@article{ASNSP_2001_4_30_2_437_0, author = {Dal Passo, Roberta and Giacomelli, Lorenzo and Gr\"un, G\"unther}, title = {A waiting time phenomenon for thin film equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {437--463}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 30}, number = {2}, year = {2001}, zbl = {1024.35051}, mrnumber = {1895718}, language = {en}, url = {www.numdam.org/item/ASNSP_2001_4_30_2_437_0/} }
Dal Passo, Roberta; Giacomelli, Lorenzo; Grün, Günther. A waiting time phenomenon for thin film equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 30 (2001) no. 2, pp. 437-463. http://www.numdam.org/item/ASNSP_2001_4_30_2_437_0/
[ 1 ] On the pointwise behavior of the solutions of the porous medium equation as t approaches zero or infinity, Nonlinear Anal. 9 (1985), 1095-1113. | MR 806912 | Zbl 0589.35064
,[2] The porous medium equation", In A. Dold and B. Eckmann, editors, Nonlinear Diffusion Problems. Lecture Notes in Mathematics, 1224, Springer-Verlag, 1985. | MR 877986 | Zbl 0626.76097
, "[3] Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation, Arch. Rat. Mech. Anal. 129 (1995), 175-200. | MR 1328475 | Zbl 0827.35065
- - ,[4] Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems, In:"Free boundary problems: theory and applications", J. I. Diaz - M. A. Herrero - A. Linan - J. L. Vazquez (eds.), Pitman Research Notes in Mathematics 323, Longman, Harlow, 1995, pp. 40-56. | MR 1342325 | Zbl 0839.35102
,[5] Finite speed ofpropagation and continuity of the interfacefor thin viscous flows, Adv. Differential Equations 1 no. 3 (1996), 337-368. | MR 1401398 | Zbl 0846.35058
,[6] Finite speed of propagation for thin viscous flows when 2 ≤ n < 3, C.R. Acad. Sci. Paris Sér. I Math. 322 (1996). | Zbl 0853.76018
,[7] Higher order nonlinear degenerate parabolic equations, J. Differential Equations 83 (1990), 179-206. | MR 1031383 | Zbl 0702.35143
- ,[8] Source-type solutions of a fourth order nonlinear degenerate parabolic equations, Nonlinear Anal. 18 (1992), 217-234. | MR 1148286 | Zbl 0778.35056
- - ,[9] The lubrication approximation for thin viscous films: the moving contact line with a porous media cut off of van der waals interactions, Nonlinearity 7 (1994), 1535-1564. | MR 1304438 | Zbl 0811.35045
- ,[10] The lubrication approximation for thin viscous films: regularity and long time behaviour of weak solutions, Nonlinear Anal. 18 (1992), 217-234.
- ,[11] The thin viscous flow equation in higher space dimensions, Adv. Differential Equations 3 (1998), 417-440. | MR 1751951 | Zbl 0954.35035
- - - ,[12] Solutions of a fourth order degenerate parabolic equation with weak initial trace, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 153-181. | Numdam | MR 1679081 | Zbl 0945.35049
- ,[13] On a fourth order degenerate parabolic equation: global entropy estimates and qualitative behaviour of solutions, SIAM J. Math. Anal. 29 (1998), 321-342. | MR 1616558 | Zbl 0929.35061
- - ,[14] The thin film equation with nonlinear diffusion, Preprint Me.Mo.Mat. Department 2/2000, to appear in Comm. Partial Differential Equations. | MR 1865938 | Zbl 1001.35070
- - ,[15] On the motion of a fluid-fluid interface along a solid surface, J. Fluid Mech. 65 (1974), 71-95. | Zbl 0282.76004
- ,[16] Source-type solutions to thin-film equations in higher space dimensions, European J. Appl. Math. 8 (1997), 507-524. | MR 1479525 | Zbl 0894.76019
- ,[17] Ulteriori properità di alcune classi di funzioni in piú variabili, Ricerche di Mat. (1959), 24-51. | MR 109295 | Zbl 0199.44701
,[18] Degenerate parabolic equations of fourth order and a plasticity model with nonlocal hardening, Z. Anal. Anwendungen 14 (1995), 541-573. | MR 1362530 | Zbl 0835.35061
,[19] Nonnegativity preserving convergent schemes for the thin film equation, Numer. Mathematik 87 (2000), 113-152. | MR 1800156 | Zbl 0988.76056
- ,[20] Entropy consistent finite volume schemes for the thin film equation, In: "Finite volume schemes for complex applications II", R. Vilsmeier - F. Benkhaldoun - D. Hänel (eds.), Hermes Science Publications, Paris, 1999, pp. 205-214. | MR 2062140 | Zbl 1052.65526
- ,[21] The thin film equation with 2 ≤ n < 3: finite speed of propagation in terms of the l1-norm, Adv. Differential Equations 3 (1998), 625-642. | Zbl 0953.35072
- ,[22] The porous medium equation in one dimension, Trans. Amer. Math. Soc. 234 (1977), 381-415. | MR 492856 | Zbl 0365.35030
,[23] On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 13 (1959), 115-162. | EuDML 83226 | Numdam | MR 109940 | Zbl 0088.07601
,[24] Long-scale evolution of thin liquid films, Reviews of Modem Physics 69 (1997), 932-977.
- - ,[25] Lubrication approximation with prescribed non-zero contact angle: an existence result, Comm. Partial Differential Equations 23 (1998), 2077-2164. | MR 1662172 | Zbl 0923.35211
,[26] Higher order nonlinear diffusion, IMA J. Applied Mathematics 40 (1988), 73-86. | MR 983990 | Zbl 0694.35091
- ,[27] "Équations elliptiques du second ordre à coefficients discontinus", Les presses de l'université de Montréal, Montréal, 1966. | MR 251373 | Zbl 0151.15501
,[28] An introduction to the mathematical theory of the porous medium equation, In: "Shape Optimization and Free Boundaries", M. C. Delfour-G. Sabidussi (eds.), Kluwer Academic Publishers, Netherlands, 1992, pp. 347-389. | MR 1260981 | Zbl 0765.76086
,