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Peak Solutions for an Elliptic System of
FitzHugh-Nagumo Type

EDWARD NORMAN DANCER – SHUSEN YAN

Abstract. The aim of this paper is to study the existence of various types of peak
solutions for an elliptic system of FitzHugh-Nagumo type. We prove that the
system has a single peak solution, which concentrates near the boundary of the
domain. Under some extra assumptions, we also construct multi-peak solutions
with all the peaks near the boundary, and a single peak solution with its peak near
an interior point of the domain.

Mathematics Subject Classification (2000): 35J50 (primary), 93C15 (sec-
ondary).

1. – Introduction

In this paper we consider the following problem:

(1.1)




−ε2�u = f (u) − v, in � ,

−�v + γ v = δu, in � ,

u = v = 0, on ∂� ,

where � is a bounded domain in R
N , ε is a parameter, γ and δ are nonnegative

constants, f (t) = t (t − a)(1 − t), a ∈ (0, 1
2 ).

Solutions of (1.1) are the steady state solutions of the following reaction
diffusion systems of the FitzHugh-Nagumo type [8], [13]:

ut = ε2�u + f (u) − v, vt = �v − γ v + δu ,

which is a simplification of the original Hodgkin-Huxley nerve conduction equa-
tions [10]. This system can also be used as a model for other problems arising
from the applied areas. The readers can find more references in [22] for back-
ground on the systems of FitzHugh-Nagumo type. Here we mention some early
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results obtained by Klaasen and Troy [12], Klaasen and Mitidieri [11], and De-
Figueiredo and Mitidieri [7]. Some recent results on these systems can be found
in [17], [18], [19], [20], [6], [22].

For each u ∈ H 1
0 (�), let Gγ u be the unique solution of the following

problem: { −�v + γ v = u, in � ,

v = 0, on ∂� .

Then we see (1.1) is equivalent to the following nonlocal elliptic problem:

(1.2)
{ −ε2�u + δGγ u = f (u), in � ,

u ∈ H 1
0 (�) .

The energy associated with (1.2) is

(1.3) I (u) = 1

2

∫
�

(ε2|Du|2 + δuGγ u) −
∫

�

F(u), u ∈ H 1
0 (�) .

It is easy to see from
∫
� uGγ u = ∫

�(|DGγ u|2 + γ |Gγ u|2) ≥ 0, that u = 0
is a local minimizer of I (u) in H 1

0 (�). On the other hand, we can check
easily that there are 0 < τ1 < τ2 such that f (τ1) < 0, f (τ2) > 0, f ′(t) < 0
if t ∈ (−∞, τ1) ∪ (τ2, +∞), and f ′(t) > 0 if t ∈ (τ1, τ2). Besides, f (t) has
exactly three zero points 0, a, 1, and

∫ 1

0
f (s) ds > 0 ,

because a ∈ (0, 1
2 ). Moreover, f (t) → +∞ as t → −∞, f (t) → −∞ as

t → +∞.
Suppose that δ = 0. Then (1.1) becomes an equation. It follows from [2]

that the global minimizer of (1.3) converges to 1 uniformly on any compact
subset of �. On the other hand, it is proved in [14] that, if � is convex, the
mountain pass type solution is a single peak solution with the peak locating near
the center of the domain. Moreover, if � is a ball [9], or more generally if �

has certain kind of symmetry [3], we know that (1.1) has exactly two nontrivial
solutions for ε > 0 small. So in this special case, we know at least for the
domains with some kind of symmetry that the solution set is quite simple and
we also know the profile of these solutions.

Suppose that δ > 0. We prove in [6] that if δ > 0 is larger than some
constant, then the global minimizer oscillates on a set of positive measure.
Besides, I (u) also has a nontrivial local minimizer. Thus, at least for δ > 0 not
too small, the solution set for the system is quite different from the equation
case and the profile of the solutions for the system is much more complicated.
On the other hand, if � is a ball and δ > 0 is small enough, we may ask
whether the solution set for (1.1) and the profile of these solutions are similar
to the case δ = 0.
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In this paper, for any fixed δ > 0, we will construct peak solutions for (1.2)
for ε > 0 small. The result we obtain in this paper presents a striking contrast
to the result in [14] for the single equation case because the mountain pass
type solution for the system is a single peak solution with the peak close to the
boundary. Moreover, if � is a ball, we will show that (1.2) also has a k-peak
solution for any positive integer k. So we see that for any δ > 0, the profile of
some solutions is quite different from the case δ = 0, and the number of the
solutions in the system case is larger than that in the case δ = 0.

Before we state our results, we give some notation.
Let U (y) = U (|y|) be the unique positive solution of the following problem:

(1.4)
{ −�U = f (U ), in R

N ,

U ∈ H 1(RN ) .

Note also that this solution is nondegenerate. See for example [16]. Denote
Uε,x(y) = U (

y−x
ε

).
For any u ∈ H 1(�), let Pε,�u be the solution of

{ −ε2�Pε,�u + m2 Pε,�u = f (u) + m2u, in � ,

Pε,�u ∈ H 1
0 (�) ,

where m = √− f ′(0).
We have:

Theorem 1.1. Suppose that δ > 0. There is an ε0 > 0, such that for each
ε ∈ (0, ε0], (1.2) has a solution uε of the form:

uε = Pε,�Uε,xε + ωε ,

where xε ∈ � satisfies d(xε, ∂�) → 0, d(xε,∂�)
ε

→ +∞, as ε → 0, and ωε satisfies

∫
�

(ε2|Dωε|2 + ω2
ε) = o(εN ) .

It is natural to ask which point on the boundary xε will converge to.
This problem is quite technical because the contribution to the energy from the
boundary is hardly seen due to the fact d(xε,∂�)

ε
→ +∞ as ε → 0.

The solution obtained in Theorem 1.1 does not have least energy among all
the nontrivial solutions of (1.1) because (1.1) has a nontrivial global minimizer.
From the construction of the solution in Theorem 1.1, we see that this solution
has least energy among all the possible solutions of the form Pε,�Uε,xε + ωε.
On the other hand, if we replace f (u) by the typical superlinear nonlinearity
u p−1 − u, p ∈ (2, 2N/(N − 2)), then it is standard to prove that the mountain
pass solution has least energy among all the nontrivial solutions, and using the
estimates in this paper, we can also show that this mountain pass solution has
the form Pε,�Uε,xε + ωε with d(xε, ∂�) → 0 and d(xε,∂�)

ε
→ +∞ as ε → 0.
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If ∂� has several disjoint connected components, using the same method
as in the proof of Theorem 1.1, we can prove (1.1) also has multipeak solutions
for ε > 0 small. See Remark 3.4.

Next, we show the existence of multipeak solutions for (1.2) if � has
certain kind of symmetry. Let O(N ) be the set of all orthogonal transformation
in R

N . Write R
N = R

Ñ ⊕R
N−Ñ , where Ñ is an integer satisfying 1 ≤ Ñ ≤ N .

For any x ∈ R
N , denote x = (x ′, x ′′), x ′ ∈ R

Ñ , x ′′ ∈ R
N−Ñ . We assume that �

has the symmetry defined as follows:

(�1) There are integer 1 ≤ Ñ ≤ N , and a finite cyclic subgroup G of O(N )

generated by g, that is, G = {g, g2, . . . , gk = id} for some integer k > 1,
where g ∈ O(N ) satisfies gx = x for any x = (0, x ′′) ∈ R

N , and gi x 
= x ,
∀ x = (x ′, 0) ∈ ∂�, i = 1, . . . , k − 1, such that G� = �;

(�2) If (x ′, xÑ+1, . . . , xi , . . . , xN ) ∈ �, then (x ′, xÑ+1, . . . , −xi , . . . , xN ) ∈ �.

Theorem 1.2. Suppose that δ > 0. Assume that there are integer 1 ≤ Ñ ≤ N
and a group G, such that (�1) and (�2) hold. Then there is an ε0 > 0, such that
for each ε ∈ (0, ε0], (1.2) has a solution uε of the form:

uε,G =
k∑

i=1

Pε,�Uε,gi xε
+ ωε,G ,

where xε = (x ′
ε, 0) ∈ � satisfies d(xε, ∂�) → 0, d(xε,∂�)

ε
→ +∞, as ε → 0, ωε,G

satisfies ωε,G(gi y) = ωε,G(y), i = 1, . . . , k − 1, ωε,G(y′, −y′′) = ωε,G(y) and

∫
�

(ε2|Dωε,G |2 + ω2
ε,G) = o(εN ) .

Example 1.3. Suppose that � is a ball in R
N . Let Ñ = 2. For any integer

k ≥ 2, we may choose g being the rotation of angle 2π/k in R
2. It is easy

to see that gk = id. So it follows from Theorem 1.2 that for any fixed δ > 0,
(1.2) has a k-peak solution if ε > 0 is small enough.

Example 1.4. Suppose that � satisfies the following condition:

(x1, . . . , −xi , . . . , xN ) ∈ � if (x1, . . . , xi , . . . , xN ) ∈ �, ∀ i = 1, . . . , N .

