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Optimal Conditions for Anti-Maximum Principles

HANS-CHRISTOPH GRUNAU - GUIDO SWEERS

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXX (2001 ),

Abstract. The resolvent for some polyharmonic boundary value problems is pos-
itive for h positive and less than the first eigenvalue. It is known that beyond
this first eigenvalue a sign-reversing property exists. Such a result is called an
anti-maximum principle. Depending on the boundary conditions, the dimension
of the domain and the order of the operator, the result is uniform or not. In the
non-uniform case the right hand side needs to be in LP(0) with p large enough.
Sharp estimates for iterated Green functions are used in order to prove that such
restrictions are optimal both for the non-uniform and the uniform anti-maximum
principle. We will also use these estimates to give an alternative proof of the
(uniform) anti-maximum principle.

Mathematics Subject Classification (2000): 35J40 (primary), 35B50, 31 B30
(secondary).

1. - Introduction

1.1. - Example

Let us consider the elliptic boundary value problem

where Q is a bounded smooth domain in For this system a first eigenvalue
~.1 1 &#x3E; 0 exists such that for h E [0,~.i) a sign preserving property holds true:
f &#x3E; 0 implies that u &#x3E; 0. A sign reversing property exists for h &#x3E; X 1. Indeed,
similarly as Clement and Peletier [4] proved for (general) second order elliptic
differential equations with zero Dirichlet boundary condition, one may show
that for smooth f 1 0 there exists 8 &#x3E; 0 such that u  0 for h E 1 + 3) .
Such result is known as an anti-maximum principle. In [5] it is shown that
for (1) 4 such numbers 3 can be found, which depend on f. There it

Pervenuto alla Redazione il 6 marzo 2000.
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is also proven that for n  3 one could choose 8 independently of f ; a uniform
anti-maximum principle.

Using the Green function estimates from the previous paper [12] it will be

proven that the restrictions on (1) for a uniform anti-maximum principle to hold,
and similar restrictions on more general systems, cannot be improved. These

estimates will also provide an alternative proof of anti-maximum principles.

1.2. - General setting

Let A be an elliptic operator of order 2m on a bounded smooth domain
S2 C and let the boundary conditions B on a S2 be such that for h = 0 the
system

is positively self-adjoint in some appropriate real Hilbert space of real-valued
weakly differentiable functions. Moreover let us assume that the first eigenfunc-
tion is simple and positive. Denoting this first eigenvalue/function by 
one expects the solution of (2) for Å # ~,1 near ~,1 to have the same sign

And indeed, if the eigenfunctionsas IT=- ( -

i E form a complete orthonormal system the solution operator for (2)
can be written as 

- .

and one expects the pole in k I to dominate the sign of u for h near À 1. That is,
assuming f &#x3E; 0, for h  0 but near to 0 the solution u will be negative.
For k &#x3E; 0 and small the solution will be positive.

For this heuristic argument to become rigorous, observing that

it is sufficient to prove that

holds for nonnegative f and X I small.

The result that u is negative for sufficiently good positive f and k E
Àl y- 8 f ~ , where 8 f is some small positive constant depending in general

on f, is called an Anti-Maximum Principle. C16ment and Peletier in [4] obtained
such results for general second order elliptic operators with Dirichlet boundary
condition. They remarked that in dimension 1 and with Neumann boundary
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condition, the constant Sf can be chosen independently of f. Such a stronger
result is called a Uniform Anti-Maximum Principle. For short we will denote
these results by AMP and UAMP.

In [18] it is shown that for A = - 0 and B the Dirichlet boundary condition
the AMP is not uniform. In [5] and [6] UAMP’s were recently proved for
some higher order elliptic operators. In the present paper we use pointwise
estimates for iterated Green functions to give an alternative proof of the result
in [6]. Complementary, these estimates allow us to prove that the restrictions
on the coefficients are indeed sharp as conjectured. For second order boundary
value problems the idea to use Green function estimates for AMP’s is due to
Takac [19]. AMP’s for second order elliptic equations are also obtained by
Pinchover in [16] and [17].

