The Intersection of a Curve with Algebraic Subgroups in a Product of Elliptic Curves

EVELINA VIADA

Abstract

We consider an irreducible curve \mathcal{C} in E^{n}, where E is an elliptic curve and \mathcal{C} and E are both defined over $\overline{\mathbb{Q}}$. Assuming that \mathcal{C} is not contained in any translate of a proper algebraic subgroup of E^{n}, we show that the points of the union $\bigcup \mathcal{C} \cap A(\overline{\mathbb{Q}})$, where A ranges over all proper algebraic subgroups of E^{n}, form a set of bounded canonical height. Furthermore, if E has Complex Multiplication then the set $\bigcup \mathcal{C} \cap A(\overline{\mathbb{Q}})$, for A ranging over all algebraic subgroups of E^{n} of codimension at least 2, is finite. If E has no Complex Multiplication then the set $\bigcup \mathcal{C} \cap A(\overline{\mathbb{Q}})$ for A ranging over all proper algebraic subgroups of E^{n} of codimension at least $\frac{n}{2}+2$, is finite.

Mathematics Subject Classification (2000): 11D45 (primary), 11G50 (secondary)

1. - Introduction

The Manin-Mumford Conjecture states that if \mathcal{C} is a nonsingular projective curve of genus ≥ 2 defined over a number field K, which is embedded in its Jacobian J, then the set $\mathcal{C} \cap \operatorname{Tor}(J)$ of points of $\mathcal{C}(\bar{K})$ whose image in J is torsion, is finite. The toric version of this Conjecture has been proven by M. Laurent [9]. M. Raynaud [13] and [16] proved that if A is an abelian variety in characteristic 0 and \mathcal{V} is a subvariety of A then $\mathcal{V} \cap \operatorname{Tor}(A)$ is a finite union of cosets, proving in particular the Manin-Mumford Conjecture. M. Hindry [9] then gave a quantitative version of this result and generalized it to a subvariety \mathcal{V} of a semiabelian variety G. The Manin-Mumford Conjecture can be further generalized. After fixing a subvariety \mathcal{V} of a semiabelian variety G and a certain codimension c, one can study the set of points of $\cup \mathcal{V} \cap A(\overline{\mathbb{Q}})$, where A ranges over all proper algebraic subgroups of G of codimension c. In this way, the Manin-Mumford Conjecture deals with algebraic subgroups of dimension zero.

Due to the structure of the algebraic subgroups of a general commutative algebraic group G, it is natural to study this problem in the cases where G is either a toric group or $G=E^{n}$, where E is an elliptic curve.

In 1999 E. Bombieri, D. Masser and U. Zannier [1] solved the toric part of the above problem for an irreducible curve of genus ≥ 2 defined over $\overline{\mathbb{Q}}$. They show that, if the curve \mathcal{C} is embedded in a multiplicative group \mathbb{G}_{m}^{n} and is not contained in any translate of a proper algebraic subgroup, then the points of $\cup \mathcal{C} \cap H(\overline{\mathbb{Q}})$, for H ranging over all proper algebraic subgroups of \mathbb{G}_{m}^{n}, form a set of bounded Weil height. Moreover the set of points $\bigcup \mathcal{C} \cap H(\overline{\mathbb{Q}})$, for H ranging over all proper algebraic subgroups of \mathbb{G}_{m}^{n} of codimension at least 2, is finite.

Here we deal with the elliptic case. We consider an irreducible curve \mathcal{C} transversally embedded in a product of elliptic curves E^{n}, where 'transversally' means that the image of \mathcal{C} is not contained in any translate of a proper algebraic subgroup. We recall that by the Hurwitz formula a curve of genus zero can not be embedded in E^{n} and a curve of genus 1 is an abelian variety so it can not satisfy the transversal condition, hence our curve \mathcal{C} has genus ≥ 2.

In Theorem 1 we prove that the points of $S_{1}(\mathcal{C}):=\bigcup \mathcal{C} \cap A(\overline{\mathbb{Q}})$ where A ranges over all proper algebraic subgroups of E^{n} form a set of bounded canonical height. More precisely, we have:

Theorem 1. Let E be an elliptic curve defined over $\overline{\mathbb{Q}}$. Let \mathcal{C} be an irreducible curve defined over $\overline{\mathbb{Q}}$ and transversally embedded in E^{n}. Then the set

$$
S_{1}(\mathcal{C}):=\bigcup_{\operatorname{cod}(A) \geq 1} A \cap \mathcal{C}(\overline{\mathbb{Q}}),
$$

where A ranges over all proper algebraic subgroups of E^{n}, is a subset of E^{n} of bounded canonical height.

In Theorem 2 we prove that if E is an elliptic curve with Complex Multiplication (C.M. for short), then the set $S_{2}(\mathcal{C}):=\bigcup \mathcal{C} \cap A(\overline{\mathbb{Q}})$ where A ranges over all proper algebraic subgroups of E^{n} of codimension at least 2 , is a finite set. More precisely, we have:

Theorem 2. Let E be a C.M. elliptic curve and \mathcal{C} an irreducible curve defined over $\overline{\mathbb{Q}}$ which is transversally embedded in E^{n}. Then the set

$$
S_{2}(\mathcal{C}):=\bigcup_{\operatorname{cod}(A) \geq 2} A \cap \mathcal{C}(\overline{\mathbb{Q}}),
$$

where A ranges over all algebraic subgroups of E^{n} of codimension at least 2, is finite.

Since every morphism from a curve to an abelian variety factors through its Jacobian, we can deduce from our result that, if a curve can be embedded in E^{n}, then, not just its torsion is finite, as the Manin-Mumford Conjecture
states, but also the set of points lying in an algebraic subgroup of the Jacobian of codimension at least 2 is finite.

Another immediate consequence of our theorems is that, if a curve \mathcal{C} is transversally embedded in a product E^{n}, where E is an elliptic curve of K rank $r<n$, then the set of K-rational points of the curve is finite. Chabauty's Theorem ([21] Section 5.1) also relates rank and dimension. He considers a curve \mathcal{C} in an abelian variety A, so that \mathcal{C} generates A. If Γ is a finitely generated subgroup of $A(K)$ such that $\operatorname{rk} \Gamma<\operatorname{dim} A$ then $\Gamma \cap \mathcal{C}$ is finite. This result is more general than our remark in the sense that it deals with a general abelian variety A and a general subgroup Γ. But our special case where we consider $\Gamma=A=E^{n}$ requires $\operatorname{rk}(\Gamma) \leq n^{2}$, instead of $\operatorname{rk}(\Gamma) \leq n$. It might be interesting to relate these two results and to give a new proof for Chabauty's theorem. However, even if the used methods are different, those are particular aspects of the more general theorem of Faltings [8] on the Mordell conjecture.

In Theorem 4 we give a slightly more general formulation for Theorems 1 and 2. Moreover we show that the hypothesis that \mathcal{C} is not contained in any translate of a proper algebraic subgroup of E^{n} is indeed necessary. We give a counter-example to the statement of Theorem 1 under the weaker condition that \mathcal{C} is not contained in any proper algebraic subgroup. It seems probable that Theorem 2 is still true assuming only that \mathcal{C} is not contained in any proper algebraic subgroup of E^{n}, although our method, which relies on Theorem 1, proves the result under this stronger assumption.

The proof of Theorem 1 is based on some functorial properties of the height function and on the Theorem of the Cube and makes direct use of the linear dependence of the coordinates of a point in $S_{1}(\mathcal{C})$.

By Theorem 1 the set $S_{2}(\mathcal{C})$ is of bounded height. Thus, in view of Northcott's Theorem, in order to prove Theorem 2 it is enough to show that the degree of the points in $S_{2}(\mathcal{C})$ is absolutely bounded. For every point $P \in S_{2}(\mathcal{C})$ we construct a special algebraic subgroup A of codimension at least 2 , passing through P, whose degree gives an upper bound for the degree of the field $K(P)$ of definition of P. Using a recent result of S. David and M. Hindry, we show that the above upper bound depends only on the order $N R$ of the torsion of the coordinate ring $\Gamma_{P}=\left\langle x_{1}(P), \ldots, x_{n}(P)\right\rangle$. On the other hand the torsion of Γ_{P} is defined over $K(P)$, this gives a lower bound for the degree of $K(P)$ in terms of $N R$.

Lower and upper bounds are sharp enough to conclude the proof if we consider points in the intersection of \mathcal{C} and subvarieties of codimension at least 3. The last remaining case, where the codimension of A is 2 , requires a careful study of the cohomology of the Galois groups of the extensions $K(E[N])$ of K with coefficient in some k-torsion subgroup $E[k]$. This enables us to refine the upper bound for the degree of $K(P)$ and to conclude the proof of Theorem 2.

If the elliptic curve E does not have Complex Multiplication, one does not have sharp enough lower bounds for the Néron-Tate height of a K-rational point. The sharpest known bound, in this case, is due to D . Masser [12] and S .

David [6]. This bound implies the finiteness of the set $S_{n-r}(\mathcal{C})$ for $r \leq \frac{n}{2}-2$, unfortunately this result is not optimal as it is for the C.M. case.

Theorem 3. Let E be a non C.M. elliptic curve defined over $\overline{\mathbb{Q}}$ and \mathcal{C} an irreducible curve also defined over $\overline{\mathbb{Q}}$ and transversally embedded in E^{n}.

Then the set

$$
S_{c}(\mathcal{C}):=\bigcup_{\operatorname{cod}(A) \geq c} \mathcal{C} \cap A(\overline{\mathbb{Q}}),
$$

where A ranges over all algebraic subgroup of E^{n} of codimension at least c, is finite for $c \geq \frac{n}{2}+2$.

However, the case $r \leq n-3$ of Theorem 2 for elliptic curves non C.M. follows from the generalized Lehmer Problem ([7] Conjecture 1.4), more precisely:

Conjecture 1. Let A be an abelian variety defined over a number field K, \mathcal{L} a symmetric ample line bundle on A and n a positive integer. Then, there exists a constant $C(A, \mathcal{L}, n)$, such that, if the algebraic point $P=\left(P_{1}, \ldots, P_{n}\right) \in A^{n}$ has infinite order modulo every abelian subvariety of A^{n}, we have

$$
\prod_{i=1}^{n} \hat{h}_{\mathcal{L}}\left(P_{i}\right) \geq C(A, \mathcal{C}, n) D^{-\frac{1}{g}}
$$

where $D:=[K(P): K]$ is the degree of the field of definition of P over K.
A slightly weaker result with $1 / g$ replaced by $(1 / g)+\varepsilon$ would be enough for our purpose. Even weaker results about the minimal height on the lattice generated by P_{1}, \ldots, P_{n} would enable us to derive probably optimal results for the non C.M. case by modifying marginally our argument.

Acknowledgements. I very warmly thank S. David for suggesting me such a nice problem and leading me through it by a lot of discussions and encouragement. It is a special pleasure for me to thank E. Bombieri and U. Zannier for the many details they explained to me and for their interest in this problem. Deep thanks go to D. Bertrand and D. Masser for their helpful suggestions and examples. Special thanks go to G. Böckle, F. Gardeyn, and G. Rémond for their help and nice remarks. I am grateful to my advisor, G. Wüstholz, for supporting my research plan and for trusting and encouraging me in doing mathematics.

2. - Preliminaries

Let E be an elliptic curve defined over a number field K. We recall that if $\operatorname{End}(E)=\mathbb{Z}$ then E is said to be non C.M. If $\operatorname{End}(E)$ is an order $\mathcal{O}=\mathbb{Z}+\tau \mathbb{Z}$ in the ring of integers of an imaginary quadratic extension of \mathbb{Q} then E is said to be C.M. If E is C.M. we replace the field K by a finite extension over which the morphism τ and the $j(E)$ invariant are defined. For S a subset of $E(\overline{\mathbb{Q}})$, we denote by $K(S)$ the minimal field extension of K over which the set S is defined.

The following lemma characterizes the algebraic subgroups of E^{n}.
Lemma 1 (Subgroup Lemma).

- If E is non C.M. and A is an algebraic subgroup of codimension r in E^{n}, then A is characterized byr equations \mathbb{Q}-linearly independent, of the type $\sum_{i=1}^{n} n_{i} \pi_{i}=0$ where $n_{i} \in \mathbb{Z}$ and the π_{i} are a basis of $\operatorname{Hom}\left(E^{n}, E\right)$ as \mathbb{Z}-module. ([13] 3.3 Lemma 2)
- If E is C.M. and A is an algebraic subgroup of codimension r in E^{n}, then there exist r equations k-linearly independent, of the type $\sum_{i=1}^{n} \alpha_{i} \pi_{i}$ vanishing on A, where $k=\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Q}, \alpha_{i} \in \mathcal{O}$ and the π_{i} are a basis of the free \mathcal{O}-module $\operatorname{Hom}\left(E^{n}, E\right)$.