We may take Ñ =1 and g ∈ O(RN ) with g(x1, x2, . . . , xN )=(−x1, x2, . . . , xN ).
By Theorem 1.2, we see that (1.2) has a double peak solution.

From the argument, we see that Theorems 1.1 and 1.2 hold for more
general nonlinearities f (t) if f ′(0) < 0, and the corresponding problem (1.4)
has a nondegenerate positive solution. Besides, Theorem 1.2 remains true for
more general finite group, which fixes R

N−Ñ and acts freely on ∂� ∩ R
Ñ .

Finally, we study the existence of solution for (1.1), which has a peak at
some interior point of the domain.
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Let I−1 = (−∞, τ1), I0 = (τ1, τ2) and I1 = (τ2, +∞). Let u = h+(v),
u = h0(v) and u = h−(v) be the inverse function of v = f (u) restricted to I1,
I0 and I−1 respectively.

We extend h+(v) continuously into v ∈ ( f (τ2), +∞) in such a way that
h+(v) is decreasing. Then since h+(v) is decreasing, it is easy to see that the
following problem has a unique solution vδ:

(1.5)
{ −�v + γ v = δh+(v), in � ,

v ∈ H 1
0 (�) .

Moreover, by using the maximum principle, we can deduce easily that vδ1 < vδ2
if δ1 < δ2.

By the comparison theorem, it is easy to see that maxx∈� vδ(x) → +∞ as
δ → +∞. So, there is a unique δ0 > 0, such that

max
x∈�

vδ0(x) = α0 ,

where α0 > 0 is the constant such that
∫ h+(α0)

h−(α0) ( f (s) − α0) ds = 0. Let us

emphasize here that from the definition of α0, we have
∫ h+(α)

h−(α) ( f (s)−α) ds > 0

if α < α0, and
∫ h+(α)

h−(α) ( f (s) − α) ds < 0 if α > α0.
In [6], we proved the following existence of a nontrivial local minimizer

of I (u).

Theorem 1.5. Let δ̄ > δ0 be the number such that maxx∈� vδ̄(x) = f (τ2),

where vδ̄ is the solution of (1.5) with δ = δ̄. Suppose that δ ∈ (δ0, δ̄). Then there is
an ε0 > 0, such that for ε ∈ (0, ε0], (1.1) has a solution (ūε, v̄ε), satisfying

(i) v̄ε → v̄ in C1,σ (�), for any σ ∈ (0, 1), where v̄ is the solution of (1.5);
(ii) ūε → h+(v̄) uniformly in any compact subset of �;

(iii) ūε is a local minimizer of Iε(u).

Our next result shows we can attach downward a peak to this nontrivial
local minimizer to obtain a new solution for (1.2). Let b = maxx∈� v̄(x).
Consider

(1.6)
{ −�Ub = qb(Ub), in R

N ,

Ub ∈ H 1(RN ) ,

where qb(t) = t (t − (h+(b) − h0(b)))((h+(b) − h−(b)) − t). Since δ ∈ (δ0, δ̄),
we know that b ∈ (α0, f (τ2)). So, noting that f (t) − b = (t − h−(b))(t −
h0(b))(h+(b) − t) and

∫ h+(b)

h−(b) ( f (s) − b) ds < 0 if b > α0, we see easily that
(using τ = h+(b) − t),

∫ h+(b)−h−(b)

0
qb(s) ds = −

∫ h+(b)

h−(b)

( f (τ ) − b) dτ > 0 .
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As a result, (1.6) has a unique solution which is also nondegenerate. See for
example [16].

Let Ub(x) = Ub(|x |) be the solution (1.6) and let Uε,x,b(y) = Ub(
y−x
ε

).
Denote m̄2 = −q ′

b(0). For any u ∈ H 1(�), let P̄ε,�u be the solution of{ −ε2�P̄ε,�u + m̄2 P̄ε,�u = qb(u) + m̄2u, in � ,

P̄ε,�u ∈ H 1
0 (�) .

Then we have:

Theorem 1.6. Suppose that δ ∈ (δ0, δ̄). There is an ε0 > 0, such that for each
ε ∈ (0, ε0], (1.2) has a solution ũε of the form

ũε = ūε − P̄ε,�Uε,xε,b + ωε ,

where ūε is the nontrivial local minimum obtained in Theorem 1.5, xε ∈ � satisfies
xε → x0 ∈ �, with v̄(x0) = maxx∈� v̄(x), as ε → 0, and∫

�

(ε2|Dωε|2 + ω2
ε) = o(εN ) .

This paper is arranged as follows. In Section 2, we estimate Gγ Uε,x . As
we will see that the main contributions to the energy I (Pε,�Uε,x) are from
the term

∫
� Uε,x Gγ Uε,x as well as the geometry of the domain. Thus the

estimates in Section 2 play a very important role in the proof of Theorem 1.1.
Theorems 1.1 and 1.2 and Theorem 1.6 are proved in Section 3 and Section 4
and Section 5 respectively by using the reduction method.

2. – Preliminaries

In this section we will estimate Gγ Uε,x . We need to treat the case N ≥ 3,
the case N = 2 and the case N = 1 differently due to the different behaviours
of the corresponding fundamental solutions.

Suppose that N ≥ 3. Let Wε be the solution of the following problem:

(2.1)
{ −�w + ε2γw = U, in R

N ,

w(|x |) → 0 as |x | → +∞ .

Lemma 2.1. If N ≥ 3, we have

Gγ Uε,x(y) = ε2Wε

(
y − x

ε

)
− εN B H(x, y)

+ O

(
εN+2

d(x, ∂�)N
+ εN e−(m−θ)d(x,∂�)/ε

d(x, ∂�)N−2

)
,

where θ > 0 is any small constant, B = ∫
RN U, H(y, x) is the regular part of the

Green function of the operator −� + γ with Dirichlet boundary condition.
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Proof. Let S(y, x) be the solution of

{ −�S + γ S = δx , in R
N ,

S(y, x) → 0, as |y| → +∞ ,

where δx is the Dirac measure. Then

Gγ Uε,x(y) =
∫

�

(S(z, y) − H(z, y))Uε,x(z) dz .

Noting that |Dl H(z, y)| ≤ C
d(z,∂�)N−2+l , l = 0, 1, 2, using the mean value theo-

rem, we have∫
�

H(z, y)Uε,x(z) dz

=
∫

B(1−θ)d(x,∂�)(x)

H(z, y)Uε,x(z) dz +
∫

�\B(1−θ)d(x,∂�)(x)

H(z, y)Uε,x(z) dz

=
∫

B(1−θ)d(x,∂�)(x)

H(x, y)Uε,x(z) dz

+ 1

2

∫
B(1−θ)d(x,∂�)(x)

〈D2 H(ξ(z), y)(z − x), z − x〉Uε,x(z) dz

+ O

(
εN e−(m−θ)d(x,∂�)/ε

d(x, ∂�)N−2

)

= εN H(x, y)

∫
RN

U (z) + O

(
εN+2

d(x, ∂�)N
+ εN e−(m−θ)d(x,∂�)/ε

d(x, ∂�)N−2

)
.

On the other hand,∫
�

S(z, y)Uε,x(z) dz = εN
∫

�ε,x

S(εz + x, y)U (z) dz

= εN
∫

RN
S(εz + x, y)U (z) dz + εN O(e−(m−θ)d(x,∂�)/ε) .

But εN−2S(εz + x, y) is the solution of

{ −�w + ε2γw = δ(y−x)/ε, in R
N ,

w(y) → 0, as |y| → +∞ .

As a result,

εN−2
∫

RN
S(εz + x, y)U (z) dz = Wε

(
y − x

ε

)

and Wε is the solution of (2.1). Thus the result follows.
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To obtain an expansion for Gγ Uε,x(y) in the case N = 2, we need to
introduce some notation first.

For any x ∈ �, let S̄(y, x) be the solution of

(2.2)

{ −�u + γ u = γ

2π
ln

1

|y − x | , in � ,

u = 0, on ∂� .

By the L p estimate of the elliptic equation, we know that there is a C > 0,
independent of x ∈ �, such that ‖S̄‖C1(�) ≤ C . Let H̄(y, x) be the solution of

(2.3)

{ −�u + γ u = 0, in � ,

u = 1

2π
ln

1

|y − x | , on ∂� .

Then, we see that 1
2π

ln 1
|y−x | − H̃(y, x), where H̃(y, x) = S̄(y, x) + H̄(y, x),

satisfies

(2.4)
{ −�u + γ u = δx , in � ,

u = 0, on ∂� .

Lemma 2.2. If N = 2, then

Gγ Uε,x(y) = 1

2π
Bε2 ln

1

ε
+ ε2W̃

(
y − x

ε

)

− ε2 B H̃(y, x) + ε2 O

(
ε2

d(x, ∂�)2
+ e−(m−θ)d(x,∂�)/ε ln

1

d(x, ∂�)

)
,

where B = ∫
R2 U, W̃ (y) = 1

2π

∫
R2 ln 1

|z−y|U (z) dz.

