfying
K s ≥ 6, such that

(151) |h′
0(I0) · k| ≥ α0/2 , ∀ k ∈ {k ∈ Z

2 : 0 < |k| ≤ K } , ∀ I0 ∈ Ur .

Assume also that, if d := min{rs, ρ2}, then

(152) ‖ f0‖r,ρ,s <
α0d

c K s
,
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where c > 1 is a suitable universal constant(28). Then, there exists a real-analytic
symplectic transformation

(153) ! : (I ′, ϕ′, p′, q ′)∈Wr/2,ρ/2,s/6 �→(I0, ϕ0, p0, q0)=!(I ′, ϕ′, p′, q ′)∈Wr,ρ,s

and a real-analytic function g0 = g0(I ′, p′, q ′) such that

(154) H′ := H0 ◦ ! = h0 + g0 + f∗ ,

and the following bounds hold(29):

(155) sup
(I ′,p′,q′)∈Ur/2×Vρ/2

|g0(I ′, p′, q ′) − f0,0(I ′, p′, q ′)| ≤ c

α0d
‖ f ‖2

r,ρ,s ,

(156) ‖ f∗‖r/2,ρ/2,s/6 ≤ e−K s/6 ‖ f ‖r,ρ,s .

Furthermore, for each (I ′, ϕ′, p′, q ′)∈Wr/2,ρ/2,s/6, (I0,ϕ0, p0, q0)=!(I ′,ϕ′,p′, q ′)
satisfies

(157) s |I0 − I ′|, r |ϕ0 − ϕ′|, ρ |p0 − p′|, ρ |q0 − q ′| ≤ c‖ f ‖r,ρ,s

α0
.

Let, now, H0 = h0 + f0 be as in (96). and U as in (103). The estimate
(105) directly follows by the definition of U. Next, let us choose the sets and
the parameters involved in Proposition 7.1 as follows:

(158)
K := 6(N − 1)

s0
log

1

ε
, α0 := 2 sup

Iσ0

|h′′
0|r K ,

r = c∗
√

ε ≤ σ0 , s := s0 , ρ := ρ0 ,

where c∗ is a suitable large constant to be fixed later and σ0, s0, ρ0 were defined
in (98). Moreover we better specify the definition of U in (103):

U :=
{

J ∈ I : |h′
0(J ) · 
| ≥ α0 , ∀ 
 ∈ Z

2 , 0 < |
| ≤ K
}

⊂ R
2 .

The estimate (105) directly follows by the previous definition. Notice that, from
these definitions, there follows (for ε small enough) that

(159) α0 = const
√

ε log
1

ε
, d = const r ,

α0d

cK s
= const εc2

∗ ,

(clearly, in the last evaluation, “ const ” does not involve c∗).

(28)Explicitly, one can take, for instance, c = 29e2, see Proposition A.1 in [BCV]
(29) f0,0 denotes the 0-Fourier coefficient of f0, i.e., its ϕ-average.
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Now, it is not difficult to check that, choosing c∗ big enough and letting ε

be small enough, assumptions (151) and (152) are met. In fact, observing that
f0 in (96)-(97) is such that

‖ f0‖r,ρ,s ≤ const ε ,

(152) follows from last equality in (159), by choosing c∗ large enough. As
for (151), observe that for any point in I0 ∈ Ur there is a point I ∗

0 ∈ U at
distance less than r from it. Hence by the definitions of α0 and r and by
Cauchy estimates(30), for any I0 ∈ Ur and any 0 < |k| ≤ K ,

|h′
0(I0) · k| ≥ |h′

0(I ∗
0 ) · k| − |h′

0(I ∗
0 ) − h′

0(I0)| |k|
≥ α0 − sup

Iσ0

|h′′
0| r K

= α0/2 ,

which proves also (151). Thus, by Proposition 7.1, there exists a real analytic
symplectic transformation

! : (I ′, ϕ′, p′, q ′) ∈ D1 :=U r
2
×T

2
s
6
×D4

ρ
2

→ (I0, ϕ0, p0, q0)∈Ur ×T
2
s0

×D4
ρ0

⊂D0,

such that

|I ′ − I0| ≤ const
ε

α 0
= const

√
ε

log 1
ε

|p′ − p0| , |q ′ − q0| ≤ const
ε

α0ρ
= const

√
ε

log 1
ε

,(160)

and which casts the Hamiltonian H0 into H′ := H0 ◦ ! with

(161) H′(I ′, ϕ′, p′, q ′) := h(I ′) + g(I ′, p′, q ′) + f∗(I ′, ϕ′, p′, q ′) ,

where (since, by (97), f0,0 coincides with ε f1(I, p, q))

sup
(I ′,p′,q′)∈Ur/2×Vρ/2

|g0 − ε f1| ≤ const
ε2

α0r
= const

ε

log(1/ε)
,

‖ f∗‖r/2,ρ/2,s/6 ≤ const εe−K s/6 ≤ const εN .(162)

Thus, setting g0 =: εg, f∗ =: εN f , we see that H′ can be rewritten as

H′ := h(I ′) + εg(I ′, p′, q ′) + εN f (I ′, ϕ′, p′, q ′) ,

g = f1(I ′, p′, q ′) + 1

log(1/ε)
f 1(I ′, p′, q ′)(163)

with f and f 1 real-analytic on D1 (compare (158)).