Proof. If E is non C.M., see for example [13] 3.3 Lemma 2. For the C.M. case we give, for convenience, a proof. We consider the exact sequence

$$
0 \rightarrow A \rightarrow E^{n} \rightarrow A^{\perp}:=E^{n} / A \rightarrow 0
$$

Since Hom is a left exact functor, we get the exact sequence

$$
0 \longrightarrow \operatorname{Hom}\left(A^{\perp}, E\right) \xrightarrow{\varphi} \operatorname{Hom}\left(E^{n}, E\right) \xrightarrow{\psi} \operatorname{Hom}(A, E)
$$

where $\operatorname{Hom}\left(A^{\perp}, E\right)$ has rank r over \mathcal{O}, because A^{\perp} is isogenous to E^{r}. Let $f_{1}, \ldots f_{r}$ be k-linearly independent elements of $\operatorname{Hom}\left(A^{\perp}, E\right)$ such that $\varphi\left(f_{j}\right)=\sum_{i=1}^{n} \alpha_{j, i} \pi_{i}$. Since the f_{i} belong to the kernel of ψ, the $\sum_{i=1}^{n} \alpha_{j, i} \pi_{i}$ are vanishing on A and they are k-linearly independent.

Let \mathcal{C} be an irreducible curve in E^{n} not contained in any translate of a proper algebraic subgroup of E^{n}. We define on the module $\operatorname{Hom}(\mathcal{C}, E)$ of morphisms from \mathcal{C} to E a degree function $\operatorname{deg}: \operatorname{Hom}(\mathcal{C}, E) \rightarrow \mathbb{Z}$ as follows: if f is a surjective morphism then $\operatorname{deg} f=\left[K(\mathcal{C}): f^{*} K(E)\right]$ is the index of the corresponding fields of rational functions; if f is a constant morphism then $\operatorname{deg} f=0$. Equivalently we can say that if U is an open set of E on which the order of the fiber of the morphism f is constant, then $\operatorname{deg} f$ is the order of one fiber of this open set. This degree map is a quadratic form, therefore it induces a scalar product (see [14] Corollary 6.5).

We denote by $x_{i}: \mathcal{C} \rightarrow E$ for $i=1, \ldots, n$ the coordinate maps given by the composition of the immersion $x: \mathcal{C} \rightarrow E^{n}$ and the projection on the i-th factor $\pi_{i}: E^{n} \rightarrow E$. We call $\Gamma:=\left\langle x_{1}, \ldots, x_{n}\right\rangle_{\operatorname{End}(E)}$ the coordinate module. If E is C.M. and $\operatorname{End}(E)=\mathcal{O}=\mathbb{Z}+\tau \mathbb{Z}$, we define the morphisms $x_{n+i}:=\tau x_{i}$ for $i=1, \ldots, n$. The maps $x_{1}, \ldots, x_{2 n}$ are generators of Γ as a \mathbb{Z}-module.

Remark 1. From the Subgroup Lemma 1 it follows that a point P belongs to the intersection $\mathcal{C} \cap A$ with A of codimension 1 if and only if $\sum_{i=1}^{n} \alpha_{i} x_{i}(P)=$ 0 with $\alpha_{i} \in \operatorname{End}(E)$. Analogously a point P belongs to the intersection $\mathcal{C} \cap A$ with A of codimension 2 if and only if $\sum_{i=1}^{n} \alpha_{i} x_{i}(P)=0$ and $\sum_{i=1}^{n} \alpha^{\prime}{ }_{i} x_{i}(P)=$ 0 with $\alpha_{i}, \alpha^{\prime}{ }_{i} \in \operatorname{End}(E)$ and $\alpha_{i}, \alpha^{\prime}{ }_{i} \operatorname{End}(E)$-linearly independent vectors.

For any divisor Δ of E^{n} we denote the associated height by h_{Δ} and we denote the canonical height of E by \hat{h}. The function \hat{h} is the square of a norm induced by a scalar product on $E \otimes \mathbb{R}$ (see [23] Theorem 9.3). We consider on \mathcal{C} the height defined by a a non-singular point $Q \in \mathcal{C}$ and we denote it by h_{Q} or simply by h if Q will be fixed once and for all.

We use the symbols "<<" and ">>" to denote inequalities up to a constant factor.

2.1. - The transversality Condition on \mathcal{C} : A Counter-Example

We say that a curve \mathcal{C} is transversally embedded in an abelian variety if it is not contained in any translate of a proper algebraic subgroup. This transversality condition on a curve \mathcal{C} embedded in E^{n} is equivalent to say that no $\operatorname{End}(E)$-linear combination of the coordinate morphisms x_{i} is constant. This means that the $\operatorname{End}(E)$-module Γ generated by x_{1}, \ldots, x_{n} has rank n. Indeed it follows from the Subgroup Lemma 1 that if A is an algebraic subgroup of E^{n} then there exists a form $\sum \alpha_{i} \pi_{i}$ with $\alpha_{i} \in \operatorname{End}(E)$ which vanishes on A. If $A-c$ contains \mathcal{C}, then for every $P \in \mathcal{C}$ we have $\sum \alpha_{i} \pi_{i} x(P)=c$. By definition of the x_{i} this gives $\sum \alpha_{i} x_{i}=c$. Vice-versa if $\sum \alpha_{i} x_{i}=c$ then the equation $\sum \alpha_{i} \pi_{i}=0$ defines an algebraic subgroup A such that $A-c$ contains \mathcal{C}.

This shows that a slightly more general formulation of Theorem 1 and 2 is as follows.

Theorem 4. Let \mathcal{C} be an irreducible curve and E an elliptic curve defined over $\overline{\mathbb{Q}}$. Let f_{1}, \ldots, f_{n} be surjective morphisms from $\mathcal{C} \rightarrow E$ such that no non-trivial linear combination with coefficients in $\operatorname{End}(E)$ gives a constant function, then the set of points

$$
\left\{P \in \mathcal{C}(\overline{\mathbb{Q}}): \operatorname{rk}_{\operatorname{End}(E)}\left\langle f_{1}(P), \ldots, f_{n}(P)\right\rangle \leq n-1\right\}
$$

has bounded canonical height. Furthermore if E is C.M, the set of points

$$
\left\{P \in \mathcal{C}(\overline{\mathbb{Q}}): \operatorname{rk}_{\operatorname{End}(E)}\left\langle f_{1}(P), \ldots, f_{n}(P)\right\rangle \leq n-2\right\}
$$

is finite.
The following example shows that the assumption that \mathcal{C} is not contained in any translate of a proper algebraic subgroup of E^{n} is necessary. We consider the curve $\mathcal{C}:=P_{0} \times E$ in $E \times E$ with P_{0} a point of infinite order in $E(\overline{\mathbb{Q}})$. Then \mathcal{C} is not contained in any proper algebraic subgroup of E^{2}. For each $N \in \mathbb{N}$ we shall consider the abelian subvariety A_{N} of E^{2} which is the image of E under
the morphism $\varphi_{N}: E \rightarrow E^{2}$ with $\varphi_{N}(P):=(P, N P)$. The subvariety A_{N} has codimension 1. The point $\left(P_{0}, N P_{0}\right)$ belongs to the intersection $\mathcal{C} \cap A_{N}(\overline{\mathbb{Q}})$, moreover its height is $\hat{h}\left(P_{0}, N \cdot P_{0}\right)=\left(N^{2}+1\right) \hat{h}\left(P_{0}\right)$, which goes to infinity for N going to infinity. This proves that, under the weaker condition of \mathcal{C} not contained in any proper algebraic subgroup of E^{n}, the set $S_{1}(\mathcal{C})$ can have unbounded height.

3. - Intersecting with Algebraic Subgroups of Codimension 1

In Proposition 1 we establish the relation between the height of a point on \mathcal{C}, the height of its image under a non-constant morphism from \mathcal{C} to E, and the degree of the morphism. The Theorem 1 is then an immediate consequence of this proposition.

Proposition 1. Let f be an element of the coordinate module $\Gamma=$ $\left\langle x_{1}, \ldots, x_{n}\right\rangle_{\operatorname{End}(E)}$ different from zero. Let Q be a non singular point of \mathcal{C}. Then for every non-singular point P of \mathcal{C} we have

$$
\hat{h}(f(P))=3 \operatorname{deg} f\left[h_{Q}(P)+O\left(1+\sqrt{h_{Q}(P)}\right)\right]
$$

where the constant depends only on E, \mathcal{C} and on the module Γ.
Proof. If E is C.M. we consider Γ as a \mathbb{Z}-module of rank $2 n$ and \mathbb{Z}-basis $x_{1}, \ldots, x_{2 n}$ with $x_{n+i}=\tau x_{i}$. From the generators $\left\{ \pm x_{i}\right\}$ we choose a basis $\left\{\mathbf{x}_{i}\right\}$ so that we can write $f=\sum_{i} f_{i} \mathbf{x}_{i}$ with $f_{i} \in \mathbb{N}$. We recall that the degree function is a positive defined quadratic form defined over \mathbb{Z}. Let A be the matrix representation of this degree form with respect to the chosen basis \mathbf{x}_{i} so that $\operatorname{deg} f=\sum f_{i} a_{i j} f_{j}$ where $a_{i j}=\frac{1}{2}\left(\operatorname{deg}\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)-\operatorname{deg} \mathbf{x}_{i}-\operatorname{deg} \mathbf{x}_{j}\right)$. In view of the Theorem of the cube ([14], Theorem 6.1), for any divisor Δ on E we have

$$
\begin{equation*}
f^{*} \Delta \cong \sum_{i} f_{i}^{2} \mathbf{x}_{i}^{*} \Delta+\sum_{i<j} f_{i} f_{j}\left(-\mathbf{x}_{i}^{*} \Delta-\mathbf{x}_{j}^{*} \Delta+\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)^{*} \Delta\right) \tag{1}
\end{equation*}
$$

where \cong means linearly equivalent divisors. Linearly equivalent divisors define the same height function up to an absolute constant, the constant is determined by the choice of Weil-functions. Therefore

$$
h_{f^{*} \Delta}=h_{i} f_{i}^{2} \mathbf{x}_{i}^{*} \Delta+\sum_{i<j} f_{i} f_{j}\left(-\mathbf{x}_{i}^{*} \Delta-\mathbf{x}_{j}^{*} \Delta+\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)^{*} \Delta\right)
$$

Now we choose Weil-functions such that for any two divisors Φ and Φ^{\prime} we have

$$
h_{\Phi+\Phi^{\prime}}=h_{\Phi}+h_{\Phi^{\prime}}
$$

hence, for such a choice,

$$
h_{f^{*} \Delta}=\sum_{i} f_{i}^{2} h_{\mathbf{x}_{i}^{*} \Delta}+\sum_{i<j} f_{i} f_{j}\left(-h_{\mathbf{x}_{i}^{*} \Delta}-h_{\mathbf{x}_{j}^{*} \Delta}+h_{\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)^{*} \Delta}\right) .
$$

The support of all divisors of the form $\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)^{*} \Delta$ for $i, j=1, \ldots, n$ is a finite set $\left\{Q_{i j l}\right\}_{l \in \Lambda}$. By the Néron relation we have

$$
\begin{equation*}
h_{Q_{i j l}}=h_{Q}+O\left(1+\sqrt{h_{Q}}\right) \tag{2}
\end{equation*}
$$

where the constant depends only on the finite set of points $\left\{Q_{i j l}\right\}$ and the curve \mathcal{C}. Let us write $\mathbf{x}_{i}^{*} \Delta=\sum_{l} \alpha_{i i l} Q_{i i l}$ and $\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)^{*} \Delta=\sum_{l} \alpha_{i j l} Q_{i j l}$ with $\alpha_{i j l} \in \mathbb{Z}$.

