On q-Runge pairs
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 2 (2003) no. 2, pp. 231-235.

We show that the converse of the aproximation theorem of Andreotti and Grauert does not hold. More precisely we construct a 4-complete open subset D 6 (which is an analytic complement in the unit ball) such that the restriction map H 3 ( 6 ,)H 3 (D,) has a dense image for every Coh( 6 ) but the pair (D, 6 ) is not a 4-Runge pair.

Classification: 32F10,  32F27,  32E30
@article{ASNSP_2003_5_2_2_231_0,
     author = {Col\c{t}oiu, Mihnea},
     title = {On $q${-Runge} pairs},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {231--235},
     publisher = {Scuola normale superiore},
     volume = {Ser. 5, 2},
     number = {2},
     year = {2003},
     zbl = {1170.32308},
     mrnumber = {2004963},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2003_5_2_2_231_0/}
}
TY  - JOUR
AU  - Colţoiu, Mihnea
TI  - On $q$-Runge pairs
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2003
DA  - 2003///
SP  - 231
EP  - 235
VL  - Ser. 5, 2
IS  - 2
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_2003_5_2_2_231_0/
UR  - https://zbmath.org/?q=an%3A1170.32308
UR  - https://www.ams.org/mathscinet-getitem?mr=2004963
LA  - en
ID  - ASNSP_2003_5_2_2_231_0
ER  - 
%0 Journal Article
%A Colţoiu, Mihnea
%T On $q$-Runge pairs
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2003
%P 231-235
%V Ser. 5, 2
%N 2
%I Scuola normale superiore
%G en
%F ASNSP_2003_5_2_2_231_0
Colţoiu, Mihnea. On $q$-Runge pairs. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 2 (2003) no. 2, pp. 231-235. http://www.numdam.org/item/ASNSP_2003_5_2_2_231_0/

[A-G] A. Andreotti - H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. | Numdam | MR | Zbl

[Ba] W. Barth, Lokale Cohomologie bei isolierten Singulatitäten analytischer Mengen, Schriftenreihe Math. Inst. Univ. Münster (2) 5 (1971), 59 pp. | MR | Zbl

[Col] M. Colţoiu, q-convexity. A survey, In: “Complex analysis and geometry XII”, Pitman Research Notes in Math. 366 (1987), 83-93. | MR | Zbl

[Col1] M. Colţoiu, On the relative homology of q-Runge pairs, Ark. Math. 38 (2000), 45-52. | MR | Zbl

[Co-Sil] M. Colţoiu - A. Silva, Behnke-Stein theorem on complex spaces with singularities, Nagoya Math. J. 137 (1995), 183-194. | MR | Zbl

[Fo] G. Forni, Homology and cohomology with compact supports for q-convex spaces, Ann. Mat. Pura Appl. (4) 159 (1991), 229-254. | MR | Zbl

[Gra] H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460-472. | MR | Zbl

[Gre] M. Greenberg, “Lectures on algebraic topology”, W.A. Benjamin, New-York, 1967. | MR | Zbl

[Pr] D. Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J. 34 (1967), 375-386. | MR | Zbl

[So] G. Sorani, Homologie des q-paires de Runge, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 319-332. | Numdam | MR | Zbl

[Va] V. Vajaitu, Approximations theorems and homology of q-Runge domains, J. Reine Angew. Math. 449 (1994), 179-199. | MR | Zbl