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Peak Solutions for an Elliptic System of
FitzHugh-Nagumo Type

EDWARD NORMAN DANCER - SHUSEN YAN

Abstract. The aim of this paper is to study the existence of various types of peak
solutions for an elliptic system of FitzHugh-Nagumo type. We prove that the
system has a single peak solution, which concentrates near the boundary of the
domain. Under some extra assumptions, we also construct multi-peak solutions
with all the peaks near the boundary, and a single peak solution with its peak near
an interior point of the domain.

Mathematics Subject Classification (2000): 35J50 (primary), 93C15 (sec-
ondary).

1. — Introduction

In this paper we consider the following problem:

—&?Au = f(u) —v, in<,
(1.1) —Av + yv =du, in 2,
u=v=0, on 082,

where  is a bounded domain in RY, ¢ is a parameter, y and § are nonnegative
constants, f (1) =t(t —a)(1—1), a € (0, 3).

Solutions of (1.1) are the steady state solutions of the following reaction
diffusion systems of the FitzHugh-Nagumo type [8], [13]:

Uy =e*Au+ f(u) —v, v, =Av—yv+du,

which is a simplification of the original Hodgkin-Huxley nerve conduction equa-
tions [10]. This system can also be used as a model for other problems arising
from the applied areas. The readers can find more references in [22] for back-
ground on the systems of FitzHugh-Nagumo type. Here we mention some early
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results obtained by Klaasen and Troy [12], Klaasen and Mitidieri [11], and De-
Figueiredo and Mitidieri [7]. Some recent results on these systems can be found
in [17], [18], [19], [20], [6], [22].
For each u € H(} (2), let Gyu be the unique solution of the following
problem:
—Av+yv=u, in€,
{ v=0, on 0%2.

Then we see (1.1) is equivalent to the following nonlocal elliptic problem:

(12) { —&?Au+38G,u = f(u), ing,

ue H(Q).

The energy associated with (1.2) is
1
(1.3) I(u) = 5/(82|Du|2+<sucyu)—/ F(u), ueHy(Q).
Q Q

It is easy to see from [quG,u = [((IDGyul* + y|G,ul*) > 0, that u = 0
is a local minimizer of 7/(u) in HO1 (€2). On the other hand, we can check
easily that there are 0 < 7; < 75 such that f(r)) <0, f(r2) >0, f'(t) <O
if 1+ € (—o0, 1)) U (12, +00), and f'(t) > 0 if t € (11, T2). Besides, f(z) has
exactly three zero points 0, @, 1, and

1
/ f(s)ds >0,
0

because a € (0, %). Moreover, f(t) — +oo as t - —oo, f(t) —> —oo as
t — +o00.

Suppose that § = 0. Then (1.1) becomes an equation. It follows from [2]
that the global minimizer of (1.3) converges to 1 uniformly on any compact
subset of €. On the other hand, it is proved in [14] that, if Q is convex, the
mountain pass type solution is a single peak solution with the peak locating near
the center of the domain. Moreover, if €2 is a ball [9], or more generally if Q2
has certain kind of symmetry [3], we know that (1.1) has exactly two nontrivial
solutions for ¢ > 0 small. So in this special case, we know at least for the
domains with some kind of symmetry that the solution set is quite simple and
we also know the profile of these solutions.

Suppose that 6 > 0. We prove in [6] that if § > O is larger than some
constant, then the global minimizer oscillates on a set of positive measure.
Besides, I (u) also has a nontrivial local minimizer. Thus, at least for § > 0 not
too small, the solution set for the system is quite different from the equation
case and the profile of the solutions for the system is much more complicated.
On the other hand, if €2 is a ball and § > 0 is small enough, we may ask
whether the solution set for (1.1) and the profile of these solutions are similar
to the case § = 0.
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In this paper, for any fixed § > 0, we will construct peak solutions for (1.2)
for ¢ > 0 small. The result we obtain in this paper presents a striking contrast
to the result in [14] for the single equation case because the mountain pass
type solution for the system is a single peak solution with the peak close to the
boundary. Moreover, if Q is a ball, we will show that (1.2) also has a k-peak
solution for any positive integer k. So we see that for any § > 0, the profile of
some solutions is quite different from the case § = 0, and the number of the
solutions in the system case is larger than that in the case 6 = 0.

Before we state our results, we give some notation.

Let U(y) = U(|y]|) be the unique positive solution of the following problem:

_ — i N
14 { AU = f(U), inRV,

UeH' [RY).

Note also that this solution is nondegenerate. See for example [16]. Denote
Uex(y) = U(F).
For any u € H' (), let P, qu be the solution of

—&? AP qu +m?P, qu = f(u) +m’u, inQ,
Pequ € Hy(Q),

where m = /— f/(0).
We have:

THEOREM 1.1. Suppose that 6 > 0. There is an gy > 0, such that for each
e € (0, &9l, (1.2) has a solution u, of the form:

Ug = e,QUs,xg + we

where x, € Q satisfies d(x., Q) — 0, w

— 400, as e — 0, and w, satisfies

/ (| D> + @) = o(eV).
Q

It is natural to ask which point on the boundary x, will converge to.
This problem is quite technical because the contribution to the energy from the
boundary is hardly seen due to the fact M — 400 as € — 0.

The solution obtained in Theorem 1.1 does not have least energy among all
the nontrivial solutions of (1.1) because (1.1) has a nontrivial global minimizer.
From the construction of the solution in Theorem 1.1, we see that this solution
has least energy among all the possible solutions of the form P U, r, + w.
On the other hand, if we replace f(u) by the typical superlinear nonlinearity
uP~' —u, p e (2,2N/(N —2)), then it is standard to prove that the mountain
pass solution has least energy among all the nontrivial solutions, and using the
estimates in this paper, we can also show that this mountain pass solution has
the form P, qU; , + @, with d(x., 92) — 0 and @ — +o00 as ¢ = 0.
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If 02 has several disjoint connected components, using the same method
as in the proof of Theorem 1.1, we can prove (1.1) also has multipeak solutions
for ¢ > 0 small. See Remark 3.4.

Next, we show the existence of multipeak solutions for (1.2) if € has
certain kind of symmetry. Let O(N) be the set of all orthogonal transformation
in RY. Write RY = R¥ @ RV-V, where N is an integer sat1sfy1ng 1<N<N.

For any x € RV, denote x = (x/, x"), x’ € RY, x” ¢ R¥"V_ We assume that Q

has the symmetry defined as follows:

(21) There are integer 1 < N < N, and a finite cyclic subgroup G of O(N)
generated by g, that is, G = {g, g%, ..., g* = id} for some integer k > 1,
where g € O(N) satisfies gx = x for any x = (0,x”) € R, and g'x # x,
Vx=x0€0dQ,i=1,...,k—1, such that GQ = Q;

() If (x/,x,;,Jr],... JXiy ..., xy) € R, then (x/,x,;,H,... ,—Xiy ..., XN) € Q.

THEOREM 1.2. Suppose that § > 0. Assume that there are integer 1 < N<N
and a group G, such that (21) and (S2;) hold. Then there is an gy > 0, such that
foreach ¢ € (0, ], (1.2) has a solution u. of the form:

M@G—§ P, q ggxs—l—a)S,G!

where x, = (x/,0) € Q satisfies d(x,, 02) — 0, d(xgsﬂ — 400, ase = 0, we i
satisfies we,(8'y) = weg(¥), i =1,... k=1, we.c(y, —Y") = we.c(y) and

/Q(ezmws,aﬁ +w? ) = o).