For a good choice of Weil-functions we get

$$
h_{f^{*} \Delta}=\sum_{i} f_{i}^{2} \alpha_{i i l} h_{Q_{i i l}}+\sum_{l, i<j} f_{i} f_{j}\left(-\alpha_{i i l} h_{Q_{i i l}}-\alpha_{j j l} h_{Q_{j j l}}+\alpha_{i j l} h_{Q_{i j l}}\right)
$$

where $\sum_{l} \alpha_{i i l}=a_{i i} \operatorname{deg} \Delta$ and $\sum_{l, i<j} \alpha_{i j l}-\alpha_{i i l}-\alpha_{j j l}=2 a_{i j} \operatorname{deg} \Delta$, we recall that $2 a_{i j}=\operatorname{deg}\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)-\operatorname{deg} \mathbf{x}_{i}-\operatorname{deg} \mathbf{x}_{j}$. Using relation (2) we deduce

$$
h_{f^{*} \Delta}=\operatorname{deg} \Delta\left[\operatorname{deg} f h_{Q}+\sum\left|f_{i} f_{j} a_{i j}\right|\left(O\left(1+\sqrt{h_{Q}}\right)\right)\right] .
$$

We remark that $\sum\left|f_{i} f_{j} a_{i j}\right|$ induces a norm function on \mathbb{R}^{n} which is equivalent to the degree norm. More precisely one has $\sum f_{i} f_{j} a_{i j} \leq \sum\left|f_{i} f_{j} a_{i j}\right| \ll$ $\lambda_{\max }^{2} \sum f_{i} f_{j} a_{i j}$ with $\lambda_{\text {max }}$ the greatest eigenvalue of the degree form. We deduce

$$
\begin{equation*}
h_{f^{*} \Delta}=\operatorname{deg} \Delta \operatorname{deg} f\left[h_{Q}+O\left(1+\sqrt{h_{Q}}\right)\right] \tag{3}
\end{equation*}
$$

where the constant depends only on \mathcal{C} and Γ.
Now we consider on E the very ample divisor $\Delta=3 \cdot 0_{E}$. We remark that $f^{*} \Delta=x^{*}\left(\sum f_{i} \pi_{i}\right)^{*} \Delta$ where $x: \mathcal{C} \rightarrow E^{n}$ is the given immersion and $\pi_{i}: E^{n} \rightarrow E$ are the natural i-th projections. By [10], Section 4, Theorem 5.1, we have that

$$
\begin{equation*}
h_{f^{*} \Delta}(\cdot)=h_{x^{*}\left(\sum f_{i} \pi_{i}\right)^{* \Delta}}=h_{\left(\sum f_{i} \pi_{i}\right)^{* \Delta}}(x(\cdot))+O(1) \tag{4}
\end{equation*}
$$

where $O(1)$ depends on x. On the other hand, by [10], Section 5, Prop. 3.3, we deduce that

$$
h_{\left(\sum f_{i} \pi_{i}\right)^{*} \Delta}=h_{\Delta}\left(\sum f_{i} \pi_{i}(\cdot)\right)
$$

From these two relations, we see that, for any morphism f in Γ, one has

$$
\begin{equation*}
h_{f^{*} \Delta}(\cdot)=h_{\Delta}(f(\cdot))+O(1) \tag{5}
\end{equation*}
$$

where $O(1)$ depends on x.

Combining relations (3) and (5) and recalling that $\operatorname{deg} \Delta=3$, we get

$$
\begin{equation*}
h_{\Delta}(f(\cdot))=3 \operatorname{deg} f\left[h_{Q}(\cdot)+O\left(1+\sqrt{h_{Q}(\cdot)}\right)\right]+O(1) \tag{6}
\end{equation*}
$$

The canonical height is defined as $\hat{h}(f(\cdot)):=\lim _{N \rightarrow \infty} h_{\Delta}(N f(\cdot)) / N^{2}$. Hence, passing to the limit on both sides of (6), we deduce

$$
\hat{h}(f(P))=3 \operatorname{deg} f\left[h_{Q}(P)+O\left(1+\sqrt{h_{Q}(P)}\right)\right]
$$

We remark that this proposition can be obviously extended to an arbitrary $\operatorname{End}(E)$-free submodule G of $\operatorname{Hom}(\mathcal{C}, E)$, finitely generated and such that no non-trivial constant function belongs to G.

Proof of Theorem 1. We recall that the maps x_{i} are the coordinate morphisms of \mathcal{C} in E^{n}. Let us consider the $\operatorname{End}(E)$-module $\Gamma:=\left\langle x_{1}, \ldots, x_{n}\right\rangle_{\operatorname{End}(E)}$ in $\operatorname{Hom}(\mathcal{C}, E)$. Since \mathcal{C} is not contained in any translate of a proper algebraic subgroup of E^{n}, the rank of Γ is n. If P is a point in $S_{1}(\mathcal{C})$ then, by Remark 1, the module $\Gamma_{P}:=\left\langle x_{1}(P), \ldots, x_{n}(P)\right\rangle_{\operatorname{End}(E)}$ has rank at most $n-1$. Thus there exists a non trivial element y in the kernel of the valuation map $v_{P}: \Gamma \rightarrow \Gamma_{P}$, where v_{P} is defined by $v_{P}\left(\sum \alpha_{i} x_{i}\right)=\sum \alpha_{i} x_{i}(P)$.

From Proposition 1 we deduce

$$
\hat{h}(y(P))=3 \operatorname{deg} y\left(h_{Q}(P)+O\left(1+\sqrt{h_{Q}(P)}\right)\right)
$$

Since $\hat{h}(y(P))=0$ and $\operatorname{deg} y \neq 0$ we have

$$
h_{Q}(P) \leq C\left(1+\sqrt{h_{Q}(P)}\right)
$$

whence

$$
h_{Q}(P) \leq C^{\prime} .
$$

We recall that $\operatorname{deg} x_{i} \leq 3 \operatorname{deg} \mathcal{C}$ so, by Proposition 1 again, we have

$$
\hat{h}(x(P))=\sum_{i} \hat{h}\left(x_{i}(P)\right) \ll 1
$$

4. - Intersecting with algebraic subgroups of codimension 2

In this section we give a proof of Theorem 2, we recall that E is C.M. in this case. By Theorem 1 the set $S_{2}(\mathcal{C})$ is of bounded height. Thus, by Northcott's Theorem, it is enough to prove that $S_{2}(\mathcal{C})$ is defined over a number field of finite absolute degree. The proof of this theorem is organized in different sections.

For positive integers $n>r \geq 0$ we define the set $S_{n-r}(\mathcal{C}):=\bigcup_{\operatorname{cod}(A) \geq n-r} \mathcal{C} \cap$ $A(\overline{\mathbb{Q}})$ where A ranges over all algebraic subgroups of E^{n} of dimension at most r. Using some geometry of numbers, we shall prove that there exist 'good' integral generators for a Euclidean lattice. For every point $P \in S_{2}(\mathcal{C})$, the Siegel Lemma will allow us to construct a new abelian subvariety A of E^{n}, which passes through the point P and whose degree is controlled in terms of the height of the elements of the 'good' basis g_{1}, \ldots, g_{r} and of the order $N R$ of the torsion of the coordinate module Γ_{P}. The degree of A gives an upper bound for the degree of the field $K(P)$ of definition of P. Using a recent result of S. David and M. Hindry we make this upper bound independent of the height of the g_{1}, \ldots, g_{r}. On the other hand the torsion of Γ_{P} is defined over $K(P)$, thus we find a lower bound for the degree of $K(P)$ in terms of $N R$. It will turn out that, if we consider the set $S_{n-r}(\mathcal{C}):=\bigcup \mathcal{C} \cap A(\overline{\mathbb{Q}})$ for $n-r \geq 3$, the statement follows immediately from combining the above upper and lower bounds. However if we consider $S_{2}(\mathcal{C})$ where the union is taken over all algebraic subgroups of codimension ≥ 2, some difficulties occur. We shall deal with two different situations. In the first one we suppose that there exists a special point g of 'small' height and linearly independent with the 'good' basis g_{1}, \ldots, g_{r}. Proposition 4 will then give a finer upper bound. If this point does not exist, then a cohomological argument will enable us to refine the upper bound. This will conclude the proof.

For an elliptic curve E with C.M., we consider the order \mathcal{O} of endomorphisms of E as a \mathbb{Z}-module of rank 2 . In this way we will be able to apply the Siegel Lemma and some results from lattice theory.

Lemma 2. Let R be an integral domain and let M be an R-algebra and a free R-module of rank δ. Let τ_{i} be elements of M such that $M=\tau_{0} R+\tau_{1} R+\cdots+\tau_{\delta-1} R$. Then the elements g_{1}, \ldots, g_{r} of M^{m} are linearly independent over M if and only if the elements $\tau_{0} g_{1}, \ldots, \tau_{0} g_{r}, \tau_{1} g_{1}, \ldots, \tau_{1} g_{r}, \ldots, \tau_{\delta-1} g_{1}, \ldots, \tau_{\delta-1} g_{r}$ are linearly independent over R.

Proof. Consider a linear combination $\sum_{j=1, i=0}^{r, \delta-1} \lambda_{i j}\left(\tau_{i} g_{j}\right)=0$, with $\lambda_{i j} \in R$ then $\sum_{j=1}^{r}\left(\sum_{i=0}^{\delta-1} \lambda_{i j} \tau_{i}\right) g_{j}=0$ with $\left(\sum_{i=0}^{\delta-1} \lambda_{i j} \tau_{i}\right) \in M$. The g_{j} are M-linearly independent if and only if for each $j=1, \ldots r$ we have $\sum_{i=0}^{\delta-1} \lambda_{i j} \tau_{i}=0$ but the τ_{i} are a R basis of M, hence $\lambda_{i j}=0$.

Let P be a point in $S_{2}(\mathcal{C})$, then, by the Subgroup Lemma 1, there exist two \mathcal{O}-linearly independent forms $\sum_{i=1}^{n} \alpha_{i} \pi_{i}$ and $\sum_{i=1}^{n} \alpha^{\prime}{ }_{i} \pi_{i}$, vanishing on an algebraic subgroup A of E^{n}, such that $\sum_{i=1}^{n} \alpha_{i} x_{i}(P)=0$ and $\sum_{i=1}^{n} \alpha^{\prime}{ }_{i} x_{i}(P)=0$.

From Lemma 2, four \mathbb{Z}-linearly independent equations are associated to these two \mathcal{O}-linearly independent equations. Namely the equations $\sum_{i=1}^{2 n} m_{j i} x_{i}(P)=0$ and $\sum_{i=1}^{2 n} m^{\prime}{ }_{j i} x_{i}(P)=0$ for $j=1,2$ where we have set $x_{n+i}(P):=\tau x_{i}(P)$ and $\alpha_{i}=m_{1, i}+m_{1, n+i} \tau, \alpha_{i}^{\prime}=m_{1, i}^{\prime}+m_{1, n+i}^{\prime} \tau, \tau \alpha_{i}=m_{2, i}+m_{2, n+i} \tau, \tau \alpha_{i}^{\prime}=$ $m_{2, i}^{\prime}+m^{\prime}{ }_{2, n+i} \tau$. So the module $\Gamma_{P}:=\left\langle x_{1}(P), \ldots, x_{2 n}(P)\right\rangle_{\mathcal{O}}$ has rank r as \mathcal{O}-module and it has rank $2 r$ as \mathbb{Z}-module.

