Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 1 (2002) no. 2, pp. 435-460.

Small data scattering for nonlinear Schrödinger equations (NLS), nonlinear wave equations (NLW), nonlinear Klein-Gordon equations (NLKG) with power type nonlinearities is studied in the scheme of Sobolev spaces on the whole space n with order s<n/2. The assumptions on the nonlinearities are described in terms of power behavior p 1 at zero and p 2 at infinity such as 1+4/np 1 p 2 1+4/(n-2s) for NLS and NLKG, and 1+4/(n-1)p 1 p 2 1+4/(n-2s) for NLW.

Classification: 35L70
@article{ASNSP_2002_5_1_2_435_0,
     author = {Nakamura, Makoto and Ozawa, Tohru},
     title = {Small data scattering for nonlinear {Schr\"odinger} wave and {Klein-Gordon} equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {435--460},
     publisher = {Scuola normale superiore},
     volume = {Ser. 5, 1},
     number = {2},
     year = {2002},
     mrnumber = {1991146},
     zbl = {1121.35086},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2002_5_1_2_435_0/}
}
TY  - JOUR
AU  - Nakamura, Makoto
AU  - Ozawa, Tohru
TI  - Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2002
SP  - 435
EP  - 460
VL  - 1
IS  - 2
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_2002_5_1_2_435_0/
LA  - en
ID  - ASNSP_2002_5_1_2_435_0
ER  - 
%0 Journal Article
%A Nakamura, Makoto
%A Ozawa, Tohru
%T Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2002
%P 435-460
%V 1
%N 2
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_2002_5_1_2_435_0/
%G en
%F ASNSP_2002_5_1_2_435_0
Nakamura, Makoto; Ozawa, Tohru. Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 1 (2002) no. 2, pp. 435-460. http://www.numdam.org/item/ASNSP_2002_5_1_2_435_0/

[1] J. Bergh - J. Löfström, “Interpolation Spaces”, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin-New York, 1976. | Zbl

[2] T. Cazenave, “An Introduction to Nonlinear Schrödinger Equations”, Textos de Métodos Matemáticos 22, Instituto de Matemática, Rio de Janeiro, 1989.

[3] T. Cazenave - A. Haraux, Équation d'évolution avec non-linéarité logarithmique, Ann. Fac. Sci. Toulouse 2 (1980), 21-51. | Numdam | MR | Zbl

[4] T. Cazenave - F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Anal. 14 (1990), 807-836. | MR | Zbl

[5] J. Ginibre - G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), 50-68. | MR | Zbl

[6] J. Ginibre - G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z. 189 (1985), 487-505. | MR | Zbl

[7] T. Kato, On nonlinear Schrödinger equations 67 (1995), 281-306. | MR | Zbl

[8] T. Kato, Nonlinear Schrödinger equations, In: “Schrödinger Operators”, H. Holden - A. Jensen (eds.), Lecture Notes in Phys. 345, Springer, Berlin, 1989, pp. 218-263. | MR | Zbl

[9] M. Keel - T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980. | MR | Zbl

[10] H. Lindblad - C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357-426. | MR | Zbl

[11] S. Machihara - K. Nakanishi - T. Ozawa, Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, preprint. | MR | Zbl

[12] M. Nakamura - T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces, Publ. Res. Inst. Math. Sci. 37 (2001), 255-293. | MR | Zbl

[13] M. Nakamura - T. Ozawa, The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space, Ann. Inst. H. Poincaré, Physique théorique 71 (1999), 199-215. | Numdam | MR | Zbl

[14] M. Nakamura - T. Ozawa, Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces, Reviews in Math. Phys. 9 (1997), 397-410. | MR | Zbl

[15] H. Pecher, Solutions of semilinear Schrödinger equations in H s , Ann. Inst. H. Poincaré Physique théorique 67 (1997), 259-296. | Numdam | MR | Zbl

[16] H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z. 185 (1984), 261-270. | MR | Zbl

[17] P. Ramond, “Field Theory”, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1990. | MR | Zbl

[18] W. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal. 41 (1981), 110-133. | MR | Zbl

[19] W. Strauss, Nonlinear scattering theory at low energy: sequel, J. Funct. Anal. 43 (1981), 281-293. | MR | Zbl

[20] H. Triebel, “Theory of Function Spaces”, Birkhäuser, Basel, 1983. | MR | Zbl

[21] M. Tsutsumi, Scattering of solutions of nonlinear Klein-Gordon equations in three space dimensions, J. Math. Soc. Japan 35 (1983), 521-538. | MR | Zbl

[22] B. Wang, Scattering of solutions for critical and subcritical nonlinear Klein-Gordon equations in H s , Discrete Contin. Dynam. Systems 5 (1999), 753-763. | MR | Zbl