ExAMPLE 1.3. Suppose that € is a ball in R¥. Let N = 2. For any integer
k > 2, we may choose g being the rotation of angle 27/k in R2. It is easy
to see that g&¢ =id. So it follows from Theorem 1.2 that for any fixed § > 0,
(1.2) has a k-peak solution if ¢ > 0 is small enough.

ExampPLE 1.4. Suppose that 2 satisfies the following condition:
X1y eee s —Xiy oo, xy) €Qif (X, ..., x5, ..., xy) €, Vi=1,... ,N.

We may take N=1 and g € ORN) with g(x1,x0, ..., xn)=(—X1, X2, ... , XN).
By Theorem 1.2, we see that (1.2) has a double peak solution.

From the argument, we see that Theorems 1.1 and 1.2 hold for more
general nonlinearities f(¢) if f'(0) < 0, and the corresponding problem (1.4)
has a nondegenerate positive solution. Besides, Theorem 1.2 remains true for
more general finite group, which fixes R¥Y~" and acts freely on Q2 NRM.

Finally, we study the existence of solution for (1.1), which has a peak at
some interior point of the domain.
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Let I_; = (—o0,11), Iy = (71, 2) and [} = (1, +00). Let u = hy(v),
u = ho(v) and u = h_(v) be the inverse function of v = f(u) restricted to I,
Iy and I_; respectively.

We extend /i, (v) continuously into v € (f(12), +00) in such a way that
h4(v) is decreasing. Then since A, (v) is decreasing, it is easy to see that the
following problem has a unique solution vj:

(15) { Av—ll—)/v hy(v), in 2,
ve H;(Q).

Moreover, by using the maximum principle, we can deduce easily that vs, < vs,
if §1 < 8.

By the comparison theorem, it is easy to see that max,cq vs(x) — +00 as
8 — 4o00. So, there is a unique §y > 0, such that

max vs, (x) = o
max 5o(X) = oo,

where «y > 0 is the constant such that f h*&?( f(s) —ag)ds = 0. Let us

emphasize here that from the definition of o, we have [, +(gx))( f(s)—a)ds >0

if @ < g, and fh (ff))(f(s)—oz)ds <0 if o > a.

In [6], we proved the following existence of a nontrivial local minimizer
of I(u).

THEOREM 1.5. Let § > 8 be the number such that max,cq v3(x) = f(72),
where vs is the solution of (1.5) with § = 8. Suppose that 8 € (8¢, 8). Then there is
an gy > 0, such that for ¢ € (0, &), (1.1) has a solution (u,, v,), satisfying

(i) v, — vin C(Q), for any o € (0, 1), where ¥ is the solution of (1.5);
(1) ug — hy(v) uniformly in any compact subset of $2;
(i) u, is a local minimizer of I, (u).

Our next result shows we can attach downward a peak to this nontrivial

local minimizer to obtain a new solution for (1.2). Let b = max,cq v(x).
Consider

—AUy, = gp(Up), inRY,
(16) { » =qp(Up), 1

U, € H'(RV),

where g, (t) = (1 — (h(b) — ho(b)))((hy.(b) — h_(b)) —1). Since & € (8o, ),
we know that b € (a, f(12)). So, noting that f(t) —b = (t — h_(D))(t —
ho(b))(hy(b) —t) and fh+(§,l’)>(f(s) —b)ds < 0 if b > ap, we see easily that
(using T = hy(b) — 1),

hy (b)—h—(b) h(b)
/ CIb(S)dS=—/ (f(r) —b)dt > 0.
0 h_(b)



684 EDWARD NORMAN DANCER - SHUSEN YAN

As a result, (1.6) has a unique solution which is also nondegenerate. See for
example [16].

Let Up(x) = Up(|x]) be the solution (1.6) and let U, ,(y) = Ub(%).
Denote m? = —q;,(0). For any u € HY(Q), let Ps,gu be the solution of

—&2 AP, qu + m*P. qu = q,(u) + m’u, inQ,
P.qu € Hi(Q).
Then we have:

THEOREM 1.6. Suppose that § € (8o, 8). There is an gy > 0, such that for each
e € (0, g9l, (1.2) has a solution u, of the form

ﬁe =i — s,SZUe,x;;,b + we
where u. is the nontrivial local minimum obtained in Theorem 1.5, x, € Q satisfies
Xe = X € Q, with v(xp) = maxyeq vV(x), as e — 0, and

/ (&*|Dwe|* + w?) = o(e").
Q

This paper is arranged as follows. In Section 2, we estimate G, U, .. As
we will see that the main contributions to the energy I(P;qU, ) are from
the term fQ Uy xG,U; , as well as the geometry of the domain. Thus the
estimates in Section 2 play a very important role in the proof of Theorem 1.1.
Theorems 1.1 and 1.2 and Theorem 1.6 are proved in Section 3 and Section 4
and Section 5 respectively by using the reduction method.

2. — Preliminaries

In this section we will estimate G, U, ,. We need to treat the case N > 3,
the case N =2 and the case N =1 differently due to the different behaviours
of the corresponding fundamental solutions.

Suppose that N > 3. Let W, be the solution of the following problem:

—Aw+&*yw=U, inRVY,
2.1
w(|lx]) = 0 as |x| > +o00.

LeEmMMA 2.1. If N > 3, we have

G, U (y) = E2W, <H> —eVBH(x, y)
£

eN+2 eN g—(m=0)d(x,09) /e
+ 0 + ,

d(x, dQ)N d(x, 9Q)N-2

where 60 > 0 is any small constant, B = fRN U, H(y, x) is the regular part of the
Green function of the operator — A + y with Dirichlet boundary condition.
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Proor. Let S(y, x) be the solution of

—AS+yS=86,, inRV,
{ S(y,x) — 0, as |y| = +o0,

where §, is the Dirac measure. Then
G,Ucx(y) = /Q(S(z, y) — H(z, y)Ux(2) dz.

. ! C _ : -
Noting that |D'H(z, y)| < dC I [ =0,1,2, using the mean value theo
rem, we have

/ H(z »)Uer(2) dz
Q

-/ @U@ dz + [ H(z YU, () dz
B(1-0)d(x,09)*) Q\B(1-0)d(x,%) *)
=/ H(x, y)U;x(z)dz
B(1-0)d(x,09)*)
1
+3 (D*H((2), y)(z — %), 2 — X)Uex(2) dz

B(1-0)d(x,09) )
eNe—(m—e)d(x,asz)/e>

0
* ( d(x, dQ)N-2

_ N
—=¢ H(x,y)‘/RN U(Z)+0 (d(x,aQ)N + d(x’aQ)N—Z

gN+2 SNe—(m—O)d(x,BQ)/s>

On the other hand,
/ S YUen(@)dz = £V / S(ez +x. VU ) dz
Q Qs,x
=" /N S(ez +x, Y)U(2)dz + eV O (e~ "0/
R

But ¢é¥=2S(ez 4+ x, y) is the solution of

—Aw + &2yw = §(y_yyse, inRY,
w(y) — 0, as |y| - +4o0.

As a result,

8N_2/ Sz +x,yU()dz =W, (y —x>
RN e

and W, is the solution of (2.1). Thus the result follows. O
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To obtain an expansion for G, U, ((y) in the case N = 2, we need to
introduce some notation first.
For any x € 2, let S(y, x) be the solution of

{ Au—i—yu-—l , in €,

(2.2) 2 |y — x|
u=0, on 0%2.
By the L? estimate of the elliptic equation, we know that there is a C > 0,

independent of x € , such that ||S||c1g, < C. Let H(y,x) be the solution of
(2.3) 1
=_—In——rH

2y = x|

#lnﬁ — H(y,x), where H(y,x) = S(y,x) + H(y, x),

—Au+yu =0, in Q,
{u on dQ2.

Then, we see that
satisfies

—Au+yu=5,, in<,
24) { u=0, on 9.

LeEmMA 2.2. If N = 2, then

1 —
Gy Ur(y) = 5 Be? ln +e W( x)
&

2
2o 13 2 € —(m—0)d(x,09) /e 1
—2BHG.x) + 20— In— |,
O, %) + <d(x,asz)2 te d(x, 9Q)

where B = [p2 U, W(y) = 3 [z In 15U (2) dz.

Proor. We have
1 1 ~
(2.5) G, U (y) =/ <—ln - H(z,y)) Uex(2)dz.
e \27 |z -yl

Similarly to the proof of Lemma 2.1, we have

/ Az )Uer(2)dz
Q

2
R

d(x, 9Q)2 d(x, 08)
But

1 1 1
/ln Ug’x(z)dzzsz/ In-+In——-— | U(2)
o lz—yl szsx & Iz—y—l

&

=&’ln— / U+é / In ———- U(Z)d2+8 In - O(e_(’” 0)d(x,08 /ey

— Be? ln + ¢ W< ) _|_g In = O(e—(m 0)d(x, aQ)/g)

€
Thus the result follows. O
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Now we deal with the case N = 1.

LemMA 2.3. Suppose that N = 1. Then
GyUex(y) = BG(x, )& + O(7),

where G, (x, y) is the Green function of —A + y subject to the Dirichlet boundary
condition.

Proor. Since G, (z,y) is Lipschitz continuous, we have

G Usr(y) = /Q G,z WUer(2)dz = G, (x, y) /Q Urx (2 dz + O(e?)

= BG,(x,y)e + O(e?). m

Let
Tex = /Qh(Us,x)(Us,x - P U, ),

where h(t) = f(¢t) + mt. Then, from [4], [5], we know that for any small
n > 0, there are ¢, > ¢y > 0, such that

cleNefm(2+n)d(x,dQ)/s < T, < C28Nefm(27n)d(x,dﬂ)/s'

We have:

ProposiTION 2.4. If N > 3, we have

8
[(PoqU.,) =e"A+ 846N 41, — 5B%N”M—?H(x, x)
(2.6)

8N+2 gNe—(m—H)d(x,aﬂ)/s
+ 8NO e—(2+0)ma’(x,8§2)/6 +

d(x, Q)N + d(x,0Q)N-2

where A = %fRN |IDU*> — [on F(U), A, = %fRN UW,, o > 0is a constant.
If N =2, we have
2 § a1 T4 8 0 oap
I(P:qU. ) =¢"A+ 4—Bs In—+4+8Ae" + 1., — EB & H(x,x)
T e
@7 2 Qto)ymd(x3Q)/ g 2 —(m—0)d(xIQ)/ 1
+80 —(24-0)md (x4 £+ +8 —(m— X, sln ,
¢ dx,00)? ¢ d(x,0Q)

where A = % R2 UWw.
If N =1, we have

Lo 2
2.8) I(P: U, ) =cA+ 588 G,(x,x)e” + Tg x

+ 80(67(2+6)md(x,352)/€ + 81+O') )
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Proor. We know that [4], [5]
(2.9) %/QeHDPE,QUW|2—/QF(P8,QU6,X):eNA+r€,x+eN0(e—<2+“>md<x’39>/8).
So it remains to estimate
1= /Q P U <G, P QU , .
We have

1 :/ Us,xGyUe,x+2/(Ps,QUs,x - Us,x)GyUs,x
Q Q

2.10
( ) + /Q(Pa,QUs,x - Ua,x)Gy(Ps,QUs,x - Us,x)

=Lh+L+1.

On the other hand, from Lemmas 2.1 and 2.2, we see that for N > 2,

1
|I| §C821ng/ |Pg, .U — U]

£,x

1
<e&’ln—|Pq, U — U|;g9/ |P, U —U

2.11) £ Qe
< 82 lnlngng _ U|(1>o_9/ |U|9 < C8N+2 In le—(l—e)md(x,aﬂ)/é‘
&€ ] Qe x &

— 8N0(82+a +e—(2+a)md(x,8$2)/8)’

and
2.12) |1 < /Q |PoqUsx — Usx|G, Usy = ¥ (6740 4 ¢~ @HoImdwi®/ey

As for the estimate of /;, using Lemma 2.1, we obtain that if N > 3,

Il:gz/Us,st <y_x>
Q g
N g2 o~ (m=0)d(x,09) /¢
- Uex | BH(y, 0]
& /Q , (v, x) + FERL + RO
_ 8N+2/ uw.
Qe x
2N g2 o~ (m=0)d(x,0Q) /e
- BH (x, U+ 0
£ (x, x) /]RN + d0x. 9N + TR

— 8N+2 UWg _ 8N+2BZH()C,X)8N_2
RN

2 —(m—0)d(x,0Q2
+82N0< £ e Vs).

(2.13)

d(x, 9N d(x, dQ)N-2
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So the (2.6) follows from (2.9)-(2.13).
If N =2, using Lemma 2.2, we have

1 2 1 2 ~ (Y —X
Iy = 5—Be ln_/ Us,x + & / Ue,xW
2/U BH(y,x)+0 e’ 4 o~ m=0)d(x32)/e | 1
—¢ »X T~ e ’ n———
Q £x y d(x’aQ)Z d(x,BQ)
1 1 i
=—384ln—/ U+s4/ Uw
2 £ Qe x Qe x

2
iy £ —(m—0)d(x,3%)/e 1
— BH(x, U+0|—— In ——
8( wnf i+ (d(x,asz)2+e " a9

1 1 s 5
= —Be“lnf/ U+e4/ UW —&*B?H(x, x)
2 & Jr2 RrR2

2
4 € —(m—0)d(x,0Q)/e 1
ol — In———— .
te (d(x, a2 T¢ Y, 89))

So the (2.7) follows from (2.9)—(2.12) and (2.14).
If N =1, using Lemma 2.3, we have

(2.14)

I = ¢BG, (x, x)/ Uer + 0(e’) = eBGy (x, x) /] U+0(),
Q R

and
L, 11| < Cé /Q |PoUss — Usy| = 60 (se™1-0009)

Thus the result follows. O

3. — Solution with peak near the boundary

In this section, we will use the reduction argument to prove Theorem 1.1.

The functional 7 (x) may not be well defined in HOI(Q). But it is easy to
see that there is a constant K > 0, such that for any solution (u,, v.) of (1.1),
we have |ug|ro0(q), |velroo@) < K. Thus, we can truncate f(t) for |t| > K so
that the new function is bounded in C?(R!). For simplicity, we still use f(¢)
to denote this new function.

Let

(U, v)p = /(szDuDv + m’uv),
Q

lulle = (u, u)l/?. Denote

dP. QU
Eg,xz{w:weHol(sz), <%w> =0, i=1,...,N}.
&

Xi

Let D, p ={x :x € Q,d(x,02) > R}, where R > 0 is a large constant.
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ProposITION 3.1. There is an gy > 0, such that for each ¢ € (0, &), there is a
C'-map Wex: Der— HO1 (2) satisfying, we x € E¢ x,

<81(P8,QU£,X + a)s,x) 7]>
e

3.1) =0, VnekE.,.