4.1. - Some Geometry of Numbers

I am grateful to Prof. E. Bombieri who communicated the following proof of this lemma:

Lemma 3. Let Γ be a finitely generated subgroup of E of rank r over \mathbb{Z}. Then there are elements $g_{1}, \ldots, g_{r} \in \Gamma$ which generate a subgroup isomorphic to $\Gamma / \operatorname{Tor}(\Gamma)$ and such that

$$
\hat{h}\left(\sum a_{i} g_{i}\right) \geq c(r)\left(\sum\left|a_{i}\right|^{2} \hat{h}\left(g_{i}\right)\right)
$$

with $a_{i} \in \mathbb{Z}$ and $c(r)=2^{2 r-2} / r^{2}(r!)^{4}$.
The constant can be deduced by Theorem 1.1 of Schlickewei [17]
Proof. From [23] Proposition 9.6, we know that the height function \hat{h} extends on $\Gamma_{\mathbb{R}}:=\Gamma \otimes_{\mathbb{Z}} \mathbb{R}$ to the square of a norm. In particular there is an inner product $\langle P, Q\rangle=\hat{h}(P+Q)-\hat{h}(P)-\hat{h}(Q)$ and $\|P\|^{2}=2 \hat{h}(P)$. The group $\Gamma / \operatorname{Tor}(\Gamma)$ is a lattice in $\Gamma_{\mathbb{R}}$. Let $\tilde{p}_{1}, \ldots, \tilde{p}_{r}$ be liftings on Γ of integral generators p_{1}, \ldots, p_{r} of $\Gamma / \operatorname{Tor}(\Gamma)$. We identify \mathbb{R}^{r} and $\Gamma_{\mathbb{R}}$ via the isomorphism defined by the choice of the basis p_{1}, \ldots, p_{r}. Let $V:=\operatorname{vol}\left(p_{1}, \ldots p_{r}\right)$ be the volume of a fundamental domain of $\Gamma / \operatorname{Tor}(\Gamma)$. Let $B:=\left\{x \in \mathbb{R}^{r}:\|x\| \leq 1\right\}$ be the closed ball of radius 1 . Let $\lambda_{1}, \ldots \lambda_{r}$ be the successive minima of B with respect to the lattice $\Gamma / \operatorname{Tor}(\Gamma)$. By Minkowski's second fundamental Theorem we have

$$
\begin{equation*}
\lambda_{1}, \ldots \lambda_{r} \operatorname{vol}(B) \leq 2^{r} V \tag{7}
\end{equation*}
$$

A Theorem of Mahler, [5] Section V, Lemma 8, shows that there is a basis v_{1}, \ldots, v_{r} of $\Gamma / \operatorname{Tor}(\Gamma)$ such that

$$
\begin{equation*}
\lambda_{i} \leq\left\|v_{i}\right\| \leq \max (1, i / 2) \lambda_{i} \tag{8}
\end{equation*}
$$

Let $v_{i}=\sum_{j=1}^{r} v_{i j} p_{i}=\left(v_{i 1}, \ldots, v_{i r}\right)$. Since v_{1}, \ldots, v_{r} is a basis we have

$$
\begin{equation*}
\left|\operatorname{det}\left(v_{1}, \ldots, v_{r}\right)\right|=V \tag{9}
\end{equation*}
$$

We write

$$
\begin{equation*}
w_{i}=\frac{v_{i}}{\left\|v_{i}\right\|} \tag{10}
\end{equation*}
$$

and we define B^{*} to be

$$
\begin{equation*}
B^{*}=\left\{y \in \mathbb{R}^{r}:\left\|y_{1} w_{1}+y_{2} w_{2}+\cdots+y_{r} w_{r}\right\| \leq 1\right\} \tag{11}
\end{equation*}
$$

where $y=y_{1} p_{1}+y_{2} w_{2}+\cdots+y_{r} p_{r}$. Since B is the image of B^{*} by the linear map $y=y_{1} p_{1}+y_{2} p_{2}+\cdots+y_{r} p_{r} \mapsto y_{1} w_{1}+y_{2} p_{2}+\cdots+y_{r} w_{r}$, we have, by (7), (8), (9) and (10), the upper bound

$$
\begin{equation*}
\operatorname{vol}\left(B^{*}\right)=\frac{\operatorname{vol}(B)}{\left|\operatorname{det}\left(w_{1}, w_{2}, \ldots, w_{r}\right)\right|}=\frac{\operatorname{vol}(B)}{V} \prod_{i=1}^{r}\left\|v_{i}\right\| \leq 2 r! \tag{12}
\end{equation*}
$$

A lower bound is obtained as follows. Let $e_{j}, j=1, \ldots, r$ be the standard basis in \mathbb{R}^{r}. Let y be a boundary point of B^{*}. Then for each i the set B^{*} contains the convex closure of the points $\pm y$ and $\pm e_{j}, j=1, \ldots, i-1, i+1, \ldots r$. This set is the union of 2^{r} simplices of volume $\left|y_{i}\right| / r!$. Therefore we get the lower bound

$$
\left|y_{i}\right| \frac{2^{r}}{r!} \leq \operatorname{vol}\left(B^{*}\right)
$$

which, combined with (12), gives

$$
\begin{equation*}
\sum_{i=1}^{r}\left|y_{i}\right| \leq 2^{-r+1} r(r!)^{2}\left\|\sum_{i=1}^{r} y_{i} w_{i}\right\|, \tag{13}
\end{equation*}
$$

where the norm on the right is 1 because y is a boundary point of B^{*}. Now, from (10), we may rewrite (13) as

$$
\begin{equation*}
\left\|\sum_{i=1}^{r} x_{i} v_{i}\right\| \geq c(r) \sum_{i=1}^{r}\left|x_{i}\right| \cdot\left\|v_{i}\right\| \tag{14}
\end{equation*}
$$

where $x_{i}=y_{i} /\left\|v_{i}\right\|$ and $c(r)=2^{r-1} / r(r!)^{2}$. Finally, we define generators g_{i} for a subgroup $\bar{\Gamma}$ of Γ isomorphic to $\Gamma / \operatorname{Tor}(\Gamma)$, by setting

$$
g_{i}=\sum_{j=1}^{r} v_{i j} \tilde{p}_{j}
$$

where $v_{i}=\left(v_{i 1}, \ldots, v_{i r}\right)$. Thus we have

$$
2 \hat{h}\left(\sum_{i=1}^{r} a_{i} g_{i}\right)=\left\|a_{i} v_{1}+\cdots+a_{r} v_{r}\right\|^{2}
$$

Since $\left\|v_{i}\right\|^{2}=2 \hat{h}\left(g_{i}\right)$, Lemma 3 follows from (14).

Proposition 2. Let P be a point of $S_{n-r}(\mathcal{C})$ for some integers $0 \leq r<n$. Let $K(P)$ be the field of definition of P. We consider the module $\Gamma_{P}:=\left\langle x_{1}(P), \ldots, x_{2 n}(P)\right\rangle_{\mathbb{Z}}$ of rank $2 r$ over \mathbb{Z}, generated by the coordinate functions and their conjugates under τ. Then there exist \mathbb{Z}-linearly independent elements $g_{1}, \ldots, g_{2 r} \in \Gamma_{P}$ such that

1. The g_{i} are defined over $K(P)$.
2. The set of points g_{1}, \ldots, g_{r} respectively $g_{r+1}, \ldots, g_{2 r}$ are \mathcal{O}-linearly independent.
3. The subgroup $\bar{\Gamma}_{P}=\left\langle g_{1}, \ldots, g_{2 r}\right\rangle_{\mathbb{Z}}$ of Γ_{P} is isomorphic to $\Gamma_{P} / \operatorname{Tor}\left(\Gamma_{P}\right)$, moreover
$\hat{h}\left(\sum_{i=1}^{2 r} a_{i} g_{i}\right) \geq c(r)\left(\sum_{i=1}^{2 r}\left|a_{i}\right|^{2} \hat{h}\left(g_{i}\right)\right)$.
4. There exist torsion points P_{1} and P_{2} of exact order N respectively R with $R \mid N$, such that $\operatorname{Tor}\left(\Gamma_{P}\right)=\left\langle P_{1}, P_{2}\right\rangle_{\mathbb{Z}} \cong \mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / R \mathbb{Z}$. The group $\operatorname{Tor}\left(\Gamma_{P}\right)$ is \mathcal{O} invariant and $K\left(\operatorname{Tor}\left(\Gamma_{P}\right)\right) \subset K(P)$.

Proof. (1) The g_{i} are a \mathbb{Z} linear combination of the $x_{i}(P)$ which are in $K(P)$ so the g_{i} are defined over $K(P)$ as well.
(2) Let $\bar{\Gamma}_{P}$ be the free part of Γ_{P}, then $\bar{\Gamma}_{P}=\Gamma_{1}+\tau \Gamma_{1}$. Consider a \mathbb{Z}-basis g_{1}, \ldots, g_{r} of Γ_{1}. The elements $g_{r+1}=\tau g_{1}, \ldots, g_{2 r}=\tau g_{r}$ are a \mathbb{Z}-basis of $\tau \Gamma_{1}$ and clearly the g_{i} fulfill the required conditions.
(3) Let g_{1}, \ldots, g_{r} be a basis of Γ_{1} given by Lemma 3. Since the sphere is compact and the spaces $\Gamma_{1} \otimes \mathbb{R}, \tau \Gamma_{1} \otimes \mathbb{R}$ have empty intersection, we get $\left\langle g_{i}, \tau g_{j}\right\rangle /\left\|g_{i}\right\|\left\|\tau g_{j}\right\| \leq c(r, \tau)<1$, with $c(r, \tau)$ a constant depending on τ and r. Then the basis $g_{1}, \ldots, g_{r}, g_{r+1}=\tau g_{1}, \ldots, g_{2 r}=\tau g_{r}$ satisfies the required condition.
(4) Step I: Study of subgroups of $E[N]$.

The lattice period Λ associated to E is a projective \mathcal{O}-module of rank 1. In particular $E[N] \cong \Lambda / N \Lambda \cong \prod \Lambda_{\mathfrak{p}} / N \Lambda_{\mathfrak{p}} \cong \prod \mathcal{O}_{\mathfrak{p}} / N \mathcal{O}_{\mathfrak{p}} \cong \mathcal{O} / N \mathcal{O}$, where \mathfrak{p} is a prime ideal, (see [20] $\S 1)$. Let T_{1} be a torsion point of exact order N (i.e. so that $N \cdot T=0$ but $k T \neq 0$ for all divisors k of N). We are going to proof that the point τT_{1} has order N^{\prime} with $N / N^{\prime} \ll 1$. We can write T_{1} as $a+b \tau$ in $\mathcal{O} / N \mathcal{O}$ with the greatest common divisor (N, a, b) being 1. Let $\tau^{2}=\alpha+\beta \tau$, then $\tau T_{1}=b \alpha+(a+b \beta) \tau$ has order $N^{\prime}=N / s$ with $s=(N, b \alpha, a+b \beta)$. Let $s_{1}=(s, b)$, then $s_{1} \mid a$ and $s_{1} \mid N$, thus $s_{1} \mid(N, a, b)=1$. It follows that $s_{1}=1$ and so $s \mid \alpha$. The order of τT_{1} is at least $N /(N, \alpha), \alpha$ is the real part of τ^{2} and so a constant of the problem.

We want now to study the subgroup of $E[N]$ generated by $T_{1}, \tau T_{1}$. Let T_{2} be a torsion point of exact order N such that $E[N]=\left\langle T_{1}, T_{2}\right\rangle_{\mathbb{Z}}$. Then $\tau T_{1}=$ $a T_{1}+b T_{2}$ for integers a and b, thus $\left\langle T_{1}, \tau T_{1}\right\rangle=\left\langle T_{1}, b T_{2}\right\rangle$. Let $R=N /(N, b)$ if $b \neq 0$ or $R=1$ if $b=0$, then $\left\langle T_{1}, \tau T_{1}\right\rangle \cong \mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / R \mathbb{Z}$.

Step II: Study of $\operatorname{Tor}\left(\Gamma_{P}\right)$.
We consider the equations

$$
\begin{equation*}
x_{i}(P)=\sum_{j=1}^{2 r} a_{i j} g_{j}+T_{i}, \quad i=1, \ldots 2 n \tag{15}
\end{equation*}
$$

where $a_{i j} \in \mathbb{Z}$ and the T_{i} are torsion points such that $T_{n+i}=\tau T_{i}$. Since $\bar{\Gamma}_{P}$ is projective then $\Gamma_{P} / \bar{\Gamma}_{P} \cong \operatorname{Tor}\left(\Gamma_{P}\right)$, thus the T_{i} are generators of $\operatorname{Tor}\left(\Gamma_{P}\right)$. Let N_{i} be the order of the torsion points T_{i} for $i=1, \ldots, r$ (or equivalently for $i=r+1, \ldots, 2 r)$. Let N be the smallest integer such that $T_{i} \in E[N]$ for all $i=1, \ldots, r$, i.e. $N=$ l.c.m. $\left(N_{1}, \ldots N_{r}\right)$ is the least common multiple of the N_{i}. We decompose $N=p_{1}^{l_{1}} \ldots p_{k}^{l_{k}}$ with p_{i} different prime numbers. Then for some positive integer $j \leq r$ and for any $1 \leq i \leq k$ we have $p_{i}^{l_{i}} \mid N_{j}$ and $\left(p, N_{j} / p^{l_{i}}\right)=1$. We define $R_{i}:=\frac{N_{j}}{p_{i}^{l_{i}}} T_{j}$, thus, for $i=1, \ldots, k$, the torsion points R_{i} have coprime exact order $p_{i}^{l_{i}}$. From the Chinese Reminder Theorem the point $P_{1}:=\sum_{i=1}^{n} R_{i}$ has exact order N. By relation (15) $\operatorname{Tor}\left(\Gamma_{P}\right)=\left\langle P_{1}, \tau P_{1}\right\rangle$. The assertion follows from Step I.

Since $x_{i}(P)$ and g_{i} are defined over $K(P)$, also P_{1} and P_{2} are defined over $K(P)$, therefore $K\left(\operatorname{Tor}\left(\Gamma_{P}\right)\right) \subset K(P)$.

4.2. - Estimate for the Degree of $K(P)$

For every point $P \in S_{2}(\mathcal{C})$ we construct an algebraic subgroup of E^{n} passing through P whose degree is bounded in terms of the order of the torsion of Γ_{P} and of the height of the elements of the basis g_{i} of $\bar{\Gamma}_{P}$ defined by Proposition 2.

The g_{i} are \mathbb{Z}-generators of the free part $\bar{\Gamma}_{P}$ of Γ_{P}, so we can write

$$
\begin{equation*}
x_{i}(P)=\sum_{j=1}^{2 r} a_{i j} g_{j}+T_{i}, \quad i=1, \ldots, 2 n \tag{16}
\end{equation*}
$$

with $a_{i j} \in \mathbb{Z}$ and N-torsion points T_{i} such that $T_{n+i}=\tau T_{i}$ for $i=1, \ldots, n$. By Proposition 2 (3) and Theorem 1 we have

$$
\begin{equation*}
\left|a_{i j}\right|^{2} \hat{h}\left(g_{j}\right) \ll \hat{h}\left(x_{i}(P)\right) \ll h(P) \ll 1 \tag{17}
\end{equation*}
$$

where the constants involved depend only on n, E and \mathcal{C}. Therefore, setting

$$
\begin{equation*}
v_{j}=\left(a_{1 j}, \ldots, a_{n j}\right) \tag{18}
\end{equation*}
$$

and defining $\left|v_{j}\right|=\max _{i}\left\{\left|a_{i j}\right|, 1\right\}$, we see that

$$
\begin{equation*}
\hat{h}\left(g_{j}\right) \ll\left|v_{j}\right|^{-2} . \tag{19}
\end{equation*}
$$

Proposition 3. Let P be a point of $S_{n-r}(\mathcal{C})$. There exists a proper algebraic subgroup A of E^{n} defined over K and passing through P such that

$$
\sharp A \cap \mathcal{C} \leq 3^{3}|\tau|^{2} \operatorname{deg} \mathcal{C}\left(N R \prod_{j=1}^{2 r}\left|\nu_{j}\right|\right)^{\frac{1}{n-r}}
$$

where the v_{j} are defined in (18).

Proof. From Proposition 2 (4) there exist torsion points P_{1} and P_{2} in Γ_{P} of exact order N, respectively R which are \mathbb{Z}-generators of $\operatorname{Tor}\left(\Gamma_{P}\right)$. Then we can write

$$
T_{i}=l_{i}^{1} P_{1}+l_{i}^{2} P_{2}
$$

whit $l_{i}^{j} \in \mathbb{Z}$. We apply Siegel's Lemma as in [2] to the $2 r+2$ linear forms $\sum_{i=1}^{2 n} a_{i j} b_{i}=0$, for $j=1, \ldots, 2 r$, and $\sum_{i=1}^{2 n} l_{i}^{1} b_{i}-N b_{2 n+1}=0, \sum_{i=1}^{2 n} l_{i}^{2} b_{i}-$ $R b_{2 n+2}=0$, in the $2 n+2$ variables b_{i}. Then we get a nonzero vector $b=$ $\left(b_{1}, \ldots, b_{2 n}\right) \in \mathbb{Z}^{2 n}$ such that

$$
\left\{\begin{array}{l}
\sum_{i=1}^{2 n} a_{i j} b_{i}=0 \tag{20}\\
\sum_{i=1}^{2 n} l_{i}^{1} b_{i} \equiv 0 \bmod N \\
\sum_{i=1}^{2 n} l_{i}^{2} b_{i} \equiv 0 \bmod R
\end{array}\right.
$$

and

$$
\begin{equation*}
\max \left|b_{i}\right| \leq\left(N R \prod_{j=1}^{2 r}\left|v_{j}\right|\right)^{\frac{1}{2 n-2 r}} \tag{21}
\end{equation*}
$$

From (16) and (20) we obtain

$$
\sum_{i=1}^{n} \beta_{i} x_{i}(P)=0
$$

where $\beta_{i}=b_{i}+\tau b_{n+i}$.
Then the equation

$$
\begin{equation*}
\sum_{i=1}^{n} \beta_{i} x_{i}=0 \tag{22}
\end{equation*}
$$

gives a proper algebraic subgroup A of E^{n} defined over K of codimension 1 which contains the point P.

Let us consider the morphism $\Sigma: \mathcal{C} \rightarrow E$ that sends a point $Q \in \mathcal{C}$ to the linear combination $\sum_{i=1}^{r} \beta_{i} x_{i}(Q)$, we deduce that the order of the intersection $A \cap \mathcal{C}$ is the degree of Σ. Since the degree is the square of a norm we have that $\operatorname{deg} \Sigma \leq \sum_{i} 3\left|\beta_{i}\right|^{2} \operatorname{deg} x_{i}$ which in turn is estimated by $\operatorname{deg} \Sigma \leq$ $3^{3}|\tau|^{2} \operatorname{deg} \mathcal{C} \max \left|b_{i}\right|^{2}$ because $\left|\beta_{i}\right|^{2} \leq 3\left(\left|b_{i}\right|^{2}+\left|\tau b_{r+i}\right|^{2}\right)$ and by the Bézout Theorem $\operatorname{deg} x_{i} \leq 3 \operatorname{deg} \mathcal{C}$. Now the statement follows from (21).

Corollary 1. Let P be a point in $S_{n-r}(\mathcal{C})$. Let $K(P)$ be the field of definition of the point P. Then

$$
\begin{equation*}
d:=[K(P): \mathbb{Q}] \ll\left(N R \prod_{j=1}^{2 r}\left|v_{j}\right|\right)^{\frac{1}{n-r}} \tag{23}
\end{equation*}
$$

Proof. Let A be the algebraic subgroup given by Proposition 3 . Since P belongs to the intersection $A \cap \mathcal{C}$, then all its conjugates are in $A \cap \mathcal{C}$ for a certain field of definition of \mathcal{C}. Then $[K(P): \mathbb{Q}] \ll \sharp(A \cap C) /[K: \mathbb{Q}]$.

We are going to make the upper bound (23) for $d:=[K(P): \mathbb{Q}]$ independent from $\prod_{j=1}^{2 r}\left|v_{j}\right|$. Then we will find a lower bound for the degree d which, combined with the above upper bound, will induce an absolute bound for the variables $N R$ and d.

Proposition 4. Let $Q_{1}, \ldots Q_{r}$ be \mathcal{O}-linearly independent points in E. Let D be the degree of the field of definition of those points. Then

$$
D^{-1-\varepsilon} \ll \prod_{i=1}^{r} \hat{h}\left(Q_{i}\right)
$$

Proof. We can assume that $\hat{h}\left(Q_{1}\right) \leq \hat{h}\left(Q_{i}\right)$ for $i=2, \ldots, r$. Let us consider integers $\delta_{1}=1, \delta_{2}, \ldots, \delta_{r}$ and points $Q^{\prime}{ }_{1}, \ldots, Q^{\prime}{ }_{r}$ defined over K^{\prime}, satisfying

$$
\begin{equation*}
Q_{1}^{\prime}=Q_{1}, \delta_{2} Q_{2}^{\prime}=Q_{2}, \ldots, \delta_{r} Q_{r}^{\prime}=Q_{r} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{h}\left(Q_{1}\right) \leq \hat{h}\left(Q^{\prime}{ }_{i}\right) \leq 4 \hat{h}\left(Q_{1}\right) \tag{25}
\end{equation*}
$$

For example we can set $\delta_{i}:=\left[\sqrt{\frac{x}{y}}\right]$ where $x:=\hat{h}\left(Q_{i}\right), y:=\hat{h}\left(Q_{1}\right)$ and [•] is the integer part of a real number. We easily see that (24) is equivalent to $\left[\sqrt{\frac{x}{y}}\right] \leq \sqrt{\frac{x}{y}} \leq 2\left[\sqrt{\frac{x}{y}}\right]$ which is trivially true since $x \geq y$. Then

$$
\begin{equation*}
D^{\prime}:=\operatorname{deg} K^{\prime} \leq D \prod_{i=2}^{r} \delta_{i}^{2} \tag{26}
\end{equation*}
$$

Since the points $Q_{1}, \ldots Q_{r}$ are \mathcal{O}-linearly independent points in E then also the points $Q^{\prime}{ }_{1}, \ldots, Q^{\prime}{ }_{r}$ are \mathcal{O}-linearly independent. Thus $\left(Q^{\prime}{ }_{1}, \ldots, Q^{\prime}{ }_{r}\right) \in E^{r}$, as well as $\left(Q_{1}, \ldots Q_{r}\right)$, is a point of infinite order modulo all proper abelian subvarieties of E^{r}.

Now we need a recent result of S. David and M. Hindry.

Lemma 4 ([7] Theorem 1.3). Let A be an abelian variety of dimension g with complex multiplication defined over a number field K and \mathcal{L} a symmetric ample line bundle on A. Let P be a point on A of infinite order modulo all abelian subvarieties of $A(\bar{K})$ then

$$
h_{\mathcal{L}}(P) \geq C(A, \mathcal{L}) D^{-\frac{1}{g}}\left(\frac{\log \log (3 D)}{\log (3 D)}\right)^{\kappa(g)}
$$

where D is the degree of the field of definition of $P, h_{\mathcal{L}}$ is the height defined by the divisor associated to $\mathcal{L}, C(A, \mathcal{L})$ is a positive constant depending only on A and \mathcal{L}, and κ is a positive constant depending only on g.

After replacing $(\log \log (3 D) / \log (3 D))$ by $(D)^{-\varepsilon}$, for ε small enough, Lemma 4 tells us that

$$
D^{\prime-\frac{1}{r}-\varepsilon} \ll \hat{h}\left(Q_{1}^{\prime}, \ldots, Q_{r}^{\prime}\right)
$$

The height of $\left(Q^{\prime}{ }_{1}, \ldots, Q^{\prime}{ }_{r}\right)$ is, by definition, the sum of the heights of its components, hence, using the upper bound (26) for D^{\prime}, we deduce

$$
\left(D \prod_{i=1}^{r} \delta_{i}^{2}\right)^{-\frac{1}{r}-\varepsilon} \ll \sum_{i=1}^{r} \hat{h}\left(Q_{i}^{\prime}\right)
$$

and by relation (25) we have

$$
D^{-1-\varepsilon} \ll \hat{h}^{r}\left(Q_{1}\right)\left(\prod_{i=1}^{r} \delta_{i}^{2}\right)^{1+\varepsilon}
$$

Using once more relations (24) and (25) we have

$$
D^{-1-\varepsilon} \ll \prod_{i=1}^{r} \hat{h}\left(Q_{i}\right)
$$

for ε small enough.
Corollary 2. Let $P \in S_{n-r}(\mathcal{C})$, let N be the smallest integer that annihilates the torsion of Γ_{P} and d the degree of the field $K(P)$ of definition of P. Then

$$
\begin{equation*}
(N R)^{1-\varepsilon} \ll d \ll(N R)^{\frac{1}{(n-r-1-\varepsilon)}} . \tag{27}
\end{equation*}
$$

Proof. Let $g_{1}, \ldots g_{2 r}$ be the integral basis of the lattice $\bar{\Gamma}_{P}$ defined by Proposition 2. Then the set of points g_{1}, \ldots, g_{r} respectively $g_{r+1}, \ldots, g_{2 r}$ are
\mathcal{O}-linearly independent points of $E(K(P))$. Applying Proposition 4 to these two sets of points, we deduce

$$
\begin{align*}
& d^{-1-\varepsilon} \ll \prod_{i=1}^{r} \hat{h}\left(g_{i}\right) \\
& d^{-1-\varepsilon} \ll \prod_{i=r+1}^{2 r} \hat{h}\left(g_{i}\right) \tag{28}
\end{align*}
$$

where $d:=[K(P): \mathbb{Q}]$. Multiplying left and right sides of these two relations and using (19) we have

$$
\begin{equation*}
\prod_{i=1}^{2 r}\left|v_{i}\right| \ll d^{1+\varepsilon} \tag{29}
\end{equation*}
$$

From Corollary 1 and (29), we deduce

$$
\begin{equation*}
\left(\prod_{i=1}^{2 r}\left|\nu_{i}\right|\right)^{n-r-1-\varepsilon} \ll(N R)^{1+\varepsilon} \tag{30}
\end{equation*}
$$

as well as

$$
\begin{equation*}
d \ll(N R)^{\frac{1}{(n-r-1-\varepsilon)}} . \tag{31}
\end{equation*}
$$

On the other hand, by Proposition 2 (4), the torsion $\operatorname{Tor}\left(\Gamma_{P}\right)$ is a finite group defined over $K(P)$ and its \mathcal{O} invariant. From Corollary 3 below, we see that $\Phi(N) \Phi(R) \ll\left[K\left(\operatorname{Tor}\left(\Gamma_{P}\right)\right): \mathbb{Q}\right]$, where Φ is the Euler's function, then

$$
\begin{equation*}
(N R)^{1-\varepsilon} \ll d \tag{32}
\end{equation*}
$$

and we conclude the proof.