Proof. We have

(2.5) Gγ Uε,x(y) =
∫

�

(
1

2π
ln

1

|z − y| − H̃(z, y)

)
Uε,x(z) dz .

Similarly to the proof of Lemma 2.1, we have∫
�

H̃(z, y)Uε,x(z) dz

= ε2 H̃(x, y)

∫
R2

U + ε2 O

(
ε2

d(x, ∂�)2
+ e−(m−θ)d(x,∂�)/ε ln

1

d(x, ∂�)

)
.

But∫
�

ln
1

|z − y|Uε,x(z) dz = ε2
∫

�ε,x

(
ln

1

ε
+ ln

1

|z − y−x
ε

|

)
U (z)

= ε2 ln
1

ε

∫
R2

U + ε2
∫

R2
ln

1

|z − y−x
ε

|U (z) dz + ε2 ln
1

ε
O(e−(m−θ)d(x,∂�)/ε)

= Bε2 ln
1

ε
+ ε2W̃

(
y − x

ε

)
+ ε2 ln

1

ε
O(e−(m−θ)d(x,∂�)/ε) .

Thus the result follows.
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Now we deal with the case N = 1.

Lemma 2.3. Suppose that N = 1. Then

Gγ Uε,x(y) = BGγ (x, y)ε + O(ε2) ,

where Gγ (x, y) is the Green function of −� + γ subject to the Dirichlet boundary
condition.

Proof. Since Gγ (z, y) is Lipschitz continuous, we have

Gγ Uε,x(y) =
∫

�

Gγ (z, y)Uε,x(z) dz = Gγ (x, y)

∫
�

Uε,x(z) dz + O(ε2)

= BGγ (x, y)ε + O(ε2) .

Let

τε,x =
∫

�

h(Uε,x)(Uε,x − Pε,�Uε,x) ,

where h(t) = f (t) + mt . Then, from [4], [5], we know that for any small
η > 0, there are c2 ≥ c1 > 0, such that

c1ε
N e−m(2+η)d(x,∂�)/ε ≤ τε,x ≤ c2ε

N e−m(2−η)d(x,∂�)/ε .

We have:

Proposition 2.4. If N ≥ 3, we have

(2.6)

I (Pε,�Uε,x) = εN A + δAεε
N+2 + τε,x − δ

2
B2εN+2εN−2 H(x, x)

+ εN O

(
e−(2+σ)md(x,∂�)/ε + εN+2

d(x, ∂�)N
+ εN e−(m−θ)d(x,∂�)/ε

d(x, ∂�)N−2

)
,

where A = 1
2

∫
RN |DU |2 − ∫

RN F(U ), Aε = 1
2

∫
RN U Wε, σ > 0 is a constant.

If N = 2, we have

(2.7)

I (Pε,�Uε,x) = ε2 A + δ

4π
Bε4 ln

1

ε
+ δ Ãε4 + τε,x − δ

2
B2ε4 H̃(x, x)

+ ε2 O

(
e−(2+σ)md(x,∂�)/ε + ε4

d(x,∂�)2
+ ε2e−(m−θ)d(x,∂�)/ε ln

1

d(x,∂�)

)
,

where Ã = 1
2

∫
R2 U W̃ .

If N = 1, we have

(2.8)
I (Pε,�Uε,x) = εA + 1

2
δB2Gγ (x, x)ε2 + τε,x

+ εO(e−(2+σ)md(x,∂�)/ε + ε1+σ ) .
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Proof. We know that [4], [5]

(2.9)
1

2

∫
�

ε2|D Pε,�Uε,x |2−
∫

�

F(Pε,�Uε,x)=εN A+τε,x +εN O(e−(2+σ)md(x,∂�)/ε).

So it remains to estimate

I =
∫

�

Pε,�Uε,x Gγ Pε,�Uε,x .

We have

(2.10)

I =
∫

�

Uε,x Gγ Uε,x + 2
∫

�

(Pε,�Uε,x − Uε,x)Gγ Uε,x

+
∫

�

(Pε,�Uε,x − Uε,x)Gγ (Pε,�Uε,x − Uε,x)

=: I1 + I2 + I3 .

On the other hand, from Lemmas 2.1 and 2.2, we see that for N ≥ 2,

(2.11)

|I2| ≤ Cε2 ln
1

ε

∫
�ε,x

|P�ε,x U − U |

≤ ε2 ln
1

ε
|P�ε,x U − U |1−θ

∞

∫
�ε,x

|P�ε,x U − U |θ

≤ ε2 ln
1

ε
|P�ε,x U − U |1−θ

∞

∫
�ε,x

|U |θ ≤ CεN+2 ln
1

ε
e−(1−θ)md(x,∂�)/ε

= εN O(ε2+σ + e−(2+σ)md(x,∂�)/ε),

and

(2.12) |I3| ≤
∫

�

|Pε,�Uε,x − Uε,x |Gγ Uε,x = εN O(ε2+σ + e−(2+σ)md(x,∂�)/ε) .

As for the estimate of I1, using Lemma 2.1, we obtain that if N ≥ 3,

(2.13)

I1 = ε2
∫

�

Uε,x Wε

(
y − x

ε

)

− εN
∫

�

Uε,x

(
B H(y, x) + O

(
ε2

d(x, ∂�)N
+ e−(m−θ)d(x,∂�)/ε

d(x, ∂�)N−2

))

= εN+2
∫

�ε,x

U Wε

− ε2N

(
B H(x, x)

∫
RN

U + O

(
ε2

d(x, ∂�)N
+ e−(m−θ)d(x,∂�)/ε

d(x, ∂�)N−2

))

= εN+2
∫

RN
U Wε − εN+2 B2 H(x, x)εN−2

+ ε2N O

(
ε2

d(x, ∂�)N
+ e−(m−θ)d(x,∂�)/ε

d(x, ∂�)N−2

)
.
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So the (2.6) follows from (2.9)–(2.13).
If N = 2, using Lemma 2.2, we have

(2.14)

I1 = 1

2π
Bε2 ln

1

ε

∫
�

Uε,x + ε2
∫

�

Uε,x W̃
(

y − x

ε

)

− ε2
∫

�

Uε,x

(
B H̃(y,x)+O

(
ε2

d(x,∂�)2
+ e−(m−θ)d(x,∂�)/ε ln

1

d(x,∂�)

))

= 1

2π
Bε4 ln

1

ε

∫
�ε,x

U + ε4
∫

�ε,x

U W̃

− ε4

(
B H̃(x,x)

∫
R2

U +O

(
ε2

d(x, ∂�)2
+ e−(m−θ)d(x,∂�)/ε ln

1

d(x, ∂�)

))

= 1

2π
Bε4 ln

1

ε

∫
R2

U + ε4
∫

R2
U W̃ − ε4 B2 H̃(x, x)

+ ε4 O

(
ε2

d(x, ∂�)2
+ e−(m−θ)d(x,∂�)/ε ln

1

d(x, ∂�)

)
.

So the (2.7) follows from (2.9)–(2.12) and (2.14).
If N = 1, using Lemma 2.3, we have

I1 = εBGγ (x, x)

∫
�

Uε,x + O(ε3) = ε2 BGγ (x, x)

∫
R1

U + O(ε3) ,

and

|I2|, |I3| ≤ Cε

∫
�

|Pε,�Uε,x − Uε,x | = εO(εe−m(1−θ)d(x,∂�)) .

Thus the result follows.

3. – Solution with peak near the boundary

In this section, we will use the reduction argument to prove Theorem 1.1.
The functional I (u) may not be well defined in H 1

0 (�). But it is easy to
see that there is a constant K > 0, such that for any solution (uε, vε) of (1.1),
we have |uε|L∞(�), |vε|L∞(�) ≤ K . Thus, we can truncate f (t) for |t | ≥ K so
that the new function is bounded in C2(R1). For simplicity, we still use f (t)
to denote this new function.

Let

〈u, v〉ε =
∫

�

(ε2 Du Dv + m2uv) ,

‖u‖ε = 〈u, u〉1/2
ε . Denote

Eε,x =
{

ω : ω ∈ H 1
0 (�),

〈
∂ Pε,�Uε,x

∂xi
, ω

〉
ε

= 0, i = 1, . . . , N
}

.

Let Dε,R = {x : x ∈ �, d(x, ∂�) ≥ εR}, where R > 0 is a large constant.
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Proposition 3.1. There is an ε0 > 0, such that for each ε ∈ (0, ε0], there is a
C1-map ωε,x : Dε,R → H 1

0 (�) satisfying, ωε,x ∈ Eε,x ,

(3.1)
〈

∂ I (Pε,�Uε,x + ωε,x)

∂ω
, η

〉
ε

= 0, ∀ η ∈ Eε,x .

Moreover, if N ≥ 3,

‖ωε,x‖ε = εN/2 O
(

ε1+σ + e−(1+σ)m d(x,∂�)
ε

)
,

where σ > 0 is some constant.
If N = 2,

‖ωε,x‖ε = εO
(

ε ln ln
1

ε
+ e−(1+σ)m d(x,∂�)

ε

)
.