Jw

Moreover, if N > 3,
d(x,0Q)
”a)g,x”e — SN/ZO (81-‘1-0 + e—(l+0)m—s ) ,

where o > 0 is some constant.
IfN =2,

1 d(x, 89)
”a)E,x”s =¢e0 <8 Inln — + ef(lﬂ’)m ) )
&
IfN =1,

d(x,0Q) asz)
lwexlle = €'/20 < V2d(x,0Q) + e~ IHom—=— ) '

PrOOF. Let h(t) = f(t)+m?t. As in [1], [21], we expand I (P, qU.  +w),
w € E;, as follows:

1
(3.2) I(Pe,QUs,x +ow) = I(PS,QUS,)C) + (lg, w)e + §<Lewa w)e + R.(w),

where [, € E,, satisfying

L. ) = 8 /Q wG ) PogUsx + /Q (h(Us) — h(PogUs. ),

L, is a linear operator from E. . to E. ., satisfying

(Lew, o), =/(82|Dw|2+m2w2)+8/ a)Gya)—/ B (PeqUs ),
Q Q

Q
and R.(w) satisfies
Re(w) = e 0" w|]),
Ri(@) = "0 NP V20|27,
Rl (@) = 0@ NP2 20| 272),
for some p € (2,2N/(N — 2)). Thus, (3.1) is equivalent to
(3.3) I+ Lew+ R'(w) =0.

By Lemma 3.2 below, we see that L, is invertible in E, ,. So it follows from
the implicit function theorem that (3.3) has a solution w, € E; , satisfying

lwelle < Clilelle -

Thus the estimate for ||w.||, follows from Lemma 3.3. O
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LeEMMA 3.2. There are ey > 0, T > 0 and Ry > 0, such that for ¢ € (0, &],
x € D, g with R > Ry, we have

Lol = Tllwlls, Yoe€kE,.

Proor. We argue by contradiction. Suppose that there are &; — 0, x; € Q
d(x;,0Q)

with — 00, w; € Esj,xj, such that

(3.4) ILe;wjlle; < oDl -
We may assume that ||wj||8j = 8;\’/2
Let @;(y) = w;j(ey + x;). Then it follows from (3.4) that

65) [ Dapsamas s €G- ke, Ui =olg]
$ejxj €)% €% '
for any & € E.; = {§ € Hy(Q,.1,) : fgéi’xj (DPq,_ UDS—i—mZPQSj.Xj Ug) =0},

where ngyxj = 8;](9 - Xj), Pgsj’xj U e H(}(Qsj,xj) satisfies

—APa,  U+m’Po, U =h(U),

and G,@;(y) = Gyw;(ey + x;) € Hy (; ;)
Since ®; is bounded in H HRY), we may assume that there is an w €
H'(RM), such that
®; — w, weakly in H'(RY).

Note that
(3.6) —AGy0; +yGy0; = ;.
From (3.6), we see
/QIDGya)jIZ < C/Qw} <Ce),
which implies that fQEj,xj- |D(;‘),c7)j|2 < Csjz — 0 as j — +o0o. Thus we have

G),J)j — 0 in L%OC(RN) as j — +oo if N > 3. On the other hand, if N =1, 2,
it follows from (3.6) that

|Gy wjlLe@) < ClGywily2q) < Clwjl 2 — 0

as &; — 0. Thus we also have G,®; — 0 in L2 .(R") as j — 400 if N =1, 2.

As a result, we deduce from (3.5) that w satisfies

2 / _
(3.7) /RN (DwDE + m2wé) — /RN W (U)ot =0,
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for all £ € E = {§ € H'[R") : [on(DUDE + m*Ug) = 0}. Since U is
nondegenerate, we know that w = 0. Thus, noting that A’ (Pgsj,xj Ugj’xi) is

small in )\ BsiR(xj) if R > 0 is large, we see

/Q(sj?|ij|2+m2w})+5/ijéya)j —/Qh’(Png,xj U)oy
Q Q

= /(8}|ij|2 +m’w)) —/ (P, U)oy —/ h’(PQEijU)a)]z
@ Be; r(xj) S\Bg; R(x})

:/Q(gf|Dw,-|2+m2wf)—o(sjv)—o(l)/gw} > coel’ .

This is a contradiction to (3.4). O

LEmMMA 3.3. Assume that x € D, g, where R > 0 is a large constant. We have
(3.8) ’ / (h(Uex) — h(Pe,xUs,x»w‘ = NP0 (e 1TV,
Q
IfN >3,

(3.9) =e"20E") |l ,

/ wG, U«
Q

where o > 0 is some constant. If N = 2,

1
(3.10) / wG,Ue | = €0 <lnln—> ol -
Q &
IfN =1,
(3.11) /waUS,x =£0(d(x, Q) + &)llwlle -
Q

Proor. The estimate in (3.8) is known. See for example [4], [5], [14], [15].
To prove (3.9), we note that (G, U, ,)(ey + x) = €2v,(y) and v, satisfies

—Av, + szyvg =U, v,¢€ Hol(Qg,x).
Let v be the solution of

—Av=U, veH'®RY).
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Then o(y) = [ WU(x)dx. Thus (y) < W since U(x) decays

exponentially. By the comparison theorem, we have

0 <ve(y) <v().

Thus, we have the following estimate for v,:

ve(y) < VyeRV.

L4 [y|V=2"

As a result, for any 6 > 0, if N = 3,4,

/ wG, U«
Q

VAo /(N2 (N-2)/(N+6) NLO) /(20 (240)/(N+06)
§C</ |G, U | N+ —>) </ o +)/(+>>
Q Q

24+N(N-2)/(N+6 1 N/2
< NN/ 1), < N2 0]

because ¥t <2 if N =3, 4.

246
If N > 5, then
1/2 1/2
/ wG,Usi| < C ( / |GyUg,x|2) ( / |w|2)
Q Q Q
<2 o], .

Now, we prove (3.10).
We have

(3.12) ' /Q ©G, Uy .

<),

It follows from Lemma 2.2 that |G, U, (y)| < Ce’ln é, V x € D, g. Thus,

(3.13) /B

G, U; o] +/ G, U lol.

1/1ng("> Q\131/111g()‘)

1
G, Up o] < Ce*In~ / ol < Celoll .
& JB

1™ 1/ 1
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On the other hand, from (2.5), we see that for |y — x| > IL] we have

g

1 1 -
G Unn(y) = — / In Usx(2) dz + O H(y, x)] + £
2 Jo o |z — Yl

1 1
= — In——U,(2)dz
27 Bjy_x|2(x) |z — ¥l

1
— In
21 Jagy_qpe 1z =l

1
Uc.x(2)dz+ O (82 Inln —)
e
1 1
In —U, 1 (2)dz

27 Bjy_x|2(0) lz =yl

e (e_(m—e)ln %/(28) + £2Inln 1)
&

N1 I
<In (2 In —> —/ Upr(2)dz+ O (82 Inln —)
8/ 27 JBy i) &

_ 21010 L
=0 |(&Inln ,
€

since |I:I(y,x)| <Cln—1-

(3.14)

[y—x|"
Using (3.14), we obtain
5 1
(3.15) G,Usxlw| =0 e Inln— | |w]l, .
QB 1) £

Thus, (3.10) follows from (3.12), (3.13) and (3.15).
Finally, we prove (3.11). Using Lemma 2.3, we have

/ wG, U, «
Q

=0 (8/9 lw|Gy (x, y)dy +82”a)”£)

12
=0 (8 (/Q Gi(x,y)dy> +82> lells .

Without loss of generality, we assume 2 = [0, 1].
Suppose that y = 0. Then

(3.16)

(I=x)y, yel0,x],

(3.17) Gy(xy) = { x(1—y), yelx 1].

Thus,

1
(3.18) / G (x,y)dy = %xz(l —x)? = 0(d*(x,99)).
0



PEAK SOLUTIONS FOR AN ELLIPTIC SYSTEM OF FITZHUGH-NAGUMO TYPE 695

So (3.11) follows from (3.16) and (3.18).
Suppose that y > 0. Then

eVYU=x) _ ,=y(1-x)

NN
Zﬁ(eﬁ—e*«/?) (e e ), y€[0,x],

(A=x) _ ,—=/¥(1-x)
(.19 Gylry =1 ¢TI

2ﬁ(eﬁ — e‘ﬁ)

(eVYO=0) — =Y (y=1)) y € [x, 1].
27

So, if x € [%, 1], we have
1 X 1
| Gy = [ Gundr+ [ Ginay
0 0 X

1
(320) — O(|1 _ x|2) + 0 </ |e\/7(y7x) _ eﬁ(yx)|2>
=0(1—x>)+0(1 —x|’) = 0(d*(x, 39)) .
If x € [0, %], then

1 X 1
/OGf,(x,y)dy=/0 Gi(x,y)der/ G (x,y)dy
(3.21) *

1
— 0(xP) + 0 (/ |x|2dy) — 0(xP) = 0(d(x, 3Q)).

since G(0, y) = 0. Thus (3.11) follows. O

Proor oF THEOREM 1.1. Let
1
D, = {x cx €Q,d(x,99) € {cosln—,sln]} ,
I3

where ¢y and 7 are two fixed small constants.
Consider
(3.22) inf [(PeqUex + e y).

xeDg

Let x. € D, be a minimum point of /(P U,y + wey) in D,. As usual, if x,
is an interior point of D, then P, U, . + w. , is a solution of (1.1).
Suppose that N > 3. Then from Propositions 3.1 and 2.4, we have

8
[(PoqUex +we ) =eNA+8AN T 41, — 5B28N+25N_2H(x, x)

(3.23) eN+2
+8N0(67(2+a)md(x,352)/8) +o 1 —
&
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Let x* € D, with d(x*,0Q) = Ce lné and C > 0 large. Noting that for any
small 6 > 0,

N 7 —2m(1—0)d(x*,3Q)/e / N+2Cm(1—6)
9

Teor < €' Cle =ce

and H(x*, x*) ~ we obtain from Proposition 2.4 that

1
d(x*,0)N-2>
I(PS,QU&X* +w8,x) < ENA 4 8A88N+2 4 c/8N+2Cm(179)

1 8N+2

8
9o~ N2
B-ce N5 +0

(3.24) 2 (c In é)

< ENA+8A88N+2 _ EBZC//8N+2

INV-2°
(C In —)
€

where ¢” > 0 is a constant.
For any x" € Q with d(x’, Q) = cpeIn %, we have

Ty > c/gNe—Zm(l+9)d(x’,BSZ)/s — gN+2m+0)cy
Thus,
I(P{-,‘,QUg’x/ +a)€,x) > SNA + 8A88N+2 +C/8N+260m(1+9)
8 2 x N 1 8N+2
+2
(3.25) — —B“c"¢ v— T 0

1 N-=-2
()
&

Combining (3.24) and (3.25), we see that if ¢y > 0 is small enough, I (P; qU, »+
e x) can not attain its minimum on {x : x € Q,d(x, 9R2) =cpln é}.
On the other hand, for any x € Q with d(x,dQ) = &'~", we have

2 1
(co In —)
I3

> SNA + 8A58N+2 +C//8N+2C0m(1+9) )

[(PoqUex + wex) = eV A+ 8AeNT2 4 (/e IH0E

5 5 5 5 8N-i-Z
—_B C*8N+ +n(N-2) +o

; A
(3.26) (ln g)

>eVA+5A.eN? +o0
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Combining (3.24) and (3.26), we see that [ (P, U, + w, ) can not attain its
minimum on {x : x € Q,d(x,d) = &'~"}. Thus we have proved the x, is an
interior point of D,.

Suppose that N = 2. Then from Lemma 3.3 and Proposition 2.4, we have

2 § 4.1 1.4 8 »oap
I(PeqUex +we ) =" A+ —¢"In— 454" + 1., — EB e"H(x,x)
£

(3.27) 4 '
+ 820 (e(2+0)md()€,39)/8 +82 1n2 <1n >) ,
&
Noting that H(x, x) ~ In zzh5 and d(x, Q) € (coslny,e'™"), we see that

e*In’(In é) is a higher order term than e*H (x,x). As in the case N > 3, we
can check that if x € D, with d(x,9Q) =C slné with C > 0 large, then

) ~
Tor — —B%¢*H(x,x) ~ —¢*In
) (x, %) Celnl

&

< —¢*In L ~ min (1, , — éBze“l-](z, 7).
gl=n  zeape \ 2
So we see that 7, , — %32841:] (x, x) attains its minimum at an interior point of
D,. Thus x, is an interior point of D,.
Finally, if N =1 then from Lemma 3.3 and Proposition 2.4, we have

1
oy | (Pealer o) = A+ 538Gy (0,06 + 7o

+ 80 (" FFoOmdxID/e 4 0q2(x 9Q) + &%) .

From (3.17) and (3.19), we know that G, (x, x) ~ d(x, Q). Thus &2d*(x, 9S2)
is a higher order term than %(SBZG),(x, x)e2. On the other hand, it is easy to
see that if d(x, dQ2) = Csln%, we have

1 1 1

—8§B*G,(x,x)e> + T, ~&In- <& "~ min | =8B*G,(z,2)e> + 1 .

3 y( Ve + Tex . eb. \ 2 y(Z )&+ Te;
Thus 7., + %(SBZGV(x, x)e? attains its minimum at an interior point of D,. So
X is an interior point of D,. O

REmMARK 3.4. Suppose that I' is a connected component of 2. The
above argument shows that (1.1) has a solution of the form P, U, ., + w, with
dx., ") = 0, @ — 400 and |lw, |l = 0(eV/?) as ¢ — 0. Moreover, if 3Q
has k disjoint connected components I'y,..., I, then for ¢ > 0 small, (1.1)
has a solution of the form

k
Z Ps,QU‘e,xa’i + w, ,
i=1
d(xsqi,l“,-)
&

with d(x.;, ;) — 0, — 400 and |w.|s = 0(eV/?) as & — 0.
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4. — Solutions with several peaks near the boundary

This section is devoted to the proof of Theorem 1.2. Because the proof of
Theorem 1.2 is quite similar to the proof of Theorem 1.1, we are a bit sketchy
in this section.

For a positive integer k and X = (x1,...,xx), x; € RV, denote

1 aPs,QUe,xj .
Ecxy=qw:we Hy(Q2), { ———, 0 ) =0, i=1,...,N,
o 3le' R

for j=1,... k. Let Doy ={X:x; € Q,d(x;,0Q2) > &R, |x; — x| = &R},
where R > 0 is a large constant.