4.3. - The Easy Cases

The case $n-r \geq 3$ follows immediately from Corollary 1 , because ($1-$ $\varepsilon)-1 /(n-r-1-\varepsilon)>0$ for $n-r \geq 3$ so N and d are uniformly bounded.

For $r=n-2$, we shall distinguish two cases. Suppose that g_{1} has minimal height among $g_{1}, \ldots g_{r}$. If a conjugate of g_{1} is \mathcal{O}-linearly independent from g_{1}, \ldots, g_{n-2} then the following lemma solves the problem.

Lemma 5. Let g_{1}, \ldots, g_{n-2} be the \mathcal{O}-basis of $\bar{\Gamma}_{P}$ fixed above and assume that $\hat{h}\left(g_{1}\right) \leq \hat{h}\left(g_{i}\right)$ for $i=1, \ldots, n-2$. Let g be a conjugate of g_{1} under $\operatorname{Gal}(\bar{K} / K)$, which is \mathcal{O}-linearly independent from g_{1}, \ldots, g_{n-2}. Then $N R$ and d are bounded independently on P.

Proof. The field of definition of $\operatorname{Tor}\left(\Gamma_{P}\right)$ is normal (Corollary 3 below), so it is contained in $K(P, g)$. Using Corollary 2 we have

$$
[K(P, g): \mathbb{Q}] \leq \frac{\left[K\left(P, g_{1}\right): \mathbb{Q}\right]^{2}}{\left[K\left(\operatorname{Tor}\left(\Gamma_{P}\right)\right): \mathbb{Q}\right]} \leq(N R)^{1+\varepsilon}
$$

Let $r=n-2$. Note that if $g, g_{1}, \ldots g_{r}$ are \mathcal{O}-linearly independent then also $g, g_{r+1}, \ldots, g_{2 r}$ are \mathcal{O}-linearly independent. Applying Proposition 4 to g, g_{1}, \ldots, g_{r} and $g, g_{r+1}, \ldots, g_{2 r}$ respectively, we get

$$
\begin{aligned}
& (R N)^{-1-\varepsilon} \ll \hat{h}\left(g_{1}\right) \cdots \hat{h}\left(g_{r}\right) \hat{h}(g) \\
& (R N)^{-1-\varepsilon} \ll \hat{h}\left(g_{r+1}\right) \cdots \hat{h}\left(g_{2 r}\right) \hat{h}(g)
\end{aligned}
$$

and so

$$
(R N)^{-2-\varepsilon} \ll \hat{h}\left(g_{1}\right) \cdots \hat{h}\left(g_{2 r}\right) \hat{h}(g)^{2}
$$

By assumption, the height of g is minimal. Using (19) we deduce

$$
(R N)^{(-1-\varepsilon) 2 r / 2(r+1)} \ll\left(\hat{h}\left(g_{1}\right) \cdots \hat{h}\left(g_{2 r}\right)\right)^{1 / 2} \ll\left(\prod_{i=1}^{2 r}\left|v_{i}\right|\right)^{-1}
$$

so

$$
\left(\prod_{i=1}^{2 r}\left|v_{i}\right|\right)^{1 / 2} \ll(R N)^{r+\varepsilon / 2(r+1)}
$$

By Corollary 1 and 2 we deduce

$$
d \ll(N R)^{\frac{(2 r+1}{2(r+1)}+\varepsilon},
$$

which combined with the lower bound of Corollary 2 gives

$$
(N R)^{1-\varepsilon} \ll d \ll(N R)^{\frac{2 r+1}{2(r+1)}+\varepsilon}
$$

We see that $2(1-\varepsilon)(r+1)-(2 r+1)-2 \varepsilon(r+1)$ is always larger than zero if $\varepsilon(r)$ is small enough. Thus $N R$ and consequently d are uniformly bounded.

4.4. - The Difficult Case

Suppose that $r=n-2, \hat{h}\left(g_{1}\right) \leq \hat{h}\left(g_{i}\right)$ for $i=1, \ldots, r$ and that g, g_{1}, \ldots, g_{r} are linearly dependent for all conjugates g of g_{1} under the Galois group $\operatorname{Gal}(\bar{K} / K)$. This last case is more complicated and requires the study of the cohomology of the extensions $L(E[N])$ with L a number field.

Lemma 6. Let E be an elliptic curve defined over $\overline{\mathbb{Q}}$. Let g_{1}, \ldots, g_{r} be \mathcal{O} linearly independent algebraic points of E. Let p be a point of $E(\overline{\mathbb{Q}})$ such that $\sigma(p), g_{1}, \ldots, g_{r}$ are \mathcal{O}-linearly dependent for every $\sigma \in \operatorname{Gal}(\bar{K} / K)$. Then there is a positive integer h such that $h \cdot p$ is defined over a number field of degree at most $d(r)$ over K, with $d(r)$ depending only on r.

Proof. If E is C.M. then the points $\sigma(p), g_{1}, \ldots g_{r}, \tau g_{1}, \ldots \tau g_{r}$ are \mathbb{Z} linearly dependent. In fact by Lemma 2 we know that the equation $\beta \sigma(p)=$ $\sum_{i=1}^{r} \alpha_{i} g_{i}$ with $\beta, \alpha_{i} \in \mathcal{O}$ give rise to the two equations $b \sigma(p)+b^{\prime} \tau \sigma(p)=$ $\sum_{i=1}^{r} a_{i} g_{i}+a^{\prime}{ }_{i} \tau g_{i}$ and $c \sigma(p)+c^{\prime} \tau \sigma(p)=\sum_{i=1}^{r} d_{i} g_{i}+d^{\prime}{ }_{i} \tau g_{i}$ with coefficients in \mathbb{Z} and $b+b^{\prime} \tau=\tau\left(c+c^{\prime} \tau\right)$. Since τ and 1 are \mathbb{Q}-linearly independent we have $b c^{\prime}-c b^{\prime} \neq 0$. Thus $\left(b c^{\prime}-c b^{\prime}\right) \sigma(p)=\sum_{i=1}^{r}\left(c^{\prime} a_{i}-b^{\prime} d_{i}\right) g_{i}+\left(c^{\prime} a^{\prime}{ }_{i}-b^{\prime} d^{\prime}{ }_{i}\right) \tau g_{i}$. If E is non C.M. then the points $\sigma(p), g_{1}, \ldots g_{r}$ are \mathbb{Z}-linearly independent by assumption. Now, the proof follows exactly the proof of Lemma 5 in [1], for convenience we recall it. Let Λ be the \mathcal{O}-module generated by all conjugates of p under the Galois group $\operatorname{Gal}(\bar{K} / K)$. Then, from what above, Λ is a \mathbb{Z} module of rank $s \leq 2 r$ if E is C.M. and of rank $s \leq r$ if E is non C.M. Let p_{1}, \ldots, p_{s} be \mathbb{Z}-linearly independent points in Λ. Then we get a representation ρ of $\operatorname{Gal}(\bar{K} / K)$ on $G L_{s}(\mathbb{Z})$ by sending σ in the $s \times s$ matrix $\left(m_{i, j}^{\sigma}\right)_{i, j}$, where $\sigma\left(p_{i}\right)=\sum_{j} m_{i, j}^{\sigma} p_{j}+T_{i}^{\sigma}$ for some torsion point T_{i}^{σ}. Since all σ which fix the elements p_{i} for $i=1, \ldots, s$ belongs to the kernel of ρ, this kernel has then finite index and so ρ has finite image. By [4] Note G, pp.479-484, the order of any finite subgroup of $G L_{s}(\mathbb{Z})$ has order bounded just in terms of s. There exists a positive integer h such that $h T_{i}^{\sigma}=0$ for every σ and i. Hence the kernel of ρ fixes $h p$ and so $h p$ is defined over a number field L whose degree is bounded just in terms of s.

Lemma 7. Let E be an elliptic curve defined over $\overline{\mathbb{Q}}$ and let u be a point of E defined over $L(E[N])$. Suppose that there exists a positive integer h such that hu is defined over L. Then, there exists a torsion point T and an integer k such that $k u+T$ is defined over L and such that $\Phi(k) \leq[L: \mathbb{Q}]$, where $\Phi(\cdot)$ is the Euler's function.

Proof. Let \mathcal{I} be the ideal in \mathbb{Z} consisting of the integers t such that $t u+T$ is defined over L for some torsion point T. Let k be the positive generator of \mathcal{I}. Replacing u by $u+T$ for a certain torsion point T, we can suppose that $k u$ is defined over L. Note that, upon replacing N by a larger constant, we may suppose that the new u is still defined over an extension of the type $L(E[N])$. Let $G_{N}=\operatorname{Gal}(L(E[N]) / L)$ be the Galois group of $L(E[N])$ over L, then the morphism $\zeta: G_{N} \rightarrow E[k]$ given by $\sigma \mapsto \sigma(u)-u$ is a cocycle in fact $\sigma \tau(u)-u=\sigma(\tau(u)-u)+\sigma(u)-u$. By Proposition 7 below, we know that $m^{2} H^{1}\left(G_{N}, E[k]\right)=0$ with m^{2} depending only on E and L and $L\left(E\left[m^{2}\right]\right)=L$. So $m^{2} \zeta$ is a coboundary, i.e. there exists a k-torsion point T such that $m^{2}(\sigma(u)-u)=\sigma T-T$ or $\sigma\left(m^{2} u-T\right)=m^{2} u-T$ for every $\sigma \in G_{N}$. That implies that $m^{2} u-T$ is defined over L. Then $m^{2} \in \mathcal{I}$ thus $k \mid m^{2}$ and, since $L=L(E[m])$, we deduce that $\Phi(k) \leq[L: \mathbb{Q}]$.

Conclusion. We can now conclude also the case $r=n-2, \hat{h}\left(g_{1}\right) \leq$ $\hat{h}\left(g_{i}\right)$, for $i=1, \ldots, 2 r$ and $\sigma\left(g_{1}\right), g_{1}, \ldots, g_{r}$ linearly dependent for every $\sigma \in$ $\operatorname{Gal}(\bar{K} / K)$. By Lemma 6 there exists an integer h such that $h g_{1}$ is defined over a field L of degree at most $d(r)$ over K, where K is a field of definition of E and its j-invariant. We define $u:=\sum_{\sigma \in G} \sigma\left(g_{1}\right)$ with $G:=\operatorname{Gal}\left(L(P) / L\left(\operatorname{Tor}\left(\Gamma_{P}\right)\right)\right)$. Since every conjugate of g_{1} is of the form $g_{1}+T^{\prime}$ for a h-torsion point we have

$$
u=a g_{1}+T^{\prime \prime}
$$

where $T^{\prime \prime}$ is a h torsion point and $a=\left[L(P): L\left(\operatorname{Tor}\left(\Gamma_{P}\right)\right)\right]$. Recall that $\Phi(N) \Phi(R) \ll\left[K\left(\operatorname{Tor}\left(\Gamma_{P}\right)\right): \mathbb{Q}\right]$. Now using Corollary 2 we have

$$
\left[L(P): L\left(\operatorname{Tor}\left(\Gamma_{P}\right)\right)\right] \leq\left[K(P): K\left(\operatorname{Tor}\left(\Gamma_{P}\right)\right)\right] \ll(N R)^{\frac{1}{(1-\varepsilon)}-(1-\varepsilon)} \leq(N R)^{\varepsilon}
$$

Note that $h u$ is defined over L and u is defined over $L\left(\operatorname{Tor}\left(\Gamma_{P}\right)\right)$. Applying Lemma 7, we deduce that there exist a torsion point T and an integer k such that $k u+T$ is defined over L. Since g_{1} is not torsion, the point $k u+T$ can not be torsion. Moreover, the absolute degree of L depends only on n. Thus, by Northcott's Theorem, we have $\hat{h}(k u+T) \geq c>0$, where c is a constant depending only on E and n. In particular

$$
\hat{h}\left(g_{1}\right)=\frac{\hat{h}(k u+T)}{k^{2} a^{2}} \geq c /\left(k^{2}\left[L(P): L\left(\operatorname{Tor}\left(\Gamma_{P}\right)\right)\right]^{2}\right) \gg(N R)^{-\varepsilon}
$$

This relation, combined with (19) and Corollary 1 gives $d \ll(N R)^{\frac{1+r \varepsilon}{2}}$. But we know from Corollary 2 that $(N R)^{1-\varepsilon} \ll d$. Therefore $d=\operatorname{deg} K(P)$ is uniformly bounded.