If N = 1,

‖ωε,x‖ε = ε1/2 O
(

ε1/2d(x, ∂�) + e−(1+σ)m d(x,∂�)
ε

)
.

Proof. Let h(t) = f (t)+m2t . As in [1], [21], we expand I (Pε,�Uε,x +ω),
ω ∈ Eε,x , as follows:

(3.2) I (Pε,�Uε,x + ω) = I (Pε,�Uε,x) + 〈lε, ω〉ε + 1

2
〈Lεω, ω〉ε + Rε(ω) ,

where lε ∈ Eε,x satisfying

〈lε, ω〉ε = δ

∫
�

ωGγ Pε,�Uε,x +
∫

�

(h(Uε,x) − h(Pε,�Uε,x))ω ,

Lε is a linear operator from Eε,x to Eε,x , satisfying

〈Lεω, ω〉ε =
∫

�

(ε2|Dω|2 + m2ω2) + δ

∫
�

ωGγ ω −
∫

�

h′(Pε,�Uε,x)ω
2 ,

and Rε(ω) satisfies

Rε(ω) = εN O(ε−N p/2‖ω‖p
ε ) ,

R′
ε(ω) = εN/2 O(ε−N (p−1)/2‖ω‖p−1

ε ) ,

R′′
ε (ω) = O(ε−N (p−2)/2‖ω‖p−2

ε ) ,

for some p ∈ (2, 2N/(N − 2)). Thus, (3.1) is equivalent to

(3.3) lε + Lεω + R′(ω) = 0 .

By Lemma 3.2 below, we see that Lε is invertible in Eε,x . So it follows from
the implicit function theorem that (3.3) has a solution ωε ∈ Eε,x , satisfying

‖ωε‖ε ≤ C‖lε‖ε .

Thus the estimate for ‖ωε‖ε follows from Lemma 3.3.
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Lemma 3.2. There are ε0 > 0, τ > 0 and R0 > 0, such that for ε ∈ (0, ε0],
x ∈ Dε,R with R ≥ R0, we have

‖Lεω‖ ≥ τ‖ω‖ε, ∀ ω ∈ Eε,x .

Proof. We argue by contradiction. Suppose that there are εj → 0, xj ∈ �

with
d(xj ,∂�)

εj
→ +∞, ωj ∈ Eεj ,xj , such that

(3.4) ‖Lεj ωj‖εj ≤ o(1)‖ω‖εj .

We may assume that ‖ωj‖εj = ε
N/2
j .

Let ω̃j (y) = ωj (εy + xj ). Then it follows from (3.4) that

(3.5)
∫

�εj ,xj

(Dω̃j Dξ +m2ω̃jξ)+δ

∫
�εj ,xj

ξ G̃γ ω̃j −
∫

�εj ,xj

h′(P�εj ,xj
U )ω̃jξ = o(1)‖ξ‖

for any ξ ∈ Ẽεj = {ξ ∈ H 1
0 (�εj ,xj ) :

∫
�εj ,xj

(D P�εj ,xj
U Dξ +m2 P�εj ,xj

Uξ) = 0},
where �εj ,xj = ε−1

j (� − xj ), P�εj ,xj
U ∈ H 1

0 (�εj ,xj ) satisfies

−�P�εj ,xj
U + m2 P�εj ,xj

U = h(U ) ,

and G̃γ ω̃j (y) = Gγ ωj (εy + xj ) ∈ H 1
0 (�εj ,xj ).

Since ω̃j is bounded in H 1(RN ), we may assume that there is an ω ∈
H 1(RN ), such that

ω̃j ⇀ ω, weakly in H 1(RN ) .

Note that

(3.6) −�Gγ ωj + γ Gγ ωj = ωj .

From (3.6), we see ∫
�

|DGγ ωj |2 ≤ C
∫

�

ω2
j ≤ CεN

j ,

which implies that
∫
�εj ,xj

|DG̃γ ω̃j |2 ≤ Cε2
j → 0 as j → +∞. Thus we have

G̃γ ω̃j → 0 in L2
loc(R

N ) as j → +∞ if N ≥ 3. On the other hand, if N = 1, 2,
it follows from (3.6) that

|Gγ ωj |L∞(�) ≤ C |Gγ ωj |H2(�) ≤ C ′|ωj |L2(�) → 0

as εj → 0. Thus we also have G̃γ ω̃j → 0 in L2
loc(R

N ) as j → +∞ if N = 1, 2.
As a result, we deduce from (3.5) that ω satisfies

(3.7)
∫

RN
(DωDξ + m2ωξ) −

∫
RN

h′(U )ωξ = 0 ,
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for all ξ ∈ E = {ξ ∈ H 1(RN ) :
∫

RN (DU Dξ + m2Uξ) = 0}. Since U is
nondegenerate, we know that ω = 0. Thus, noting that h′(P�εj ,xj

Uεj ,xj ) is
small in � \ Bεj R(xj ) if R > 0 is large, we see

∫
�

(ε2
j |Dωj |2 + m2ω2

j ) + δ

∫
�

ωj G̃γ ωj −
∫

�

h′(P�εj ,xj
U )ω2

j

≥
∫

�

(ε2
j |Dωj |2 + m2ω2

j ) −
∫

�

h′(P�εj ,xj
U )ω2

j

=
∫

�

(ε2
j |Dωj |2 + m2ω2

j ) −
∫

Bεj R (xj )
h′(P�εj ,xj

U )ω2
j −

∫
�\Bεj R (xj )

h′(P�εj ,xj
U )ω2

j

=
∫

�

(ε2
j |Dωj |2 + m2ω2

j ) − o(εN
j ) − o(1)

∫
�

ω2
j ≥ c0ε

N
j .

This is a contradiction to (3.4).

Lemma 3.3. Assume that x ∈ Dε,R, where R > 0 is a large constant. We have

(3.8)
∣∣∣∣
∫

�

(h(Uε,x) − h(Pε,xUε,x))ω

∣∣∣∣ = εN/2 O(e−(1+σ)d(x,∂�)/ε)‖ω‖ε .

If N ≥ 3,

(3.9)
∣∣∣∣
∫

�

ωGγ Uε,x

∣∣∣∣ = εN/2 O(ε1+σ )‖ω‖ε ,

where σ > 0 is some constant. If N = 2,

(3.10)
∣∣∣∣
∫

�

ωGγ Uε,x

∣∣∣∣ = ε2 O
(

ln ln
1

ε

)
‖ω‖ε .

If N = 1,

(3.11)
∣∣∣∣
∫

�

ωGγ Uε,x

∣∣∣∣ = εO(d(x, ∂�) + ε)‖ω‖ε .

Proof. The estimate in (3.8) is known. See for example [4], [5], [14], [15].
To prove (3.9), we note that (Gγ Uε,x)(εy + x) = ε2vε(y) and vε satisfies

−�vε + ε2γ vε = U, vε ∈ H 1
0 (�ε,x) .

Let v̄ be the solution of

−�v = U, v ∈ H 1(RN ) .
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Then v̄(y) = ∫
RN

1
|y−x |N−2 U (x) dx . Thus v̄(y) ≤ C

1+|y|N−2 , since U (x) decays
exponentially. By the comparison theorem, we have

0 < vε(y) < v̄(y) .

Thus, we have the following estimate for vε:

vε(y) ≤ C

1 + |y|N−2
, ∀ y ∈ R

N .

As a result, for any θ > 0, if N = 3, 4,

∣∣∣∣
∫

�

ωGγ Uε,x

∣∣∣∣
≤ C

(∫
�

|Gγ Uε,x |(N+θ)/(N−2)

)(N−2)/(N+θ) (∫
�

|ω|(N+θ)/(2+θ)

)(2+θ)/(N+θ)

≤ ε2+N (N−2)/(N+θ)‖ω‖ε ≤ ε1+σ+N/2‖ω‖ε ,

because N+θ
2+θ

≤ 2 if N = 3, 4.
If N ≥ 5, then

∣∣∣∣
∫

�

ωGγ Uε,x

∣∣∣∣ ≤ C
(∫

�

|Gγ Uε,x |2
)1/2 (∫

�

|ω|2
)1/2

≤ ε2+N/2‖ω‖ε .

Now, we prove (3.10).
We have

(3.12)
∣∣∣∣
∫

�

ωGγ Uε,x

∣∣∣∣ ≤
∫

B
1/ ln 1

ε
(x)

Gγ Uε,x |ω| +
∫

�\B
1/ ln 1

ε
(x)

Gγ Uε,x |ω| .