2. - The main results

A genuine restriction for sign preserving and reversing is positivity of the
first eigenfunction. It is well known that for second order elliptic operators
with Dirichlet boundary conditions on bounded domains a maximum principle
exists and in the self-adjoint setting it is relatively easy to show that the first
eigenvalue is simple and has a positive eigenfunction. Such a general result
does not hold for higher order elliptic operators on general domains. For
two classes of problems, however, a kind of maximum principle holds and
the first eigenfunction is positive. Namely, 1) higher order boundary value
problems that allow a decomposition into second order boundary value problems,
and 2) polyharmonic operators with Dirichlet boundary conditions with a ball
as domain.

In order to define an appropriate boundary behavior of such eigenfunctions
we need the distance d to the boundary

Let m, k E N+. Defining A : D (A) C L2 (f2) -~ L2 (f2) by

A is indeed positively self-adjoint. One finds that A~, as well as A, has a
simple first eigenvalue with a positive eigenfunction satisfying for some cl,
c2 &#x3E; 0

if one the following conditions is satisfied:
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CONDITION 1. Suppose that either
i. m = 1 and S2 C R’ is bounded with aS2 E C°°, or

ii. ~ &#x3E;: 2  R } for some R &#x3E; 0.

REMARK 1. Both conditions can be weakened. In the first case a S2 E C2 is
sufficient for an appropriate eigenfunction but the statement of the next theorem
will be somewhat more involved. In the second case for n = 2 one may allow
domains S2 that are close to but not necessarily equal to a disk. See [9].

Indeed, Condition 1 guarantees the existence of a simple positive first

eigenvalue with a positive eigenfunction, see e.g. [6], [7, Remark 1]. We
recall that the estimate from below is obtained as follows. The first condition

implies existence of an appropriate eigenfunction due to Hopf’s boundary point
lemma. The second condition guarantees that (A - X)-1 is positivity preserving
for h E [0, Àl) as a consequence of Boggio’s explicit formula for the Green
function for A on balls in Rn . Jentzsch’s result [13] gives the eigenfunction.
According to a very weak generalized Hopf lemma ( [ 11, Theorem 3.2]) we
have 1 &#x3E; 0 on a B with v the outward normal. The estimate from
.

above in (6) follows from = 0 ( j - 0, ... , m - 1 ), since p1 1 is

sufficiently smooth.
Using the estimates for iterated Green functions from the preceding pa-

per [12] we may improve the main theorem in [6] and find that the condition
n  2m (k - 1) below is sharp for the Uniform Anti-Maximum Principle. Con-
dition 1 is also sufficient to find the estimates for the (iterated) Green functions
that will be used in the proofs.

THEOREM 1 (UAMP). Take k, m E N+. Let A be as in (5) and suppose that
Condition 1 holds. Let ~,1 be the smallest eigenvalue of Ak and consider

Then the first eigenvalue is simple and the corresponding eigenfunction (taken
positive) satisfies (6). Moreover, the following are equivalent:

a. n  2m (k - 1 ) ;
b. There exists 3 &#x3E; 0 such that for all À E (Àl, ~,1 -~ 3) and f E L2 (S2) with

0 ~ f &#x3E; 0 the solution u of (7), which belongs to Cm (?i) satisfies for some
c = c(f) &#x3E; 0

REMARK 2. The system in (7) corresponds to the boundary value problem
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REMARK 3. Since 3 does not depend on f, the UAMP above also holds
for f E LP (Q), with 0 ~ f &#x3E; 0, for any p E (1, 2]. For n  2m(k - 1) one
has (0), and hence the result follows, because the Green
function for (7) does not depend on p. Also the case p = 1 can be covered

by using a kind of duality argument.
REMARK 4. Let m = 1 and Q C bounded with aS2 E Coo. Then for

iterated Dirichlet Laplacians (i.e. polyharmonic operators under so-called Navier
boundary conditions):

the Anti-Maximum Principle is uniform if and only if n  2 (k - 1).