5. - The non-Complex Multiplication Case

In this section we are going to prove Theorem 3. The proof uses the same method of the C.M. cases. The Proposition 4 is replaced by Proposition 5. The lower bound for the height of points in E given by D. Masser in Lemma 8 is worse that the lower bound given by S. David and H. Hindry in Lemma 4. This is the reason of a weaker result in the non-C.M. case.

Let P be a point of $S_{n-r}(\mathcal{C})$. We consider the coordinate module $\Gamma:=$ $\left\langle x_{1}, \ldots, x_{n}\right\rangle_{\mathbb{Z}}$ of rank n over \mathbb{Z} and the module $\Gamma_{P}:=\left\langle x_{1}(P), \ldots, x_{n}\right\rangle_{\mathbb{Z}}$ of rank r over \mathbb{Z}. Let $K(P)$ be the field of definition of P. In view of Proposition 2 we can choose generators g_{1}, \ldots, g_{r} of Γ_{P} defined over $K(P)$ such that $\bar{\Gamma}_{P}=\left\langle g_{1}, \ldots, g_{r}\right\rangle_{\mathbb{Z}}$ is isomorph to $\Gamma_{P} / \operatorname{Tor}\left(\Gamma_{P}\right)$. Let

$$
x_{i}=\sum a_{i j} g_{j}+T_{i}
$$

with $a_{i j} \in \mathbb{Z}$ and T_{i} torsion points defined over $K(P)$. Let N be the smallest annihilator of $\operatorname{Tor}\left(\Gamma_{P}\right)$. Then a linear combination of the T_{i} gives a torsion point T of exact order N defined over $K(P)$. Then $\operatorname{Tor}\left(\Gamma_{P}\right) \cong \mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / R \mathbb{Z}$ for an integer $R \mid N$. From relations (36) and (37) we see that $\Phi(R)^{2} \Phi(N)^{2} \ll$ $[K(P): \mathbb{Q}]$, whit Φ the Euler's function. Thus we find the lower bound

$$
\begin{equation*}
(R N)^{2-\varepsilon} \ll d=[K(P): \mathbb{Q}] . \tag{33}
\end{equation*}
$$

In analogy to Proposition 3 and Corollary 1 we can find an algebraic subgroup A of E^{n} passing through P and of bounded degree. This bound induces the upper bound

$$
\begin{equation*}
d:=[K(P): \mathbb{Q}] \ll\left(R N \prod_{j=1}^{r}\left|v_{j}\right|\right)^{\frac{2}{n-r}} \tag{34}
\end{equation*}
$$

where $\left|v_{j}\right|=\max _{i}\left|a_{i j}\right|$.
In order to relate d and $\prod_{j=1}^{r}\left|v_{j}\right|$ we need to use a result of Masser which induces the best known lower bound for the height of independent points of a non C.M. elliptic curve in terms of their degree.

Proposition 5. Let g_{1}, \ldots, g_{r} be \mathbb{Z}-linearly independent points of a non C.M. elliptic curve E defined over $\overline{\mathbb{Q}}$. Let D be the degree of their field of definition. Then

$$
\prod_{i=1}^{r} \hat{h}\left(g_{i}\right) \gg \frac{1}{D^{r+2} \log D^{2}}
$$

Proof. We recall the result of Masser and we show how to deduce our proposition from it.

Lemma 8 ([12], Theorem). There are positive effective constants C and C^{\prime} depending only on the field of definition K and on the height of the elliptic curve E, such that for any $D \geq 1$ and any extension L of K of relative degree at most D, we have

$$
\sharp\left\{P \in E(L): \hat{h}(P) \leq \frac{C}{D}\right\} \leq C^{\prime} D \log D .
$$

Without loss of generality we can suppose $\hat{h}\left(g_{i}\right)<1 / D$. Let

$$
\begin{equation*}
h\left(g_{i}\right)=\frac{1}{D^{1+a_{i}}} \tag{35}
\end{equation*}
$$

with $a_{i} \in \mathbb{R}$. We consider the set L of points of E

$$
L=\left\{\sum_{j=1}^{r} l_{j} g_{j} \text { such that } l_{j} \in \mathbb{Z} \text { and }\left|l_{j}\right| \leq D^{a_{j} / 2}\right\}
$$

The height of each point in L is then smaller than $1 / D$, thus from Masser's result we deduce that there exists a constant C_{2} such that

$$
|L| \leq C_{2} D \log D
$$

On the other hand we have $D^{\frac{1}{2} \sum_{j} a_{j}}$ different r-tuple $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$, thus

$$
|L| \geq D^{\frac{1}{2} \sum_{j} a_{j}}
$$

It follows that

$$
D^{\frac{1}{2} \sum_{j} a_{j}} \ll D \log D
$$

whence

$$
\frac{1}{2} \sum_{j} a_{j} \ll 1+\frac{\log \log D}{\log D}
$$

Combining this relation with relation (35) we deduce our claim.
Now we apply Lemma 5 to the basis g_{1}, \ldots, g_{r} of $\bar{\Gamma}_{P}$. The g_{i} are defined over the field $K(P)$ of degree d. We deduce

$$
\prod_{i=1}^{r} \hat{h}\left(g_{i}\right) \gg \frac{1}{d^{r+2+\varepsilon}}
$$

but $\hat{h}\left(g_{i}\right) \ll\left|v_{i}\right|^{-2}$ thus

$$
\begin{equation*}
\prod_{i=1}^{r}\left|v_{i}\right|^{2 / n-r} \ll d^{\frac{r+2+\varepsilon}{(n-r)}} \tag{36}
\end{equation*}
$$

This relation together with the upper bound (34) gives

$$
d \ll(R N)^{\frac{2}{n-2 r-2-\varepsilon}}
$$

In conclusion we have proven the bound $(R N)^{2-\varepsilon} \ll d \ll(R N)^{\frac{2}{n-2 r-2-\varepsilon}}$. We conclude that if $2-\varepsilon-\frac{2}{n-2 r-2-\varepsilon}>0$, i.e. if $n-3>2 r$, then the degree d is absolutely bounded and so, by Northcott Theorem, $S_{n-r}(\mathcal{C})$ is finite. Unfortunately the result is not optimal as it is for the C.M. case.

6. - Some Cohomology

In this section, we study the cohomology of the Galois group of the extensions $L(E[N])$ of a number fiels L. The idea is that, except for a finite set of prime numbers, the Galois group $\operatorname{Gal}\left(L\left(E\left[p^{n}\right] / L\right)\right.$ contains a suitable subgroup of dilatations. Studying the exact sequence associated to this normal subgroup we conclude that the cohomology is trivial. For the remaining 'bad' primes, the subgroup of dilatations will be big enough to reduce the cohomology to some m^{2}-torsion group, with m depending only on E and L.

Definition of the Serre number m for an elliptic curve E defined over L

- Let E be a non C.M. elliptic curve, then, by [18] (3) and (7), there exists an integer m, depending only on L and E, such that, for all $n \in \mathbb{N}$ and p prime, we have

$$
\begin{array}{ll}
\operatorname{Gal}\left(L\left(E\left[p^{n}\right]\right) / L(E[m])\right) \cong G L_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right) & \text { if } p \nmid m \\
\operatorname{Gal}\left(L\left(E\left[p^{n}\right]\right) / L(E[m])\right) \cong\left\{M \equiv I \bmod p^{r}\right\} & \text { if } p^{r} \| m \tag{37}
\end{array}
$$

where I is the identity 2×2-matrix and $M \in G L_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$.

- Let E be a C.M. elliptic curve. We recall that \mathcal{O} is the ring of endomorphisms of E. By [18] Section 4 n .4 .5 , there exists an integer m depending only on L and E such that we have

$$
\begin{align*}
\operatorname{Gal}\left(L\left(E\left[p^{n}\right]\right) / L\right) \cong\left(\mathcal{O} / p^{n} \mathcal{O}\right)^{*} \quad \text { if } p \text { Xm } \tag{38}\\
\operatorname{Gal}\left(L\left(E\left[p^{n}\right]\right) / L\right) \cong\left(p^{r} \mathcal{O} / p^{n} \mathcal{O}\right)^{*} \quad \text { if } p^{r} \| m \tag{39}
\end{align*}
$$

for all $n \in \mathbb{N}$ and p prime.
After replacing L by an extension of finite degree $d(m)$, we may assume that $E[4]$ is defined over L and that $L=L(E[m])$, so $4 \mid m$ and $E[m]$ is all the torsion defined over L. We call m the Serre number of E.

Corollary 3. Let E be a C.M. elliptic curve and let G be a torsion subgroup isomorphic to $\mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / R \mathbb{Z}$ with $R \mid N$. Suppose that G is invariant under the action of \mathcal{O}. Then $L(G)$ is normal and

$$
\operatorname{Gal}(L(G) / L) \cong\left(m_{1} \mathbb{Z} / N \mathbb{Z}\right)^{*} \times\left(m_{2} \mathbb{Z} / R \mathbb{Z}\right)^{*}
$$

with $m_{1}=(N, m)$ and $m_{2}=(R, m)$.

Proof. Note that $G \subset E[N]$. The isomorphisms ρ in (39) and (40) are defined by the condition $\rho(\sigma) T=T^{\sigma}$ for $T \in E[N]$. This shows that $L(E[N])$ is normal. Let $\rho(\sigma)=a+b \tau \in(\mathcal{O} / N \mathcal{O})^{*}$, then the restriction of σ to $L(G)$ is defined by the condition $\sigma(T)=(a+b \tau) T$ for $T \in G$. Since G is invariant under the action of \mathcal{O} the restriction $\sigma_{\mid L(G)}$ is an automorphism of $L(G)$, so $L(G)$ is normal. Moreover the sequence

$$
0 \rightarrow \operatorname{Gal}(L(E[N]) / L(G)) \rightarrow \operatorname{Gal}(L(E[N]) / L) \rightarrow \operatorname{Gal}(L(G) / L) \rightarrow 0
$$

is exact. Note that the exactness on the right follows for a question of orders. We then see that $\operatorname{Gal}(L(E[N]) / L(G))$ is isomorphic to the group $\left\{a+b \tau \in \rho(\operatorname{Gal}(L(E[N]) / L)):(a+b \tau)_{\mid G}=i d_{G}\right\}$ and $\operatorname{Gal}(L(T) / L)$ is isomorphic to the group of $\left\{a+b \tau \in \operatorname{Aut}(G) \cap \rho\left(\operatorname{Gal}\left(L\left(E\left[p^{n}\right]\right) / L\right)\right)\right.$, where $\operatorname{Aut}(G)$ is identified with a subgroup of $(\mathcal{O} / N \mathcal{O})^{*}$ via the embedding of G in $E[N]$ and the invariance of G under \mathcal{O}.

The proof can also be given directly following the proof of [22] Theorem 2.3, p. 108. Note that the representation

$$
\rho: \operatorname{Gal}(\bar{L} / L) \rightarrow \operatorname{Aut}(G)
$$

given by $\rho(\sigma)(T)=T^{\sigma}$ for $T \in G$, is defined because G is invariant under the action of \mathcal{O}.

Proposition 6. Let E be an elliptic curve. For any natural numbers n and $s \leq n$ and any prime number p, we have

$$
\begin{align*}
H^{1}\left(\operatorname{Gal}\left(L\left(E\left[p^{n}\right]\right) / L\right), E\left[p^{s}\right]\right)=0 & \text { if } p \nmid m \\
p^{r} H^{1}\left(\operatorname{Gal}\left(L\left(E\left[p^{n}\right]\right) / L\right), E\left[p^{s}\right]\right)=0 & \text { if } p^{r} \| m \tag{40}
\end{align*}
$$

where m is the Serre number defined above.
Proof. The group $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*}$ is diagonally embedded in $G L_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$. On the other hand the group $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*}$ is trivially isomorphic to a subgroup of $\left(\mathcal{O} / p^{n} \mathcal{O}\right)^{*}$.

We denote by $G_{p}:=\operatorname{Gal}\left(L\left(E\left[p^{n}\right]\right) / L\right)$ the Galois group of $L\left(E\left[p^{n}\right]\right)$ over L.