It follows from Lemma 2.2 that |Gγ Uε,x(y)| ≤ Cε2 ln 1
ε
, ∀ x ∈ Dε,R . Thus,

(3.13)
∫

B
1/ ln 1

ε
(x)

Gγ Uε,x |ω| ≤ Cε2 ln
1

ε

∫
B

1/ ln 1
ε

(x)

|ω| ≤ Cε2‖ω‖ε .
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On the other hand, from (2.5), we see that for |y − x | ≥ 1
ln 1

ε

, we have

(3.14)

Gγ Uε,x(y) = 1

2π

∫
�

ln
1

|z − y|Uε,x(z) dz + O(ε2|H̃(y, x)| + ε2+σ )

= 1

2π

∫
B|y−x |/2(x)

ln
1

|z − y|Uε,x(z) dz

+ 1

2π

∫
�\B|y−x |/2(x)

ln
1

|z − y|Uε,x(z) dz + O
(

ε2 ln ln
1

ε

)

= 1

2π

∫
B|y−x |/2(x)

ln
1

|z − y|Uε,x(z) dz

+ O
(

e−(m−θ) ln 1
ε /(2ε) + ε2 ln ln

1

ε

)

≤ ln
(

2 ln
1

ε

)
1

2π

∫
B|y−x |/2(x)

Uε,x(z) dz + O
(

ε2 ln ln
1

ε

)

= O
(

ε2 ln ln
1

ε

)
,

since |H̃(y, x)| ≤ C ln 1
|y−x | .

Using (3.14), we obtain

(3.15)
∫

�\B
1/ ln 1

ε
(x)

Gγ Uε,x |ω| = O
(

ε2 ln ln
1

ε

)
‖ω‖ε .

Thus, (3.10) follows from (3.12), (3.13) and (3.15).
Finally, we prove (3.11). Using Lemma 2.3, we have

(3.16)

∣∣∣∣
∫

�

ωGγ Uε,x

∣∣∣∣ = O
(

ε

∫
�

|ω|Gγ (x, y) dy + ε2‖ω‖ε

)

= O

(
ε

(∫
�

G2
γ (x, y) dy

)1/2

+ ε2

)
‖ω‖ε .

Without loss of generality, we assume � = [0, 1].
Suppose that γ = 0. Then

(3.17) Gγ (x, y) =
{

(1 − x)y, y ∈ [0, x] ,

x(1 − y), y ∈ [x, 1] .

Thus,

(3.18)
∫ 1

0
G2

γ (x, y) dy = 1

3
x2(1 − x)2 = O(d2(x, ∂�)) .
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So (3.11) follows from (3.16) and (3.18).
Suppose that γ > 0. Then

(3.19) Gγ (x, y) =




e
√

γ (1−x) − e−√
γ (1−x)

2
√

γ (e
√

γ − e−√
γ )

(e
√

γ y − e−√
γ y), y ∈ [0, x] ,

e
√

γ (1−x) − e−√
γ (1−x)

2
√

γ (e
√

γ − e−√
γ )

(e
√

γ y − e−√
γ y)

− 1

2
√

γ
(e

√
γ (y−x) − e−√

γ (y−x)), y ∈ [x, 1] .

So, if x ∈ [ 1
2 , 1], we have

(3.20)

∫ 1

0
G2

γ (x, y) dy =
∫ x

0
G2

γ (x, y) dy +
∫ 1

x
G2

γ (x, y) dy

= O(|1 − x |2) + O
(∫ 1

x
|e√

γ (y−x) − e−√
γ (y−x)|2

)
= O(|1 − x |2) + O(|1 − x |3) = O(d2(x, ∂�)) .

If x ∈ [0, 1
2 ], then

(3.21)

∫ 1

0
G2

γ (x, y) dy =
∫ x

0
G2

γ (x, y) dy +
∫ 1

x
G2

γ (x, y) dy

= O(|x |3) + O
(∫ 1

x
|x |2 dy

)
= O(|x |2) = O(d2(x, ∂�)) ,

since G(0, y) = 0. Thus (3.11) follows.

Proof of Theorem 1.1. Let

Dε =
{

x : x ∈ �, d(x, ∂�) ∈
[

c0ε ln
1

ε
, ε1−η

]}
,

where c0 and η are two fixed small constants.
Consider

(3.22) inf
x∈Dε

I (Pε,�Uε,x + ωε,x) .

Let xε ∈ Dε be a minimum point of I (Pε,�Uε,x + ωε,x) in Dε. As usual, if xε

is an interior point of Dε, then Pε,�Uε,x + ωε,x is a solution of (1.1).
Suppose that N ≥ 3. Then from Propositions 3.1 and 2.4, we have

(3.23)

I (Pε,�Uε,x + ωε,x) = εN A + δAεε
N+2 + τε,x − δ

2
B2εN+2εN−2 H(x, x)

+ εN O(e−(2+σ)md(x,∂�)/ε) + o


 εN+2(

ln
1

ε

)N−2


 .
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Let x∗ ∈ Dε with d(x∗, ∂�) = Cε ln 1
ε

and C > 0 large. Noting that for any
small θ > 0,

τε,x∗ ≤ εN c′e−2m(1−θ)d(x∗,∂�)/ε = c′εN+2Cm(1−θ) ,

and H(x∗, x∗) ∼ 1
d(x∗,∂�)N−2 , we obtain from Proposition 2.4 that

(3.24)

I (Pε,�Uε,x∗ + ωε,x) ≤ εN A + δAεε
N+2 + c′εN+2Cm(1−θ)

− δ

2
B2c̃εN+2 1(

C ln
1

ε

)N−2 + o


 εN+2(

ln
1

ε

)N−2




≤ εN A + δAεε
N+2 − δ

2
B2c′′εN+2 1(

C ln
1

ε

)N−2 ,

where c′′ > 0 is a constant.
For any x ′ ∈ � with d(x ′, ∂�) = c0ε ln 1

ε
, we have

τε,x ′ ≥ c′εN e−2m(1+θ)d(x ′,∂�)/ε = c′εN+2m(1+θ)c0 .

Thus,

(3.25)

I (Pε,�Uε,x ′ + ωε,x) ≥ εN A + δAεε
N+2 + c′εN+2c0m(1+θ)

− δ

2
B2c∗εN+2 1(

c0 ln
1

ε

)N−2 + o


 εN+2(

ln
1

ε

)N−2




≥ εN A + δAεε
N+2 + c′′εN+2c0m(1+θ) .

Combining (3.24) and (3.25), we see that if c0 > 0 is small enough, I (Pε,�Uε,x+
ωε,x) can not attain its minimum on {x : x ∈ �, d(x, ∂�) = c0 ln 1

ε
}.

On the other hand, for any x ∈ � with d(x, ∂�) = ε1−η, we have

(3.26)

I (Pε,�Uε,x + ωε,x) ≥ εN A + δAεε
N+2 + c′e−m(1+θ)ε−η

− δ

2
B2c∗εN+2+η(N−2) + o


 εN+2(

ln
1

ε

)N−2




≥ εN A + δAεε
N+2 + o


 εN+2(

ln
1

ε

)N−2


 .
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Combining (3.24) and (3.26), we see that I (Pε,�Uε,x + ωε,x) can not attain its
minimum on {x : x ∈ �, d(x, ∂�) = ε1−η}. Thus we have proved the xε is an
interior point of Dε.

Suppose that N = 2. Then from Lemma 3.3 and Proposition 2.4, we have

(3.27)
I (Pε,�Uε,x + ωε,x) = ε2 A + δ

4π
ε4 ln

1

ε
+ δ Ãε4 + τε,x − δ

2
B2ε4 H̃(x, x)

+ ε2 O
(

e−(2+σ)md(x,∂�)/ε + ε2 ln2
(

ln
1

ε

))
,

Noting that H̃(x, x) ∼ ln 1
d(x,∂�)

and d(x, ∂�) ∈ (c0ε ln 1
ε
, ε1−η), we see that

ε4 ln2(ln 1
ε
) is a higher order term than ε4 H̃(x, x). As in the case N ≥ 3, we

can check that if x ∈ Dε with d(x, ∂�) = Cε ln 1
ε

with C > 0 large, then

τε,x − δ

2
B2ε4 H̃(x, x) ∼ −ε4 ln

1

Cε ln 1
ε

< −ε4 ln
1

ε1−η
∼ min

z∈∂ Dε

(
τε,z − δ

2
B2ε4 H̃(z, z)

)
.

So we see that τε,x − δ
2 B2ε4 H̃(x, x) attains its minimum at an interior point of

Dε. Thus xε is an interior point of Dε.
Finally, if N = 1 then from Lemma 3.3 and Proposition 2.4, we have

(3.28)
I (Pε,�Uε,x + ωε,x) = εA + 1

2
δB2Gγ (x, x)ε2 + τε,x

+ εO(e−(2+σ)md(x,∂�)/ε + εd2(x, ∂�) + ε3) .

From (3.17) and (3.19), we know that Gγ (x, x) ∼ d(x, ∂�). Thus ε2d2(x, ∂�)

is a higher order term than 1
2δB2Gγ (x, x)ε2. On the other hand, it is easy to

see that if d(x, ∂�) = Cε ln 1
ε
, we have

1

2
δB2Gγ (x, x)ε2 + τε,x ∼ ε3 ln

1

ε
< ε3−η ∼ min

z∈∂ Dε

(
1

2
δB2Gγ (z, z)ε2 + τε,z

)
.