PRrROPOSITION 4.1. There is an ey > 0, such that for each ¢ € (0, gg], there is a
Cl—map Wex : Depix— HO1 (2) satisfying, we x € E¢ x.x,

k
al ZPS,QUs,xj + w,

j=1
(41) < ! 777> =07 V’? € E&,X,k'

w

Moreover, if N > 3,

k
_ d(x,092) _ .
”a)E,X”S — 8N/20 81+0’ + Ze (1+U)m78 + Ze (I4-0)m|xy, xj\/(28)
j=1 Wt

where o > 0 is some constant.
IfN =2,

d(x,09) BQ) _ .
e xlle = €0 slnln + Z —(to)m==== 4 Ze (I4+-0)m|xp—x;l/(2¢)

j=1 h#j
IfN =1,
k
loexlle =720 [ &2d(x,09) + 3 e~ (o L § (ol —; /)
j=1 h#j
On the other hand, if Q2 satisfies (21) and (S2;) for some finite group G = {id, g, . .. ,
g Wand X = (x, gx, ..., g5 'x), where x = (x',0), then w, x satisfies
e, x(gy) = we x(y), VyeQ,
and

w&,X(y/’ y1§/+1’-” 7_yi7~" 7)’N) =w8,X(y/v yﬁ+]v-" 7)’1"--- :}’N)’ Vy € Q
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Proor. The proof of the existence and the estimates of ||w, x|l are very
similar to those in Proposition 3.1. Thus we omit them.

For the proof of the last claim, we let @, x(y) = we x(gy). For any
neE:;xk let n(y) = n(g~'y). Then it is easy to check that 7j € Ec.xi Asa
result,

k k
al ZPs.QUs,Xj + @e x ol ZPS,QUa,Xj + e x

=1 j=1 _
) = , =0.

By the uniqueness of w, x satisfying (4.1), we conclude that &, x = w, x. Sim-
ilarlys we haVe a)S,X(y/v yﬂ/+]7 cee _yis LRI ) )’N) = a)E,X(y/s yN+]7 LI ) )’i, ]
-5 YN)- O
In the rest of this section, we will work on the space of functions, each

of which is even in y;, i > N, and is invariant under the action of G.

ProoF oF THEOREM 1.2. Let

1
De = {x X = (x/70) € Q’ d(x, aQ) € |:C()81n—,81_n:|} s
&

where cg and n are two fixed small constants.

Consider
k
(4.2) inf I[Y PooU, j,+oex | .
xeDg j=1
where X = (x, gx, ... ,gk’lx).

Let x, be a minimum point of I(Zf:l P qU, + we. x) in D,. We will

prove that x/ is an interior point of D, N RV,

It follows from Proposition 4.1 that

k k
43) 1Y PeaU,. g, +oex | =1 PeaU, | + OUwexl?).
j=I1 j=1

On the other hand, using the exponentially decay of U at infinity, we can
deduce

Z/QPS,QU&gth]/(PS,QUg’ng)

k k
I PeoU, i, | =D 1(PqU, i) +2
Jj=1 h<j

44 N7

+0 8N Ze—m|ghx—gjx|/s
oy
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Suppose that N > 3. Then from Lemma 2.1, similar to the proof of Proposi-
tion 2.4, we deduce

/Q PoqU, .Gy (PocU, i)

k .
:/QUS,gthyUg,gjx‘i‘sNO 82+0+Ze—md(g/x,89)/s
Jj=1

4.5) .
x—glx .
=e¢V*2BW, (_g g ) —e?B2H(g"x, g'x)

&

N eN+2 N p—(m—0)d(x,09) /¢
R0
+ d(x, Q)N + d(x,0Q)N-2

+ em(2+(7)d(x,8§2)/6>

Since 0 < Wy(y) < C|ly|~™¥=2, noting that |g"x —g/x| > 7 > 0 for any x € D,
and h # j, we obtain from (4.5)

£,8"x s,g-fx)

/PS,QU 1,.Gy(PeU
Q

(4.6) o eN+2 . N p—(m—0)d(x.09)/¢
d(x, Q)N d(x,0Q)N-2

+e—m(2+0)d(xy39)/8) , h ;é ] .

Combining (4.4) and (4.6), using Proposition 2.4, we obtain

k
LY PeoU, i, | = kAe" +k8Ae"? + ke,
j=1

1)
4.7 _ 5k328N+28N—2H(x’ x)
N+2 N ,—(m—0)d(x,02)/¢
N € e'e —mQ2+0)d(x,08)/e
0] .
te <d(x, s T A2 ¢

Suppose that N = 2. Then

/Q PooU, .Gy (PeoU, ;)

g'x —g/x

2 e

1 1 -
= —B%*'In- +¢'BW
(4.8) em-+e .

) — 84BzH(ghx, gjx)

4
1205 2emtdeanye 1 merordeane)
d(x,09)? d(x,052)
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On the other hand, we see that

- B 1 1
4.9) W(y) — — In— / In
2 R2

vl 2w

[yl
|z — yl

U(z)dz

is bounded for |y| > 1.
In fact, from In|x| < C(|x|"? + —), we have
|x‘1/2

|yl ’ |y|/? lz — y|'/?
In U(x)dz| <C + U(x)dz.
/R2 lz— yl R2 \ |z — y|1/? ly|1/?

Since 22 < Y < 17| for |y| > 1, we obtain

(4.10)

[yl [yl
|z — y|'/? ,
4.11) —— 5 U@dz<C [ (1+[zhU()dz <C".
]RZ |y| / RZ

1 Iyl Iyl

If |z| < 5]yl then |Z+y| < Iylilzl < 2. Thus
|y|!/?
4.12) / A U@d<c U(z)dz < C.
li=lyl/2 12 = ¥l lzI<Iyl/2
But
|y|!/?
——U(z)dz

/Izlzy|/2 lz —y|'/2

-/ e+ I yeyae
4.13) {lz1=lyl/23nB () 12 — Yl {lz1=lyl/20\B1 () 12 =

(Izl + D'/? 12
< —uzU(Z)dZ+ |y|"“U(z)dz
{zlzlyl/2nBy(» 12— ¥l {1z1=1y1/21\B1 ()
gc/ iz d+C 1z|'"*U(z)dz < C.
{lzI=Iyl/2nB1 (») 12 — VI {zI=1y1/2)\B1 ()

Combining (4.10)—(4.13), we obtain (4.9).
Using (4.9), we obtain

[l g B 1oty — o)
(gx gx)z__nlgy YL o).
&

w 1
£ 2

which, together with (4.8), implies

(414) /Q Pg’QU&g}uGV(PS’QUE’g_,‘x) = 6‘20(82 4+ e‘m(Z-i—a)d(x,fiQ)/a)’ h 75 ] )
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Thus,
k 5 5
(4.15) ZP&QUagfx =kAe*+ — k32841n— tktey — SkBH(x, x)
+g 0(5 +e—(2+a)md(x,<’)$2)/8)‘
Suppose that N = 1. Then
(4.16) / aQUsgth (PoU, glx)—B G (g X, g it + 0.
Q
Since Gy(ghx, gjx) ~ d(ghx, BQ)d(ng, 9Q), we see from (4.16) that

/PSQUEgth (PeqU, i) =& 0(d*(x, 9Q)) .
Q

As a result, we have
@17 Z PooU, ,j, | =2A8 +8B°G,(x,x) + 2704
+ 80(81—0—0 + e—(2+0)md(x,8§2)/8) .