In what follows we have to interpret boundary value problems like (7) in
various LP-spaces. If p E (1, oo) we define in analogy with (5)

As a corresponding L 1-theory does not hold, in order to cover also the case
p = 1 we consider the Green function for (7) with À = 0. The Green

operator := Jg y) f (y) d y maps L (f2) ~ H2mk-l,q (Q) for
q  Solving boundary value problems has to be understood in a suitable
weak sense. For regular values À, i.e. h not an eigenvalue, of a solution

e.g. of (7) is given by u = (1 -ÀAlk)-l where is considered as

bounded operator in L1 (Q).
The estimates for the Green functions in [ 12] also give the optimal range

of the nonuniform Anti-Maximum Principle. For the Dirichlet Laplacian the
results of C16ment and Peletier [4] imply that for every 0  f E LP (~2) with
p &#x3E; n a number 8 f &#x3E; 0 exists such that the solution u for À E (Àl, Àl -f- is

negative. In [18] it is proven that p &#x3E; n is sharp: there is a positive f E Ln (Q)
such that the solution u changes sign for all À E À2).

THEOREM 2 (AMP). Take k, m E ~T+ and p E (1, oo) . Suppose that Condition 1
is satisfied and again denote by À 1 the smallest eigenvalue of Ak. Then the following
holds:

. Suppose that n :s m (2k - 1). If f (Q) and (~o 1, f) &#x3E; 0, then there exists

S f &#x3E; 0 such that for all h E (À 1, À 1 + the solution u 1 of (7) satisfies (8).
. Suppose that n &#x3E; m (2k - 1 ) .

i. If f E LP (Q) and (VI, f) &#x3E; 0, with p &#x3E; m~2k-1) , then there exists 8 f &#x3E; 0

such that for all À E (~.1, ~.1 -~- ~ f~ the solution u~, of (7) satisfies (8).
ii. If p = m ~2k-1 ) ~ then there exists 0  f E LP (S2) such that for all regular

À &#x3E; Ål the solution UÀ changes sign.
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REMARK 5. Note that 0  f # 0 implies (~pl, f ~ &#x3E; 0. The theorem by
Clement and Peletier [4] used the stronger condition that f &#x3E; 0. For their proof
however, it is sufficient that, for a suitable projection Pi on the first eigenspace,
P, f &#x3E; 0 holds, which simplifies in our situation to (~p 1, f ) &#x3E; 0.

REMARK 6. For the iterated Dirichlet Laplacians, as considered in Remark 4,
we have

Here, and also in general, a gap between the UAMP and the AMP with
p &#x3E; 1 is filled by AMP for p = 1. This gap contains the dimensions n such
that

3. - Proof for UAMP

We refer to [6] for the result that Ak is positively self-adjoint. By Con-
dition 1 the first eigenvalue is simple and strictly positive, and has a positive
eigenfunction that satisfies the estimate in (6). For f E L2 (S2) we split the
solution operator as follows:

where, assuming = 1,

Since h2 is the eigenvalue with least absolute value for Ak restricted to the
subspacc {/ E L 2 (f2); f ) = 0} , it follows that the series

converges on { f E L 2 (Q) ; (cpl, f) = 01 for À with IÀI  À2.
First we will show that we may restrict ourselves to a finite sum instead

of this infinite series.
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LEMMA 1. Let s &#x3E; 0. There is i 1 E N and C &#x3E; 0 such that for all À with
::~,X2 - s and f E L 2 (Q) with f &#x3E; 0