Thus τε,x + 1
2δB2Gγ (x, x)ε2 attains its minimum at an interior point of Dε. So

xε is an interior point of Dε.

Remark 3.4. Suppose that � is a connected component of ∂�. The
above argument shows that (1.1) has a solution of the form Pε,�Uε,xε +ωε with
d(xε, �) → 0, d(xε,�)

ε
→ +∞ and ‖ωε‖ε = o(εN/2) as ε → 0. Moreover, if ∂�

has k disjoint connected components �1, . . . , �k , then for ε > 0 small, (1.1)
has a solution of the form

k∑
i=1

Pε,�Uε,xε,i + ωε ,

with d(xε,i , �i ) → 0,
d(xε,i ,�i )

ε
→ +∞ and ‖ωε‖ε = o(εN/2) as ε → 0.
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4. – Solutions with several peaks near the boundary

This section is devoted to the proof of Theorem 1.2. Because the proof of
Theorem 1.2 is quite similar to the proof of Theorem 1.1, we are a bit sketchy
in this section.

For a positive integer k and X = (x1, . . . , xk), xj ∈ R
N , denote

Eε,X,k =
{

ω : ω ∈ H 1
0 (�),

〈
∂ Pε,�Uε,xj

∂xji
, ω

〉
ε

= 0, i = 1, . . . , N

}
,

for j = 1, . . . , k. Let Dε,R,k = {X : xj ∈ �, d(xj , ∂�) ≥ εR, |xj − xh| ≥ εR},
where R > 0 is a large constant.

Proposition 4.1. There is an ε0 > 0, such that for each ε ∈ (0, ε0], there is a
C1-map ωε,X : Dε,R,k → H 1

0 (�) satisfying, ωε,X ∈ Eε,X,k,

(4.1)

〈∂ I


 k∑

j=1

Pε,�Uε,xj + ωε




∂ω
, η

〉
ε

= 0, ∀ η ∈ Eε,X,k .

Moreover, if N ≥ 3,

‖ωε,X‖ε = εN/2 O


ε1+σ +

k∑
j=1

e−(1+σ)m d(x,∂�)
ε +

∑
h 
= j

e−(1+σ)m|xh−xj |/(2ε)


 ,

where σ > 0 is some constant.
If N = 2,

‖ωε,X‖ε = εO


ε ln ln

1

ε
+

k∑
j=1

e−(1+σ)m d(x,∂�)
ε +

∑
h 
= j

e−(1+σ)m|xh−xj |/(2ε)


 .

If N = 1,

‖ωε,X‖ε = ε1/2 O


ε1/2d(x, ∂�) +

k∑
j=1

e−(1+σ)m d(x,∂�)
ε +

∑
h 
= j

e−(1+σ)m|xh−xj |/(2ε)


.

On the other hand, if� satisfies (�1)and (�2) for some finite group G = {id, g, . . . ,

. . . , gk−1} and X = (x, gx, . . . , gk−1x), where x = (x ′, 0), then ωε,X satisfies

ωε,X (gy) = ωε,X (y), ∀ y ∈ � ,

and

ωε,X (y′, yÑ+1, . . . , −yi , . . . , yN ) = ωε,X (y′, yÑ+1, . . . , yi , . . . , yN ), ∀ y ∈ � .
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Proof. The proof of the existence and the estimates of ‖ωε,X‖ε are very
similar to those in Proposition 3.1. Thus we omit them.

For the proof of the last claim, we let ω̃ε,X (y) = ωε,X (gy). For any
η ∈ Eε,X,k , let η̄(y) = η(g−1 y). Then it is easy to check that η̄ ∈ Eε,X,k . As a
result,

〈∂ I


 k∑

j=1

Pε,�Uε,xj + ω̃ε,X




∂ω
, η

〉
ε

=
〈∂ I


 k∑

j=1

Pε,�Uε,xj + ωε,X




∂ω
, η̄

〉
ε

= 0 .

By the uniqueness of ωε,X satisfying (4.1), we conclude that ω̃ε,X = ωε,X . Sim-
ilarly, we have ωε,X (y′, yÑ+1, . . . , −yi , . . . , yN ) = ωε,X (y′, yÑ+1, . . . , yi , . . . ,

. . . , yN ).

In the rest of this section, we will work on the space of functions, each
of which is even in yi , i > Ñ , and is invariant under the action of G.

Proof of Theorem 1.2. Let

D̃ε =
{

x : x = (x ′, 0) ∈ �, d(x, ∂�) ∈
[

c0ε ln
1

ε
, ε1−η

]}
,

where c0 and η are two fixed small constants.
Consider

(4.2) inf
x∈D̃ε

I


 k∑

j=1

Pε,�Uε,g j x + ωε,X


 ,

where X = (x, gx, . . . , gk−1x).
Let xε be a minimum point of I (

∑k
j=1 Pε,�Uε,g j x + ωε,X ) in Dε. We will

prove that x ′
ε is an interior point of D̃ε ∩ R

Ñ .
It follows from Proposition 4.1 that

(4.3) I


 k∑

j=1

Pε,�Uε,g j x + ωε,X


 = I


 k∑

j=1

Pε,�Uε,g j x


 + O(‖ωε,X‖2

ε) .

On the other hand, using the exponentially decay of U at infinity, we can
deduce

(4.4)

I


 k∑

j=1

Pε,�Uε,g j x


=

k∑
j=1

I (Pε,�Uε,g j x)+2
∑
h< j

∫
�

Pε,�Uε,gh x Gγ (Pε,�Uε,g j x)

+ O


εN

∑
h 
= j

e−m|gh x−g j x |/ε

 .
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Suppose that N ≥ 3. Then from Lemma 2.1, similar to the proof of Proposi-
tion 2.4, we deduce

(4.5)

∫
�

Pε,�Uε,gh x Gγ (Pε,�Uε,g j x)

=
∫

�

Uε,gh x Gγ Uε,g j x + εN O


ε2+σ +

k∑
j=1

e−md(g j x,∂�)/ε




= εN+2 BWε

(
gh x − g j x

ε

)
− ε2N B2 H(gh x, g j x)

+ εN O

(
εN+2

d(x, ∂�)N
+ εN e−(m−θ)d(x,∂�)/ε

d(x, ∂�)N−2
+ e−m(2+σ)d(x,∂�)/ε

)
.

Since 0 < Wε(y) ≤ C |y|−(N−2), noting that |gh x −g j x | > τ > 0 for any x ∈ D̃ε

and h 
= j , we obtain from (4.5)

(4.6)

∫
�

Pε,�Uε,gh x Gγ (Pε,�Uε,g j x)

= εN O

(
εN+2

d(x, ∂�)N
+ εN e−(m−θ)d(x,∂�)/ε

d(x, ∂�)N−2
+ e−m(2+σ)d(x,∂�)/ε

)
, h 
= j .

Combining (4.4) and (4.6), using Proposition 2.4, we obtain

(4.7)

I


 k∑

j=1

Pε,�Uε,g j x


= k AεN + kδAεε

N+2 + kτε,x

− δ

2
k B2εN+2εN−2 H(x, x)

+ εN O

(
εN+2

d(x, ∂�)N
+ εN e−(m−θ)d(x,∂�)/ε

d(x, ∂�)N−2
+ e−m(2+σ)d(x,∂�)/ε

)
.

Suppose that N = 2. Then

(4.8)

∫
�

Pε,�Uε,gh x Gγ (Pε,�Uε,g j x)

= 1

2π
B2ε4 ln

1

ε
+ ε4 BW̃

(
gh x − g j x

ε

)
− ε4 B2 H(gh x, g j x)

+ ε2 O

(
ε4

d(x,∂�)2
+ ε2e−(m−θ)d(x,∂�)/ε ln

1

d(x,∂�)
+ e−m(2+σ)d(x,∂�)/ε

)
.
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On the other hand, we see that

(4.9) W̃ (y) − B

2π
ln

1

|y| = 1

2π

∫
R2

ln
|y|

|z − y|U (z) dz

is bounded for |y| ≥ 1.
In fact, from ln |x | ≤ C(|x |1/2 + 1

|x |1/2 ), we have

(4.10)
∣∣∣∣
∫

R2
ln

|y|
|z − y|U (z) dz

∣∣∣∣ ≤ C
∫

R2

(
|y|1/2

|z − y|1/2
+ |z − y|1/2

|y|1/2

)
U (z) dz .

Since |z−y|
|y| ≤ |z|+|y|

|y| ≤ 1 + |z| for |y| ≥ 1, we obtain

(4.11)
∫

R2

|z − y|1/2

|y|1/2
U (z) dz ≤ C

∫
R2

(1 + |z|)U (z) dz ≤ C ′ .

If |z| ≤ 1
2 |y|, then |y|

|z−y| ≤ |y|
|y|−|z| ≤ 2. Thus

(4.12)
∫

|z|≤|y|/2

|y|1/2

|z − y|1/2
U (z) dz ≤ C

∫
|z|≤|y|/2

U (z) dz ≤ C .