(30)“Cauchy estimates” allow to bound n-derivatives of analytic functions on a set A in terms of
their sup-norm on larger domains A′ ⊃ A divided by dist (∂ A, ∂ A′)n .
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We now look for elliptic equilibria of the Hamiltonian g in (163). Set

G(I ′, p′, q ′) :=
(
∂p′g(I ′, p′, q ′), ∂q′g(I ′, p′, q ′)

)
.

Recalling (163) and the definition of f1 in (97), we see that, by (99),

G(I ′, 0, 0)
∣∣∣
ε=0

= 0

and det ∂(p′,q′)G(I ′, 0, 0)
∣∣∣
ε=0

= 16(�1�2)
2 > 0 , ∀ I ′ ∈ Ur/2.

Therefore, by the Implicit Function Theorem, we infer that, for any I ′ ∈ Ur/2
and for ε small enough, there exist real-analytic functions, so that

I ′ ∈ Ur/2 →
(

p′(I ′, ε), q ′(I ′, ε)
)

∈ Bconst/ log 1
ε

⊂ Bρ/2 ,

and

(164) ∂p′g
(

I ′, p′(I ′, ε), q ′(I ′, ε)
)

= 0 = ∂q′g
(

I ′, p′(I ′, ε), q ′(I ′, ε)
)

.

For ε small enough, we can consider the following analytic symplectic trans-
formation, which leaves fixed the I ′-variable and is O( 1

log 1
ε

)−close to the iden-

tity(31),

�′ : (J ′, ψ ′, v′, u′) ∈ Ur/2 ×T
2
s/7 × Dρ/3 �→ (I ′, ϕ′, p′, q ′) ∈ Ur/2 ×T

2
s/6 × D4

ρ/2 ,

given by

I ′ = J ′ ,
ϕ′ = ψ ′ + p′(J ′, ε) ∂I ′q ′(J ′, ε) + ∂I ′q ′(J ′, ε) v′ − ∂I ′ p′(J ′, ε) u′ ,
p′ = v′ + p′(J ′, ε) ,

q ′ = u′ + q ′(J ′, ε) .

In view of (164), the new Hamiltonian Ĥ := H′ ◦ �′ has the form

Ĥ(J ′, ψ ′, v′, u′) = h(J ′) + εĝ(J ′, v′, u′) + εN f̂ (J ′, ψ ′, v′, u′) ,

with f̂ and ĝ analytic in Ur/2 × T
2
s/7 × Dρ/3 and

∂v′,u′ ĝ(J ′, 0, 0) = ∂p′,q′g(I ′, p′(I ′, ε), q ′(I ′, ε)) = 0 , ∀ I ′ ∈ Ur/2 .

Also, the eigenvalues of the symplectic quadratic part of ĝ are given by

(31)�′ has generating function J ′ · ϕ′ +
(
v′ + p′(J ′, ε)

)
·
(

q ′ − q ′(J ′, ε)
)

.
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±i�̂j (J ′), for j = 1, 2, where

(165) �̂j ∈ R and |�̂j − �j | ≤ const
1

log 1
ε

.

Thus, by a well known result by Weierstrass on the symplectic diagonalization of
quadratic Hamiltonians, we can find an analytic transformation O( 1

log 1
ε

)−close

to the identity

�̌ : (J, ψ, v, u) ∈ Ur/2 × T
2
s/8 × D4

ρ/4 �→ (J ′, ψ ′, v′, u′) ∈ Ur/2 × T
2
s/7 × D4

ρ/3 ,

so that J ′ = J and the quadratic part of ĝ becomes, simply,
∑2

j=1 �̂j (J ) (u2
j +

v2
j ). Whence, the Hamiltonian Ĥ takes the form Ȟ := Ĥ ◦ �̌, with

(166) Ȟ(J,ψ,v,u)=hε(J )+ ε

2∑
j=1

�̂j (J )(u2
i + v2

i )+εg̃(J,v,u) + εN f̃ (J,ψ,v,u),

where

(167) hε(J ) := h0(J ) + εĝ(J, 0, 0) ,

g̃, f̃ , �̂j are real-analytic for (J, ψ, v, u) in

(168) D2 := Ur/2 × T
2
s/8 × D4

ρ/4

and

(169) sup
J∈Ur/2

|g̃(J, v, u)| ≤ const |(v, u)|3 .

Because of (165), the non-degeneracy condition (99) implies (for ε small enough)

inf
J∈U

�̂i ≥ inf
J∈Ur/2

|�̂i | ≥ const > 0 ,

inf
J∈U

(
�̂2 − �̂1

)
≥ inf

J∈Ur/2
|�̂2 − �̂1| ≥ const > 0 .(170)

Setting �̃j := 2�̂j for j = 1, 2, introducing complex coordinates

(171) z = v + iu√
2

, z = v − iu√
2

and defining
g(J, z, z) := g̃

(
J,

z + z√
2

,
z − z

i
√

2

)
and f (J, ψ, z, z) := f̃

(
J, ψ,

z + z√
2

,
z − z

i
√

2

)
,

we obtain (101). Finally (102), (106), (107), follows from (158), (169), (170),
respectively.
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