Using (4.7), (4.15) and (4.17), we can prove that x, is an interior point of

D, NRY in exactly the same way as we did in the proof of Theorem 1.1. So
we have

OPqU, ;.
(4.18) Z<1/ <ZP8 Eg x€+wax> £,Q gJ £ + wE,X> :O’
&

=1 Bx,- 8)q,i

fori=1,... ,1\7.
On the other hand, in view of the symmetry of the domain, the functions
Zh 1 Peo Eghx and o, x, we can check easily that for j =1,... ,k—1,

P, QU,_ ;i
< (z:pE sgx+ws,X>,w>
I
&

(4.19) / ‘ 2Pl
= <1 <; PeQU, ghy, +ws,x> P > :
and
k dwg x
<1/ (Z PeU, ohy, +a)g,x> ; 8; >
(4.20) h=t "l
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Combining (4.18)—(4.20), we obtain

k
3P5,QU’ Jxe aa)g,x
“4.21) <[’ (Z PS,QUS’ghXS + wa,X) , ax,-e glxe | =0,
&

h=1 9x;ji

fori=1,...,N, j=1,... k.
On the other hand, using the symmetry of the function w, x, we can check
easily that

k

0P: U, ,j dwe x
4.22 1/ P U +o , ’ &,8' Xe + €, — 0’
( ) < <h§=:1 e.QYe ghy, £’X> ox; 0x;i

fori=N+1,...,N, j=1,... k.

From (4.21) and (4.22), we see X, = (X, gX;, ..., 8" 'x,) is a critical
point of the function
k
1 (Z Ps,QUs,xh + ws,X) .
h=1
As usual, we see that 22:1 PS’QUg)gth + w, x is a solution for (1.2). O

5. — Solutions with interior peak

In this section, we will prove Theorem 1.6. Let u = i, — w. Then

{ —&*Aw +8G,w = q(y, w) =: f@) — (i —w), yeQ

SR w e HN Q).

Since for each y € Q with d(y,dQ2) > 7 > 0, we have u.(y) € (tp, 1). Thus
we have h(f(u.(y))) = u.(y). So it is easy to see that g(y, ) = 0 has exactly
three solutions

Ug(y) — hy(f(ue(y))) =0,
1(y) = ite(y) = ho(f (e (y)) = hy (f (e (y)) — ho(f (its(y))

and

b(y) =ue(y) —h_(fue(y) = hy(f@e(y)) —h_(f(ue(y)).
So we have
(5.2) q(y,t) =t(t — () ((y) —1), Vd(y,iQ)=rt.

Let » = max,cq v, where v is the solution of (1.5). Let U,(x) = Up(|x|) be a
solution of (1.6).
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Let S={x:x € Q,v(x) = max,cqv(x)}. Then § is a compact subset of
Q. Let Sy ={x:d(x,S) <a}.

AP, U

E&b:{weHg(Q): <a)%> =0, i=1,...,N},
Xi

&

where Us v, = Up((3%), (u,v)e = [o(e*DuDv + m?uv), m?* = —g;,(0).
We will construct a solution for (5.1), which has the form
We = _e,QUe,xg,b + we,
N/2)

where w, € E,; satisfies ||l = o(e
Let

2
K(w):g—/ |Dw|2—|—§/ waw—/ Oy, w), we H (),
2 Ja 2 Ja Q
where Q(y, 1) = [y q(y,s)ds.

PROPOSITION 5.1. There is an gy > 0 small, such that for each € € (0, &y], there
isaC' map : Wex : Sq — Hol(Q), such that w; x € E¢p,

aK(Ps,QUE,x,b + ws,x)
dw ’

§>=0, V%‘GE&I,.
Moreover, we have the following estimate:

we xlle = eM20(|5(x) — bl + 0s(1)),

where 0.(1) = Oas e — 0.

Proor. Expand K(PS’QUs’x,b 4+ w)) near w = 0 as follows:

K (PsUexp+ w) = K(PoqUsxp) + (ke(x), @) + %(qu)w, ) + Re(0) ,
where
(ke (x), @) = /S2 &*DP, U« Do +38 /Q Gy Py qUs xpp — /Q q(y, PeqUsxp)o,
<Qs<x>w,w>=82/9 Dol + 8 /Q 0Gye> — /Q Fulits — BoqUe s ) |

and R.(w) satisfies
Ro(@) =" 0@ N ?lg|)),

R.(w) = N0 N pl?),
R/(w) = 0(™™?|oll) .
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In [6], we proved that for all w € HO1 (),

82/ |Da)|2+8/a)Gyw—/ fulip)w® > collo|?
Q Q Q

for some ¢y > 0. But U, is nondegenerate. So arguing in a similar way as in
Proposition 3.1, we can prove that Q,(x) is invertible and ||Q,(x)"!|| < C. In
fact, the only place we need to change in the argument of Proposition 3.1 is
the last relation. In the present situation, we have

&2 [ Doy +5 [ 0G0~ [ St~ U)ol
T Q Q :
:g]?/ |ij|2+5/ 0;G —/ fu(ﬁg)w?—o(sjv)—o(l)/w?
Q Q Q Q
> colloy I, —o(ejv)—oa)/gwf.
On the other hand, we have
(ks(x)v w) =94 /Q C‘)Gy ﬁs,QU&‘,x,b + /Q(CIb(Ua,x,b) - Q(y’ PS,QUS,X,I?))CU
+ /Q e = PrgUs ).
Similar to Lemma 3.3, we have

= o(e"?)||w|?.

/ WGV IS&,Q Ue,x,b
Q

Moreover,
’ /Q (@ Usx)oo — a0, Pg,gUs,x,b)w)’
= ’ /Q (@ (Ue x ) — q (v, Ug,x,b)w)’ + o(eN?) ||l

_<c /Q Usx s )£ @ (1)) — Blloo] + 06/ o],

< CeV2| f (e (x)) = blllwlle = e"2O( f(i@(x)) — bl + o(1)) ]l
=eN20(0(x) = b| + o) |||,
and

/Q Uerp — PrcUsrp)o = o).

Thus, we obtain
ke ()1l = Y20 (Jo(x) — b| + o(1)),

and the result follows. O
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ProrosITION 5.2. We have
K(PeoUeyp) =V A+ eV B(b — v(x)) + ¥ O(lo(x) — bI* + (1)),

where A = % RN |DU, > — f]RN G»(Up) and B > 0 is a constant.

Proor. We have
— _ l 2 — 2 D N
K(PS,QUs,x,b) = ) Qe |DP3,SZU8,x,b| o Q(y, Ps,QUe,x,b) + 0(8 )
1
(53) _1 / 2IDUs0 sl — / 0. Usr) + 0(e™)
2 JrN RN
=it [ (QUei) = QO Ve + 0™
R

On the other hand, it is easy to see

3 2
0p(t) — Q(y, 1) = (1 (y) + () — (11 + fz))% -t (Wnh(y) — flfz)%,

where 15(y) =h (f (e () =h-(f (e (y))), 11(3) =hy (f (e (y))) —ho(f (e (),
f=hy(b) —h_(b) and #; = hy(b) — ho(b). Thus,

|
/ (QpUexp) — O, Uexp)) = 8N§((l1 + 1) — (11(x) + 12(x)))
(5.4) EN |
X /RN U; — gNz(flfz — 1 (x)ta(x)) /RN U? +o(eV).
Denote &,(¢) = h(t)—ho(t), £&(¢t) = hy(¢)—h_(¢). Then (5.4) can be written as

/ (0o (Uenp) — Q. Usx ) = —&V
RN

l’b ' (b U31’bb b)EL (b U?
x(g(sl( )+ &5 ( ))/RN fi +§(Sl( )&2(D) + E1(D)&( ))/RN b)