PROOF. Since Pi and A-1 commute we find that for i2, i3 E Is1 , with

l2’~"l3 =ll~

Take i2 such that 2mki2 &#x3E; m + 2’ By regularity theory we find that for all

v e L2 (Q) the function A -ki2V e H2mki2,2 (Q) n Ho ,2 (Q) and

By Sobolev imbedding it follows that A-ki2v E Cm (S2), (’)j (A-kl2v) (x) = 0a

on 8 Q for j = 0,..., m - 1 and

As vanishes of order m on a S2 we proceed with

where (6) is used in the last step.
Due to (13), (14) and the fact that (Ak - ~,) 1 (I - Pl ) is a bounded

operator on L2 (Q), with a norm uniformly bounded for h  h2 - B, there is

C5 &#x3E; 0 such that

(the constant C5 = C5 (8) f oo as s $ 0).
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Taking mki3 - 2 &#x3E; m it follows by Theorem 2 of [12] that for fELl (Q)
with f 2: 0 it holds that

and hence by (6)

implying

Finally, combining (15), (16) and (18), we find

Let i I be as in the previous Lemma and split the solution operator, devel-
oping (11), as follows

where
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PROPOSITION 3. The following are equivalent:
i. n  2m (k - 1 ) ; 

’

ii. there exists Cl 1 &#x3E; 0 such that for all 0  f E LZ (Q):

iii. for every i E there exists Ci &#x3E; 0 such that for all 0 :5 f E Lz (0)

PROOF. Theorem 2 of [ 12] states that Ck,m,n &#x3E; 0 exists such that

if and only if mk - 2n &#x3E; m. Hence statements i and ii are equivalent. Similarly
the estimates in iii hold if and only if &#x3E; m for all i E N+. Hence it
is necessary and sufficient that the inequality holds for i = 1. 0

It remains to show the equivalence of the two statements in Theorem 1.

PROOF OF THEOREM 1. Let the resolvent be split in 3 parts as in (19) and
assume ~,1 1 and À  h2 - E. The first part satisfies

The other two parts can be estimated as follows. According to Lemma 1
there exist positive constants cl and c2 such that for all À E [0, h2 - 8] and
0  .f E 

For the Anti-Maximum Principle to hold uniformly for h E ~,1 -I- 3) and
8 &#x3E; 0, it is hence necessary and sufficient that there exists c &#x3E; 0 such that for
all E L2(Q): 

.

This condition is equivalent with the existence of a constant Ck,m,n &#x3E; 0 such
that 

’

which holds by the estimates in [12] if &#x3E; m.

The claim that the solution u lies in C"’ (Q) uses standard regularity ar-
guments. The estimate of u from above in (8) follows from the property (6)
of the first eigenfunction. 0
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4. - Proof for AMP

First notice that the spectrum of Ap does not depend on p. One has further

A* = Aq for p -E- q - 1, p E (1, oo) . Also a projection on the first eigenfunctionp p q

is well defined by Pl f = (VI, f) = (In f . for any p E [1, oo). We
will also use that PI and Ap commute.

The following result can also be found in [5]. Here we will sketch an
alternative proof using Green function estimates.

LEMMA 2. Let f E L P (2) with p E [ 1, oo) satisfy 0  f # 0, and assume
that p &#x3E; - --n when n &#x3E; m (2k - 1). Let s &#x3E; 0. Then there exists c f &#x3E; 0 such

that for all h E [0, h2 - 81

PROOF. The space R (I - Pi) reduces the operator 1 - ÀAp to a boundedly
invertible one for h in a neighborhood of Set

If p = 1 this equation has to be interpreted in a suitable weak sense as explained
in Section 2 before Theorem 2.