But

(4.13)

∫
|z|≥|y|/2

|y|1/2

|z − y|1/2
U (z) dz

=
∫

{|z|≥|y|/2}∩B1(y)

|y|1/2

|z − y|1/2
U (z) dz +

∫
{|z|≥|y|/2}\B1(y)

|y|1/2

|z − y|1/2
U (z) dz

≤
∫

{|z|≥|y|/2}∩B1(y)

(|z| + 1)1/2

|z − y|1/2
U (z) dz +

∫
{|z|≥|y|/2}\B1(y)

|y|1/2U (z) dz

≤C
∫

{|z|≥|y|/2}∩B1(y)

1

|z − y|1/2
dz + C

∫
{|z|≥|y|/2}\B1(y)

|z|1/2U (z) dz ≤ C .

Combining (4.10)–(4.13), we obtain (4.9).
Using (4.9), we obtain

W̃

(
gh x − g j x

ε

)
= − B

2π
ln

|gh y − g j y|
ε

+ O(1) ,

which, together with (4.8), implies

(4.14)
∫

�

Pε,�Uε,gh x Gγ (Pε,�Uε,g j x) = ε2 O(ε2 + e−m(2+σ)d(x,∂�)/ε), h 
= j .
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Thus,

(4.15)
I


 k∑

j=1

Pε,�Uε,g j x


= k Aε2+ δ

4π
k B2ε4 ln

1

ε
+ kτε,x − δ

2
k B2ε4 H(x, x)

+ ε2 O(ε2 + e−(2+σ)md(x,∂�)/ε) .

Suppose that N = 1. Then

(4.16)
∫

�

Pε,�Uε,gh x Gγ (Pε,�Uε,g j x) = B2Gγ (gh x, g j x)ε2 + O(ε4) .

Since Gγ (gh x, g j x) ∼ d(gh x, ∂�)d(g j x, ∂�), we see from (4.16) that∫
�

Pε,�Uε,gh x Gγ (Pε,�Uε,g j x) = ε2 O(d2(x, ∂�)) .

As a result, we have

(4.17)
I


 2∑

j=1

Pε,�Uε,g j x


 = 2Aε2 + δB2Gγ (x, x) + 2τε,x

+ εO(ε1+σ + e−(2+σ)md(x,∂�)/ε) .

Using (4.7), (4.15) and (4.17), we can prove that x ′
ε is an interior point of

D̃ε ∩ R
Ñ in exactly the same way as we did in the proof of Theorem 1.1. So

we have

(4.18)
k∑

j=1

〈
I ′

(
k∑

h=1

Pε,�Uε,gh xε
+ ωε,X

)
,
∂ Pε,�Uε,g j xε

∂xi
+ ∂ωε,X

∂xji

〉
ε

= 0 ,

for i = 1, . . . , Ñ .
On the other hand, in view of the symmetry of the domain, the functions∑k

h=1 Pε,�Uε,gh xε
and ωε,X , we can check easily that for j = 1, . . . , k − 1,

(4.19)

〈
I ′

(
k∑

h=1

Pε,�Uε,gh xε
+ ωε,X

)
,
∂ Pε,�Uε,g j xε

∂xi

〉
ε

=
〈

I ′
(

k∑
h=1

Pε,�Uε,gh xε
+ ωε,X

)
,
∂ Pε,�Uε,xε

∂xi

〉
ε

,

and

(4.20)

〈
I ′

(
k∑

h=1

Pε,�Uε,gh xε
+ ωε,X

)
,
∂ωε,X

∂xji

〉
ε

=
〈

I ′
(

k∑
h=1

Pε,�Uε,gh xε
+ ωε,X

)
,
∂ωε,X

∂x1i

〉
ε

,
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Combining (4.18)–(4.20), we obtain

(4.21)

〈
I ′

(
k∑

h=1

Pε,�Uε,gh xε
+ ωε,X

)
,
∂ Pε,�Uε,g j xε

∂xi
+ ∂ωε,X

∂xji

〉
ε

= 0 ,

for i = 1, . . . , Ñ , j = 1, . . . , k.
On the other hand, using the symmetry of the function ωε,X , we can check

easily that

(4.22)

〈
I ′

(
k∑

h=1

Pε,�Uε,gh xε
+ ωε,X

)
,
∂ Pε,�Uε,g j xε

∂xi
+ ∂ωε,X

∂xji

〉
ε

= 0 ,

for i = Ñ + 1, . . . , N , j = 1, . . . , k.
From (4.21) and (4.22), we see Xε = (xε, gxε, . . . , gk−1xε) is a critical

point of the function

I

(
k∑

h=1

Pε,�Uε,xh + ωε,X

)
.

As usual, we see that
∑k

h=1 Pε,�Uε,gh xε
+ ωε,X is a solution for (1.2).

5. – Solutions with interior peak

In this section, we will prove Theorem 1.6. Let u = ūε − w. Then

(5.1)
{ −ε2�w + δGγ w = q(y, w) =: f (ūε) − f (ūε − w), y ∈ �

w ∈ H 1
0 (�) .

Since for each y ∈ � with d(y, ∂�) ≥ τ̄ > 0, we have ūε(y) ∈ (τ2, 1). Thus
we have h+( f (ūε(y))) = ūε(y). So it is easy to see that q(y, t) = 0 has exactly
three solutions

ūε(y) − h+( f (ūε(y))) = 0 ,

t1(y) = ūε(y) − h0( f (ūε(y)) = h+( f (ūε(y)) − h0( f (ūε(y))

and
t2(y) = ūε(y) − h−( f (ūε(y)) = h+( f (ūε(y)) − h−( f (ūε(y)) .

So we have

(5.2) q(y, t) = t (t − t1(y))(t2(y) − t), ∀ d(y, ∂�) ≥ τ̄ .

Let b = maxx∈� v, where v is the solution of (1.5). Let Ub(x) = Ub(|x |) be a
solution of (1.6).
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Let S = {x : x ∈ �, v(x) = maxx∈� v(x)}. Then S is a compact subset of
�. Let Sα = {x : d(x, S) ≤ α}.

Eε,b =
{

ω ∈ H 1
0 (�) :

〈
ω,

∂ P̄ε,�Uε,x,b

∂xi

〉
ε

= 0, i = 1, . . . , N

}
,

where Uε,x,b = Ub(
y−x
ε

), 〈u, v〉ε = ∫
�(ε2 Du Dv + m̄2uv), m̄2 = −q ′

b(0).
We will construct a solution for (5.1), which has the form

wε = P̄ε,�Uε,xε,b + ωε ,

where ωε ∈ Eε,b satisfies ‖ωε‖ε = o(εN/2).
Let

K (w) = ε2

2

∫
�

|Dw|2 + δ

2

∫
�

wGγ w −
∫

�

Q(y, w), w ∈ H 1
0 (�) ,

where Q(y, t) = ∫ t
0 q(y, s) ds.

Proposition 5.1. There is an ε0 > 0 small, such that for each ε ∈ (0, ε0], there
is a C1 map : ωε,x : Sα → H 1

0 (�), such that ωε,x ∈ Eε,b,〈
∂K (P̄ε,�Uε,x,b + ωε,x)

∂ω
, ξ

〉
= 0, ∀ ξ ∈ Eε,b .

Moreover, we have the following estimate:

‖ωε,x‖ε = εN/2 O(|v̄(x) − b| + oε(1)) ,

where oε(1) → 0 as ε → 0.

Proof. Expand K (P̄ε,�Uε,x,b + ω)) near ω = 0 as follows:

K (P̄ε,�Uε,x,b + ω) = K (P̄ε,�Uε,x,b) + 〈kε(x), ω〉 + 1

2
〈Q̄ε(x)ω, ω〉 + Rε(ω) ,

where

〈kε(x), ω〉=
∫

�

ε2 D P̄ε,�Uε,x,b Dω +δ

∫
�

ωGγ P̄ε,�Uε,x,b −
∫

�

q(y, P̄ε,�Uε,x,b)ω ,

〈Q̄ε(x)ω, ω〉=ε2
∫

�

|Dω|2 + δ

∫
�

ωGγ ω −
∫

�

fu(ūε − P̄ε,�Uε,x,b)ω
2 ,

and Rε(ω) satisfies
Rε(ω) = εN O(ε−3N/2‖ϕ‖3

ε) ,

R′
ε(ω) = εN/2 O(ε−N ‖ϕ‖2

ε) ,

R′′
ε (ω) = O(ε−N/2‖ϕ‖ε) .
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In [6], we proved that for all ω ∈ H 1
0 (�),

ε2
∫

�

|Dω|2 + δ

∫
�

ωGγ ω −
∫

�

fu(ūε)ω
2 ≥ c0‖ω‖2

ε

for some c0 > 0. But Ub is nondegenerate. So arguing in a similar way as in
Proposition 3.1, we can prove that Q̄ε(x) is invertible and ‖Q̄ε(x)−1‖ ≤ C . In
fact, the only place we need to change in the argument of Proposition 3.1 is
the last relation. In the present situation, we have

ε2
j

∫
�

|Dωj |2 + δ

∫
�

ωj Gγ ωj −
∫

�

fu(ūε − P̄ε,�Uε,x,b)ω
2
j

= ε2
j

∫
�

|Dωj |2 + δ

∫
�

ωj Gγ ωj −
∫

�

fu(ūε)ω
2
j − o(εN

j ) − o(1)

∫
�

ω2
j

≥ c0‖ωj‖2
εj

− o(εN
j ) − o(1)

∫
�

ω2
j .

