Hodge-gaussian maps
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 30 (2001) no. 1, pp. 125-146.
@article{ASNSP_2001_4_30_1_125_0,
     author = {Colombo, Elisabetta and Pirola, Gian Pietro and Tortora, Alfonso},
     title = {Hodge-gaussian maps},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {125--146},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 30},
     number = {1},
     year = {2001},
     zbl = {1018.14001},
     mrnumber = {1882027},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2001_4_30_1_125_0/}
}
TY  - JOUR
AU  - Colombo, Elisabetta
AU  - Pirola, Gian Pietro
AU  - Tortora, Alfonso
TI  - Hodge-gaussian maps
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2001
DA  - 2001///
SP  - 125
EP  - 146
VL  - Ser. 4, 30
IS  - 1
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_2001_4_30_1_125_0/
UR  - https://zbmath.org/?q=an%3A1018.14001
UR  - https://www.ams.org/mathscinet-getitem?mr=1882027
LA  - en
ID  - ASNSP_2001_4_30_1_125_0
ER  - 
%0 Journal Article
%A Colombo, Elisabetta
%A Pirola, Gian Pietro
%A Tortora, Alfonso
%T Hodge-gaussian maps
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2001
%P 125-146
%V Ser. 4, 30
%N 1
%I Scuola normale superiore
%G en
%F ASNSP_2001_4_30_1_125_0
Colombo, Elisabetta; Pirola, Gian Pietro; Tortora, Alfonso. Hodge-gaussian maps. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 30 (2001) no. 1, pp. 125-146. http://www.numdam.org/item/ASNSP_2001_4_30_1_125_0/

[1] J. Carlson - M. Green - P. Griffiths - J. Harris, Infinitesimal variations of Hodge structure (I), Compositio Math. 50 (1983), 109-205. | Numdam | MR | Zbl

[2] P. Deligne - P. Griffiths - J. Morgan - D. Sullivan, Real homotopy theory on Kähler manifolds, Invent. Math. 29 (1975), 245-274. | MR | Zbl

[3] M. Green, Infinitesimal Methods in Hodge Theory,, In: "Algebraic cycles and Hodge theory", A. Albano et al. (eds.), Lecture Notes in Math., vol. 1594 (1994), pp. 1-92. | MR | Zbl

[4] P. Griffiths, Infinitesimal variations of Hodge structure (III), Compositio Math. 50 (1983), 267-324. | Numdam | MR | Zbl

[5] P. Griffiths - J. Harris, "Principles of algebraic geometry", New York, John Wiley, 1978. | MR | Zbl

[6] P. Griffiths - J. Harris, Algebraic geometry and local differential geometry, Ann. Sci. Ècole Norm. Sup. (4) 12 (1979), 355-432. | Numdam | MR | Zbl

[7] Y. Karpishpan, On higher-order differentials of the period map, Duke Math. J. 72 (1993), 541-571. | MR | Zbl

[8] J. Landsberg, On second fundamental form of projective varieties, Invent. Math.117 (1994), 303-315. | MR | Zbl

[9] R. Paoletti, Generalized Wahl maps and adjoint line bundles on a general curve, Pacific J. Math. 168 (1995), 313-334. | MR | Zbl

[10] G.P. Pirola, The infinitesimal variation of the spin abelian differentials and periodic minimal surfaces, Comm. Anal. Geom. 6 (1998), 393-426. | MR | Zbl

[11] E. Sernesi, "Topics on Families of Projective Schemes", Queen's Papers no. 73, Kingston Ontario, 1986. | MR

[12] C. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95. | Numdam | MR | Zbl

[13] J. