@article{ASNSP_2001_4_30_3-4_713_0, author = {Chen, Chiun-Chuan and Lin, Chang-Shou}, title = {A spherical Harnack inequality for singular solutions of nonlinear elliptic equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {713--738}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 30}, number = {3-4}, year = {2001}, zbl = {1072.35071}, mrnumber = {1896083}, language = {en}, url = {www.numdam.org/item/ASNSP_2001_4_30_3-4_713_0/} }
Chen, Chiun-Chuan; Lin, Chang-Shou. A spherical Harnack inequality for singular solutions of nonlinear elliptic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 30 (2001) no. 3-4, pp. 713-738. http://www.numdam.org/item/ASNSP_2001_4_30_3-4_713_0/
[1] Nonexistence of positive solutions to semilinear elliptic equations on Rn or Rn+ through the method of moving planes, Comm. Partial Differential Equation 22 (1997), 1671-1670. | MR 1469586 | Zbl 0910.35048
,[2] A sup + inf inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Func. Anal. 115 (1993), 34.4.-358. | MR 1234395 | Zbl 0794.35048
- - ,[3] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev exponent, Comm. Pure Appl. Math. 42 (1989),271-297. | MR 982351 | Zbl 0702.35085
- - ,[4] Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615-622. | MR 1121147 | Zbl 0768.35025
- ,[5] Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J., 78 (1995), 315-334. | MR 1333503 | Zbl 0839.35014
- ,[6] On compactness and completeness of conformal metrics in Rn, Asian J. Math.1 (1997), 549-559. | MR 1604918 | Zbl 0901.53027
- ,[7] Estimates of the conformal scalar curvature equation via the method of moving planes, Comm. Pure Appl. Math. 50 (1997), 971-1017. | MR 1466584 | Zbl 0958.35013
- ,[8] On the asymptotic symmetry of singular solutions of the scalar curvature equations, Math. Ann. 313 (1999), 229-245. | MR 1679784 | Zbl 0927.35034
- ,[9] Symmetry of positive solutions of nonlinear equations in Rn, In: "Mathematical Analysis and Applications", part A, pp. 369-402, Advances in Math. Supp. Stud. 79, Academic Press, New York-London, 1981. | Zbl 0469.35052
- - ,[10] Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math. 135 (1999), 233-272. | MR 1666838 | Zbl 0958.53032
- - - ,[11] Local asymptotic symmetry of Singular Solutions to Nonlinear Elliptic Equations, Invent. Math. 123 (1996), 221-232. | MR 1374197 | Zbl 0849.35009
,[12] Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200 (1999), 421-444. | MR 1673972 | Zbl 0928.35057
,[13] On Liouville theorem and apriori estimate for the scalar curvature equations, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 107-130. | Numdam | MR 1658881 | Zbl 0974.53032
,[14] Estimates of the conformal scalar curvature equation via the method of moving planes III, Comm. Pure Appl. Math. 53 (2000), 611-646. | MR 1737506 | Zbl 1035.53052
,[15] A construction of singular solutions for semilinear elliptic equation using asymptotic analysis, J. Differential Geom. 44 (1996), 331-370. | MR 1425579 | Zbl 0869.35040
- ,[16] Compactness results for complete metrics of constant positive scalar curvature on of subdomains of Sn' Indiana Univ. Math. J. 42 (1993), 1441-1456. | MR 1266101 | Zbl 0794.53025
,[17] The existence of weak solutions with prescribed singular behavior for a conformal invariant scalar equation, Comm. Pure Appl. Math. 41 (1988), 317-392. | MR 929283 | Zbl 0674.35027
,[18] A symmetry problem in potential theory, Arch. Rat. Mech. Anal. 43 (1971), 304-318. | MR 333220 | Zbl 0222.31007
,[19] On the growth of superharmonic functions near an isolated singularity I, J. Differential Equations 158 (1999), 28-47. | MR 1721720 | Zbl 0939.31005
,