CASE I: $p \nmid m$.
By (36), if E is non C.M. then $G_{p}=G L_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$.
By (38), if E is C.M. then $G_{p}=\left(\mathcal{O} / p^{n} \mathcal{O}\right)^{*}$. Since 2 divides m we can suppose $p \neq 2$. The Euler ϕ function and the Sylow Theorems tell us that the group $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*}$ is isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{*} \times\left(\mathbb{Z} / p^{n-1} \mathbb{Z}\right)$. Then, using the identification above, there exists a normal subgroup Δ_{p} isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{*}$ inside G_{p} for both cases E being C.M. or non C.M.

The exact sequence

$$
0 \rightarrow \Delta_{p} \rightarrow G_{p} \rightarrow G_{p} / \Delta_{p} \rightarrow 0
$$

yields the inflation sequence

$$
0 \rightarrow H^{1}\left(G_{p}, / \Delta_{p}, E\left[p^{s}\right]^{\Delta_{p}}\right) \rightarrow H^{1}\left(G_{p}, E\left[p^{s}\right]\right) \rightarrow H^{1}\left(\Delta_{p}, E\left[p^{s}\right]\right)^{\left(G_{p} / \Delta_{p}\right)}
$$

We recall that $p \neq 2$, so the subgroup Δ_{p} is non-trivial and has order coprime with p. Therefore $H^{1}\left(\Delta_{p}, E\left[p^{s}\right]\right)=0$. Moreover $E\left[p^{s}\right]^{\Delta_{p}}=0$ because no p-torsion is defined over L. It follows that the left and the right term of the exact cohomology sequence are 0 and so $H^{1}\left(G_{p}, E\left[p^{s}\right]\right)=0$ as well.

CASE II: $p^{r} \| m$.
By (37), if E is non C.M. then $G_{p}=\left\{M \equiv I \bmod p^{r}\right\} \subset G L_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$.
By (39), if E is C.M. then $G_{p}=\left(p^{r} \mathcal{O} / p^{n} \mathcal{O}\right)^{*} \subset\left(\mathcal{O} / p^{n} \mathcal{O}\right)^{*}$.
We consider inside G_{p} the normal subgroup of dilatations $\Delta_{p}:=\{M \in$ $\left.\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*}: M \equiv 1 \bmod p^{r}\right\}$, where 1 is the identity matrix and we use the above identification of $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*}$ with a subgroup of $G L_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$ if E is non C.M, and we use the natural identification of $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*}$ with a subgroup of $\left(\mathcal{O} / p^{n} \mathcal{O}\right)^{*}$ if E is C.M.

Since 4 divides m we can suppose $p^{r}>2$. Then, independently of p, the group Δ_{p} is isomorphic to ($\left.\mathbb{Z} / p^{n-r} \mathbb{Z}\right)$ and a generator of Δ_{p} in $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*}$ is $\left(1+p^{r}\right)$. We define \mathcal{D} to be the multiplication by p^{r}. The norm of a group is given by the sum of all its elements. By the definition of Δ_{p} we see that the classes $1+i p^{r} \in\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*}$ for $i=1, \ldots, p^{n-r}$ represent all elements of Δ_{p}. We define \mathcal{N} to be the multiplication by the norm of Δ_{p}. So we have

$$
\begin{aligned}
\mathcal{N} & \equiv \sum_{i=1}^{p^{n-r}} 1+i p^{r} \bmod p^{n} \\
& \equiv p^{n-r}+p^{n}\left(p^{n-1}+1\right) / 2 \bmod p^{n}
\end{aligned}
$$

whence

$$
\begin{array}{ll}
\mathcal{N} \equiv p^{n-r} \bmod p^{n} & \text { if } p \neq 2 \tag{41}\\
\mathcal{N} \equiv 2^{n-r}\left(1+2^{r-1}\left(1+2^{n-1}\right)\right) \bmod 2^{n} & \text { if } p=2
\end{array}
$$

From the exact sequence

$$
0 \rightarrow \Delta_{p} \rightarrow G_{p} \rightarrow G_{p} / \Delta_{p} \rightarrow 0
$$

we deduce the inflation sequence
(42) $0 \rightarrow H^{1}\left(G_{p}, / \Delta_{p}, E\left[p^{s}\right]^{\Delta_{p}}\right) \rightarrow H^{1}\left(G_{p}, E\left[p^{s}\right]\right) \rightarrow H^{1}\left(\Delta_{p}, E\left[p^{s}\right]\right)^{G_{p} / \Delta_{p}}$.

By [19] Section 4, we have

$$
H^{1}\left(\Delta_{p}, E\left[p^{s}\right]\right)=\operatorname{ker} \mathcal{N} / \operatorname{Im} \mathcal{D}
$$

If $p \neq 2$, by (41), we deduce $\operatorname{ker} \mathcal{N}=\operatorname{Im} \mathcal{D}$ and so $H^{1}\left(\Delta_{p}, E\left[p^{s}\right]\right)=0$. We recall that we assumed $4 \mid m$ so, in the case $p=2$, we have that $(1+$ $2^{r-1}\left(1+2^{n-1}\right)$) is odd hence an automorphism of $E\left[2^{s}\right]$. Therefore, by (41), $\operatorname{ker} \mathcal{N}=\operatorname{ker} 2^{n-r}=\operatorname{Im} \mathcal{D}$ and we again deduce that $H^{1}\left(\Delta_{p}, E\left[p^{s}\right]\right)=0$. It follows that the right term of the exact cohomology sequence (42) is trivial, thus

$$
H^{1}\left(G_{p}, / \Delta_{p}, E\left[p^{s}\right]^{\Delta_{p}}\right) \cong H^{1}\left(G_{p}, E\left[p^{s}\right]\right)
$$

The torsion points fixed by Δ_{p} are exactly the ones defined over L and so $E\left[p^{s}\right]^{\Delta_{p}}=E\left[p^{r}\right]$. Therefore $H^{1}\left(G_{p} / \Delta_{p}, E\left[p^{r}\right]\right) \cong H^{1}\left(G_{p}, E\left[p^{s}\right]\right)$. Since the coefficient group $E\left[p^{r}\right]$ is annihilated by p^{r}, the result follows.

Proposizione 7. Let E be an elliptic curve. For any positive integer N and any divisor k of N we have

$$
\delta^{2} \cdot H^{1}(\operatorname{Gal}(L(E[N]) / L), E[k])=0
$$

where δ is the greatest common divisor of m and N, and m is the Serre number.
Proof. Let p be a prime number, we set $N^{\prime}:=N / p^{n}$ where $p^{n} \| N$. We use the following notation

$$
\begin{align*}
G_{N} & :=\operatorname{Gal}(L(E[N]) / L) \\
G_{p} & :=\operatorname{Gal}\left(L\left(E\left[p^{n}\right]\right) / L\right) \tag{43}\\
G_{N^{\prime}} & :=\operatorname{Gal}\left(L(E[N]) / L\left(E\left[p^{n}\right]\right)\right.
\end{align*}
$$

We recall that $H^{1}\left(G_{N}, E[k]\right)=\oplus_{p} H^{1}\left(G_{N}, E\left[p^{s}\right]\right)$ with $p^{s} \| k$. The short exact sequence

$$
0 \rightarrow G_{N^{\prime}} \rightarrow G_{N} \rightarrow G_{p} \rightarrow 0
$$

yields the inflation sequence

$$
\begin{equation*}
0 \rightarrow H^{1}\left(G_{p}, E\left[p^{s}\right]^{G_{N^{\prime}}}\right) \rightarrow H^{1}\left(G_{N}, E\left[p^{s}\right]\right) \rightarrow H^{1}\left(G_{N^{\prime}}, E\left[p^{s}\right]\right)^{G_{p}} \tag{44}
\end{equation*}
$$

The group $G_{N^{\prime}}$ fixes the p^{s}-torsion, so $E\left[p^{s}\right]^{G_{N^{\prime}}}=E\left[p^{s}\right]$. Therefore

$$
\begin{equation*}
H^{1}\left(G_{p}, E\left[p^{s}\right]^{G} N^{\prime}\right)=H^{1}\left(G_{p}, E\left[p^{s}\right]\right) \tag{45}
\end{equation*}
$$

Since p and N^{\prime} are coprime, the groups G_{p} and $G_{N^{\prime}}$ commute, it follows that

$$
\begin{equation*}
H^{1}\left(G_{N^{\prime}}, E\left[p^{s}\right]\right)^{G_{p}}=H^{1}\left(G_{N^{\prime}}, E\left[p^{s}\right]^{G_{p}}\right) \tag{46}
\end{equation*}
$$

Case I:
If $p \not\left\langle m\right.$ then $E\left[p^{s}\right]^{G_{p}}=0$ and, by relation (46), $H^{1}\left(G_{N^{\prime}}, E\left[p^{s}\right]\right)^{G_{p}}=0$. By Proposition 6 and relation (45) we deduce $H^{1}\left(G_{p}, E\left[p^{s}\right]^{G_{N^{\prime}}}\right)=0$. Therefore the sequence (44) is trivial and

$$
H^{1}\left(G_{N}, E\left[p^{s}\right]\right)=0
$$

Case II:

If $p^{r} \| m$ then $E\left[p^{s}\right]^{G}=E\left[p^{r}\right]$. Therefore p^{r} annihilates the coefficients of (46) and so $p^{r} H^{1}\left(G_{N^{\prime}}, E\left[p^{s}\right]\right)^{G} p=0$. By Proposition 6 and relation (45) we deduce $p^{r} H^{1}\left(G_{p}, E\left[p^{s}\right]^{G} N^{\prime}\right)=0$. Thus the left and the right term of the exact sequence (44) are annihilated by p^{r}, we deduce that

$$
p^{2 r} H^{1}\left(G_{N}, E\left[p^{s}\right]\right)=0
$$

REFERENCES

[1] E. Bombieri - D. Masser - U. Zannier, "Intersecting a Curve with Algebraic Subgroups of Multiplicative Groups", International Mathematics Research Notices 20, 1999.
[2] E. Bombieri - J. D. Valler, On Siegel's Lemma, Invent. Math. 73 (1983), 11-32.
[3] E. Bombieri - J. D. Vaaler, Addendum to: On Siegel's Lemma, Invent. Math. 75 (1984), 377.
[4] W. Burnside, "Theory of Groups of Finite Order", 2 ed., Dover Publ., New York, 1955.
[5] J. W. S. Cassels, "An Introduction to the Geometry of Numbers", Springer-Verlag, 1971.
[6] S. David, Points de petite hauteur sur les courbes elliptiques, J. Number Theory 64 (1997), 104-129.
[7] S. David - M. Hindry, Minoration de la hauteur de Néron-Tate sur le variétés abéliennes de type C.M., J. Reine Angew. Math. 529 (2000) 1-74.
[8] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366.
[9] M. Hindry, Autour d'une conjecture de Serge Lang, Invent. Math. 94 (1988), 570-603.
[10] S. Lang, "Fundamentals of Diophantine Geometry", Springer-Verlag, 1993.
[11] M. Laurent, Equations diophantiennes exponentielles, Invent. Math. 78 (1984), 299-327.
[12] D. MASSER, Counting points of small height on elliptic curves, Bull. Soc. Math. France 117, 1989, no. 2, 247-265.
[13] D. Masser - G. Wüstholz, Fields of Large Transcendence Degree Generated by Values of Elliptic Functions, Invent. Math. 72 (1983), 407-464.
[14] J. S. Milne, Abelian Varieties, In: "Arithmetic Geometry", G. Cornell - J. Silverman (eds), Springer-Verlag, 1986.
[15] M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), 207-233.
[16] M. Raynaud, Sous-variétés d'une variété abélienne et points de torsion, In: "Arithmetic and Geometry", (dédié à Shafarevich), Birkhäuser, 1, 1983, 327-352.
[17] H. P. Schlickewei, Lower bounds for heights on finitely generated groups, Monatsh. Math. 123 (1997), 171-178.
[18] J-P. Serre, Proprieté Galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331.
[19] J-P. Serre, "Corps locaux", Hermann Paris, 1968.
[20] J-P. Serre, Local class field theory, In: "Algebraic Number Theory", J. W. S. Cassels - A. Fröhlich (eds.), Academic Press, London, 1967, 129-162.
[21] J-P. Serre, "Lectures on the Mordell-Weil Theorem", Friedr. Vieweg \& Sohn, 1989.
[22] J. Silverman, "Advanced Topics in the Arithmetic of Elliptic Curves", Springer-Verlag, 1994.
[23] J. Silverman, "The Arithmetic of Elliptic Curves", Springer-Verlag, 1986.
D-Math, ETH Zürich
Rämistrasse 101
8092 Zürich - CH
viada@math.ethz.ch