G5 s (Faa) = b) + ¥ O f @) — b?) + o(eV) = —&V
1 / 1 ! /
x (5@10)) +EWD) /R MR COCRRNOTIO) /R . U,f)
x (0(x) = b) +eNO(D — b)* + 0o(1)).
Let

B= L&)+ 50 v - Leiman b)&; (b Uy
— GO +EO) [ U - E@0a®) +a®se) [ | U,

We claim that B > 0. Assuming this, we see that the result follows from (5.3)
and (5.5).
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Now we prove that B > 0.
First, we have

- [ Ui+ @b +ee) [ UG-avao [ v

:/ q,,(Ub):—/ AU, =0.
RN RN

As a result, B can be rewritten as

_ 1 1
B = <3(§{(b) +&(D)) (51 (b) + £2(b)) — 5(5{(17)52(19) + & (b)fﬁ(b))>/ Uy
RN

1
30+ EONEOR®G [ U,

(5.6) | U2
= §EOOIT2HED) —HOEO) ~5 OEOER) [ | o
1 / / 2 Up
GO+ 5RO [ o
We claim
1
CQEBE D) +26BED) — E DB — & DEG)
(5.7)

1
> g(S{(b) + £5(b)&1 (D) .
In fact, (5.7) is equivalent to

(5.8) =381(0)&;(b) — &[{(D)62(b) + 26:(b)&,(b) > 0,

which can also be rewritten as

(5.9)  =3(h(b) — h_(8))&1(b) — 2h_(B)&2(b) + (H..(b) + ho(b))E2(D) > 0.
Since by definition

f@) —b=@t—h_(b)(t—ho)(hy (D) —1),
we have

f/(hy (D)) = —(hy(b) — h_(b))(hy(b) — ho(b)),

£ (ho(D)) = (ho(b) — h_(b))(hy(b) — ho(b)),

and

f'(h-)) = —(ho(b) — h—_(b))(h+ (D) — h_(D)).
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Thus, / /
S (ho(b)) f'(h4 (D))
1
h/ b = 0,
-0 =Ty -
and

/ 5/ o/ _ f/(h,(b)) - f/(th(b)) .
&Mb) =h_(b) —h_(b) = o) F e D) <0, ifb>ap.

In the last relation, we have used the fact that ho(b) h_(b) > hy(b) — ho(b)

if b > «p, which can be deduced directly from fh b) (f(t) —b)dt <0. So we
see that each term in the left hand hand of (5.9) is positive. Thus the claim
follows.

Finally, combining (5.6) and (5.7), we obtain

_ b U}
o AR e [ <sz<b) 52{2)) 70
2

since U, < & (D). O

ProOF oF THEOREM 1.6. Consider
(5.10) inf{lK (Pe.qUexp +@e) : X € Sy}
It follows from Propositions 5.1 and 5.2 that
(5.11) K(PeqUs,p+w.) =V A+eVB(b—(x) +e¥ 015 (x) —b> +0(1)).

Let x, € S, be a minimum point of (5.10). Then from (5.11), we see that
X = x9 € S§. So x. is an interior point of S,. O

REMARK 5.3. From (5.11), we see that if v(x) attains its local maximum

on an isolated set S, then we can attach to i, a peak near S to obtain a solution
for (1.1).

REFERENCES

[1] A. Banri, “Critical points at infinity in some variational problems”, Research Notes in
Mathematics 182, Longman-Pitman, 1989.

[2] P. CLEMENT — G. SWEERS, Existence and multiplicity results for a semilinear eigenvalue
problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 97-121.

[3] E. N. DANCER, A note on asymptotic uniqueness for some nonlinearities which change sign,
Bull. Austral. Math. Soc. 61 (2000), 305-312.



(4]

(3]

(6]

(7]

(8]

(9]

(10]

[11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

PEAK SOLUTIONS FOR AN ELLIPTIC SYSTEM OF FITZHUGH-NAGUMO TYPE 709

E. N. DANCER — S. YAN, Interior and boundary peak solutions for a mixed boundary value
problem, Indiana Univ. Math. J. 48 (1999), 1177-1212.

E. N. DANCER — S. YAN, Singularly perturbed elliptic problem in exterior domains, J.
Differential Integral Equations 13 (2000), 747-777.

E. N. DANCER — S. YAN, A minimization problem associated with elliptic system of
FitzHugh-Nagumo type, Ann. Inst. H. Poincaré, Analyse Non Linéaire, to appear.

D. G. peFIGUEIREDO — E. MITIDIERI, A maximum principle for an elliptic system and
applications to semilinear problems, SIAM J. Math. Anal. 17 (1986), 836-849.

R. FitzHuUGH, Impulses and physiological states in theoretical models of nerve membrane,
Biophy. J. 1 (1961), 445-466.

R. GARDNER — L. A. PELETIER, The set of positive solutions of semilinear equations in
large ball, Proc. Royal Soc. Edinburgh 104A (1986), 53-72.

A. HopGkIN — A. HUXLEY, A quantitative description of membrane current and its appli-
cation to conduction and excitation in nerve, J. Physiol. 117 (1952), 500-544.

G. A. KrLAASEN — E. MITIDIERI, Standing wave solutions for a system derived from the
FitzHugh-Nagumo equation for nerve conduction, SIAM J. Math. Anal. 17 (1986), 74-83.

G. A. KraaseN — W. C. Troy, Stationary wave solutions of a system of reaction-diffusion
equations derived from the FitzHugh-Nagumo equations, SIAM J. Appl. Math. 44 (1984),
96-110.

J. S. NaAGuMO — S. ARIMOTO — Y. YOSHIZAWA, An active pulse transmission line simulating
nerve axon, Proc. Inst. Radio. Engineers 50 (1962), 2061-2070.

W. M. NI — 1. Takaat — J. WEIL, On the location and profile of spike-layer solutions to
a singularly perturbed semilinear Dirichlet problem, intermediate solution, Duke Math. J.
94 (1998), 597-618.

W. M. NI - J. WEIL, On the location and profile of spike-layer solutions to singularly
perturbed semilinear Dirichlet problem, Comm. Pure Appl. Math. 48 (1995), 731-768.

L. A. PELETIER — J. SERRIN, Uniqueness of positive solutions of semilinear equations in
R”, Arch. Rat. Mech. Anal. 81 (1983), 181-197.

C. REINECKE — G. SWEERS, A boundary layer solution to a semilinear elliptic system of
FitzHugh-Nagumo type, C. R. Acad. Sci. Paris Sér. I. Math. 329 (1999), 27-32.

C. REINECKE — G. SWEERS, A positive solution on RN to a system of elliptic equations of
FitzHugh-Nagumo type, J. Differential Equations 153 (1999), 292-312.

C. REINECKE — G. SWEERS, Existence and uniqueness of solutions on bounded domains to
a FitzHugh-Nagumo type elliptic system, Pacific J. Math. 197 (2001), 183-211.

C. REINECKE — G. SWEERS, Solutions with internal jump for an autonomous elliptic system
of FitzHugh-Nagumo type, Math. Nachr. 251 (2003), 64-87.

O. REY, The role of the Green’s function in a non-linear elliptic equation involving the
critical Sobolev exponent, J. Funct. Anal. 89 (1990), 1-52.

G. SwWEERS — W. Troy, On the bifurcation curve for an elliptic system of FitzHugh-Nagumo
type, Physica D: Nonlinear Phenomena 177 (2003), 1-22.

School of Mathematics and Statistics
University of Sydney

NSW 2006, Australia

normd @maths.usyd.edu.au

shusen @maths.usyd.edu.au