On the other hand, we have

〈kε(x), ω〉 = δ

∫
�

ωGγ P̄ε,�Uε,x,b +
∫

�

(qb(Uε,x,b) − q(y, P̄ε,�Uε,x,b))ω

+
∫

�

(Uε,x,b − P̄ε,�Uε,x,b)ω .

Similar to Lemma 3.3, we have∣∣∣∣
∫

�

ωGγ P̄ε,�Uε,x,b

∣∣∣∣ = o(εN/2)‖ω‖2
ε .

Moreover, ∣∣∣∣
∫

�

(qb(Uε,x,b)ω − q(y, Pε,�Uε,x,b)ω)

∣∣∣∣
=

∣∣∣∣
∫

�

(qb(Uε,x,b)ω − q(y, Uε,x,b)ω)

∣∣∣∣ + o(εN/2)‖ω‖ε

=≤ C
∫

�

Uε,x,b(y)| f (ūε(y)) − b||ω| + o(εN/2)‖ω‖ε

≤ CεN/2| f (ūε(x)) − b|‖ω‖ε = εN/2 O(| f (ū(x)) − b| + o(1))‖ω‖ε

= εN/2 O(|v̄(x) − b| + o(1))‖ω‖ε ,

and ∫
�

(Uε,x,b − P̄ε,�Uε,x,b)ω = o(εN/2)‖ω‖ε .

Thus, we obtain
‖kε(x)‖ = εN/2 O(|v̄(x) − b| + o(1)) ,

and the result follows.
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Proposition 5.2. We have

K (P̄ε,�Uε,x,b) = εN Ā + εN B̄(b − v̄(x)) + εN O(|v̄(x) − b|2 + o(1)) ,

where Ā = 1
2

∫
RN |DUb|2 − ∫

RN Gb(Ub) and B̄ > 0 is a constant.

Proof. We have

(5.3)

K (P̄ε,�Uε,x,b) = 1

2

∫
�

ε2|D P̄ε,�Uε,x,b|2 −
∫

�

Q(y, P̄ε,�Uε,x,b) + o(εN )

= 1

2

∫
RN

ε2|DUε,x,b|2 −
∫

RN
Q(y, Uε,x,b) + o(εN )

= εN Ā +
∫

RN
(Qb(Uε,x,b) − Q(y, Uε,x,b)) + o(εN ) .

On the other hand, it is easy to see

Qb(t) − Q(y, t) = ((t1(y) + t2(y)) − (t̃1 + t̃2))
t3

3
− (t1(y)t2(y) − t̃1 t̃2)

t2

2
,

where t2(y)=h+( f (ūε(y)))−h−( f (ūε(y))), t1(y)=h+( f (ūε(y)))−h0( f (ūε(y))),
t̃2 = h+(b) − h−(b) and t̃1 = h+(b) − h0(b). Thus,

(5.4)

∫
RN

(Qb(Uε,x,b) − Q(y, Uε,x,b)) = εN 1

3
((t̃1 + t̃2) − (t1(x) + t2(x)))

×
∫

RN
U 3

b − εN 1

2
(t̃1 t̃2 − t1(x)t2(x))

∫
RN

U 2
b + o(εN ) .

Denote ξ1(t) = h+(t)−h0(t), ξ2(t) = h+(t)−h−(t). Then (5.4) can be written as

(5.5)

∫
RN

(Qb(Uε,x,b) − Q(y, Uε,x,b)) = −εN

×
(

1

3
(ξ ′

1(b) + ξ ′
2(b))

∫
RN

U 3
b + 1

2
(ξ ′

1(b)ξ2(b) + ξ1(b)ξ ′
2(b))

∫
RN

U 2
b

)
× ( f (ūε(x)) − b) + εN O(| f (ūε(x)) − b|2) + o(εN ) = −εN

×
(

1

3
(ξ ′

1(b) + ξ ′
2(b))

∫
RN

U 3
b + 1

2
(ξ ′

1(b)ξ2(b) + ξ1(b)ξ ′
2(b))

∫
RN

U 2
b

)
× (v̄(x) − b) + εN O(|v̄ − b|2 + o(1)) .

Let

B̄ = 1

3
(ξ ′

1(b) + ξ ′
2(b))

∫
RN

U 3
b − 1

2
(ξ ′

1(b)ξ2(b) + ξ1(b)ξ ′
2(b))

∫
RN

U 2
b .

We claim that B̄ > 0. Assuming this, we see that the result follows from (5.3)
and (5.5).
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Now we prove that B̄ > 0.
First, we have

−
∫

RN
U 3

b + (ξ1(b) + ξ2(b))

∫
RN

U 2
b − ξ1(b)ξ2(b)

∫
RN

Ub

=
∫

RN
qb(Ub) = −

∫
RN

�Ub = 0 .

As a result, B̄ can be rewritten as

(5.6)

B̄ =
(

1

3
(ξ ′

1(b) + ξ ′
2(b))(ξ1(b) + ξ2(b)) − 1

2
(ξ ′

1(b)ξ2(b) + ξ1(b)ξ ′
2(b))

)∫
RN

U 2
b

− 1

3
(ξ ′

1(b) + ξ ′
2(b))ξ1(b)ξ2(b)

∫
RN

Ub

= 1

6
(2ξ ′

1(b)ξ1(b)+2ξ2(b)ξ ′
2(b) − ξ ′

1(b)ξ2(b) − ξ1(b)ξ ′
2(b))ξ 2

2 (b)

∫
RN

U 2
b

ξ 2
2 (b)

− 1

3
(ξ ′

1(b) + ξ ′
2(b))ξ1(b)ξ 2

2 (b)

∫
RN

Ub

ξ2(b)
.

We claim

(5.7)

1

6
(2ξ ′

1(b)ξ1(b) + 2ξ2(b)ξ ′
2(b) − ξ ′

1(b)ξ2(b) − ξ1(b)ξ ′
2(b))

>
1

3
(ξ ′

1(b) + ξ ′
2(b))ξ1(b) .

In fact, (5.7) is equivalent to

(5.8) −3ξ1(b)ξ ′
2(b) − ξ ′

1(b)ξ2(b) + 2ξ2(b)ξ ′
2(b) > 0 ,

which can also be rewritten as

(5.9) −3(h′
+(b) − h′

−(b))ξ1(b) − 2h′
−(b)ξ2(b) + (h′

+(b) + h′
0(b))ξ2(b) > 0 .

Since by definition

f (t) − b = (t − h−(b))(t − h0(b))(h+(b) − t) ,

we have
f ′(h+(b)) = −(h+(b) − h−(b))(h+(b) − h0(b)) ,

f ′(h0(b)) = (h0(b) − h−(b))(h+(b) − h0(b)) ,

and
f ′(h−(b)) = −(h0(b) − h−(b))(h+(b) − h−(b)) .
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Thus,

h′
+(b) + h′

0(b) = f ′(h0(b)) + f ′(h+(b))

f ′(h0(b)) f ′(h+(b))
> 0 ,

h′
−(b) = 1

f ′(h−(b))
< 0 ,

and

ξ ′
2(b) = h′

+(b) − h′
−(b) = f ′(h−(b)) − f ′(h+(b))

f ′(h−(b)) f ′(h+(b))
< 0, if b > α0 .

In the last relation, we have used the fact that h0(b) − h−(b) > h+(b) − h0(b)

if b > α0, which can be deduced directly from
∫ h+(b)

h−(b) ( f (t) − b) dt < 0. So we
see that each term in the left hand hand of (5.9) is positive. Thus the claim
follows.

Finally, combining (5.6) and (5.7), we obtain

B̄ > −ξ1(b)ξ 2
2 (b)

3
(ξ ′

1(b) + ξ ′
2(b))

∫
RN

(
Ub

ξ2(b)
− U 2

b

ξ 2
2 (b)

)
> 0

since Ub ≤ ξ2(b).

Proof of Theorem 1.6. Consider

(5.10) inf{K (Pε,�Uε,x,b + ωε) : x ∈ Sα} .

It follows from Propositions 5.1 and 5.2 that

(5.11) K (Pε,�Uε,x,b +ωε) = εN Ā + εN B̄(b − v̄(x))+ εN O(|v̄(x)− b|2 + o(1)) .

Let xε ∈ Sα be a minimum point of (5.10). Then from (5.11), we see that
xε → x0 ∈ S. So xε is an interior point of Sα .

Remark 5.3. From (5.11), we see that if v̄(x) attains its local maximum
on an isolated set S̃, then we can attach to ūε a peak near S̃ to obtain a solution
for (1.1).
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