Hörmander’s famous Fourier multiplier theorem ensures the -boundedness of whenever for some , where we denote by the set of functions satisfying the Hörmander condition for derivatives. Spectral multiplier theorems are extensions of this result to more general operators and yield the -boundedness of provided for some sufficiently large. The harmonic oscillator shows that in general is not sufficient even if has a heat kernel satisfying gaussian estimates. In this paper, we prove the -boundedness of whenever for some , provided satisfies generalized gaussian estimates. This assumption allows to treat even operators without heat kernel (e.g. operators of higher order and operators with complex or unbounded coefficients) which was impossible for all known spectral multiplier results.
@article{ASNSP_2003_5_2_3_449_0, author = {Blunck, S\"onke}, title = {A {H\"ormander-type} spectral multiplier theorem for operators without heat kernel}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {449--459}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 2}, number = {3}, year = {2003}, mrnumber = {2020856}, zbl = {1170.42301}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2003_5_2_3_449_0/} }
TY - JOUR AU - Blunck, Sönke TI - A Hörmander-type spectral multiplier theorem for operators without heat kernel JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 449 EP - 459 VL - 2 IS - 3 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2003_5_2_3_449_0/ LA - en ID - ASNSP_2003_5_2_3_449_0 ER -
%0 Journal Article %A Blunck, Sönke %T A Hörmander-type spectral multiplier theorem for operators without heat kernel %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 449-459 %V 2 %N 3 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2003_5_2_3_449_0/ %G en %F ASNSP_2003_5_2_3_449_0
Blunck, Sönke. A Hörmander-type spectral multiplier theorem for operators without heat kernel. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 2 (2003) no. 3, pp. 449-459. http://www.numdam.org/item/ASNSP_2003_5_2_3_449_0/
[A] Bounds for the fundamental solution of a parabolic equation, Bull. AMS 73 (1967), 890-896. | MR | Zbl
,[ACT] Absence de principe du maximum pour certaines équations paraboliques complexes, Colloq. Math. 71 (1996), 87-95. | MR | Zbl
- - ,[AT] Square root problem for divergence operators and related topics, Soc. Math. de France, Astérisque 249 (1998). | Numdam | MR | Zbl
- ,[B] Generalized Gaussian estimates and Riesz means of Schrödinger groups, submitted. | Zbl
,[BK1] Weighted norm estimates and maximal regularity, Adv. in Differential Eq. 7 (2002), 1513-1532. | MR | Zbl
- ,[BK2] Calderon-Zygmund theory for non-integral operators and the functional calculus, to appear in Rev. Mat. Iberoam. | MR | Zbl
- ,[BK3] Weak type estimates for Riesz transforms, to appear in Math. Z. | MR | Zbl
- ,[BK4] Generalized Gaussian estimates and the Legendre transform, submitted. | Zbl
- ,[BC] A note on local higher order Sobolev inequalities on Riemannian manifolds, in preparation.
- ,[C] bounds for spectral multipliers on nilpotent groups, Trans. AMS 328 (1991), 73-81. | MR | Zbl
,[D1] Uniformly elliptic operators with measurable coefficients, J. Funct. Anal. 132 (1995), 141-169. | MR | Zbl
,[D3] Limits on -regularity of self-adjoint elliptic operators, J. Differential Eq. 135 (1997), 83-102. | MR | Zbl
,[DM] Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoam (2) 15 (1999), 233-265. | MR | Zbl
- ,[DOS] Plancherel type estimates and sharp spectral multipliers, J. Funct. Anal. 196 (2002), 443-485. | MR | Zbl
- - ,[G] Gaussian upper bounds for the heat kernel on an arbitrary manifolds, J. Differential Geom. 45 (1997), 33-52. | MR | Zbl
,[HM] bounds for Riesz transforms and square roots associated to second order elliptic operators, preprint, 2002. | MR | Zbl
- ,[LSV] On -theory of -semigroups associated with second order elliptic operators II, J. Funct. Anal. 193 (2002), 55-76. | MR | Zbl
- - ,[MM] Vector-valued multipliers on stratified groups, Rev. Mat. Iberoam 6 (1990), 141-164. | MR | Zbl
- ,[ScV] Stability of the -spectrum of generalized Schrödinger operators with form small negative part of the potential, In: “Functional Analysis", Biersted - Pietsch - Ruess - Vogt (eds.), Proc. Essen 1991, Marcel-Dekker, New York, 1994. | MR | Zbl
- ,[T] Summability of Hermite expansions I, II, Trans. AMS (1989), 119-170. | MR | Zbl
,