There exists &#x3E; 0 such that for all X E [0, h2 - 

First assume that n &#x3E; 2km. By virtue of [12, Theorem 2] the following
estimate holds for the Green function of 

Here we used the estimate 1 A d x  03 from [12, Lemma 10]. Thelx-yl2 X-Y
same estimate follows for n = 2km:
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If (2k - 1 ) m  n  2km we use [12, Lemma 10] to find

Since !! !jc -. is bounded, uniformly with respect to x ~ 0, if

and only if q  ~_~"~_~, for such q there is a uniform (i.e. independent of x)
constant cq &#x3E; 0 such that

With -L + 1 = 1 the condition q is identical with p &#x3E; By
Holders inequality we find that

The claim follows for cf = C3 Cq cp,s 
For n  (2k - 1) m we may use the ’ordering’ of the Green functions to

find by (22) that 
- -

which implies that

The first claim of Theorem 2, concerning sign reversing for appropriately
integrable f, follows from the observation that for h &#x3E; À 1

with c2 as in (6), and hence with Lemma 2

for À  0 and sufficiently close to 0.

For the second claim in the case n &#x3E; m(2k - 1), concerning the necessity
of the condition p &#x3E; m (2k-1 )’ we first make the following simple observation.m (2k- 1) 1

LEMMA 3. Assume p &#x3E; 1 and let f E LP (Q) satisfy 0  f # 0, let À &#x3E; ,1
and assume that u = f. Then the solution u is somewhere negative.( p
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PROOF. It is sufficient to show that (VI, u)  0. A straightforward argument
by testing with wi shows that

and hence

It remains to show that there exists f E LP* (~2), with p* = ~~~i_~~ , , such
that for all À - k I &#x3E; 0 and small the solution u is somewhere positive in Q.
Fix z E 8f2 and set 03BE (r) = (log (2)) -1 1 with D := We will take

r

Note that 0  ~ ( ~ x - z ~ ) :5 (log 2) .
LEMMA 4. Let f* be as in (23). Then the following holds:

i. f * p* = .

1. E l.í or m(2k-1) I
ii. The solution uo of (9), with À = 0 and f * as right hand side, satisfies for some

positive constants c = c( f *) &#x3E; 0, s = 8(Q, f *) &#x3E; 0

where v, is the exterior normal at z and Iz, il = {o,z -I- ( 1 - 0) z; 0  0  

PROOF. By straightforward calculus one finds since p* &#x3E; 1 that

which implies f * E LP* (Q).
Since f * &#x3E; 0 in Q the Green function estimate immediately shows that

u (x) a c wi (x) for some c &#x3E; 0 and all x E Q. To obtain the estimate in (24)
we first recall some notations and auxiliary results from section 3.2.1 of the
previous paper [12]: There exists some number R = R (S2) &#x3E; 0, such that
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where 1C - vz ) = {y E -y - vZ &#x3E; or lyi) is a cone in direction - vZ with
opening angle arccos o . We remark that for s sufficiently small, one has
d(x) = x - z ~  R / 2 and z is the closest point to x in 3Q, i. e. z = x * in the
notation of [12, section 3.2.1 ]. As there we use the set R2 = 

7y
The ci will denote positive constants. For y E R2 the following inequality holds
by using the estimates in [12, Case ll, section 3.2.1 J and d (x) = z ~ I in all
three cases n &#x3E; 2mk, n = 2mk and m (2k - 1)  n  2mk:

Hence, using that c-1 c Ix - yl on 7Z2 we have:

The last claim of Theorem 2 follows from Lemma 3 and the next lemma.

LEMMA 5. For all &#x3E; ~.1 there exists 8 &#x3E; 0 such that the solution u x
of (9), with f = f * as right hand side, satisfies UÀ (x) &#x3E; 0 for x E (z, Z - 8 Vz) .

k 
-i 

PROOF. We will split (AP . _ , 
-I 

as in ( 19) with i 1 = 1:

Since -I f* E L°° (Q) one has 2,

A similar estimate for X ~ À 1 holds for the second term:
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Since Lemma 4 implies that

with some El = E1 (Q) &#x3E; 0, and since limr jo log log 2D) = oo, there is for all
regular À &#x3E; ,1 I an Ex &#x3E; 0 such that the sign of (Akp- h) -1 f * on [z, z - 
is determined by the sign of -1 f *. That last sign is positive. D
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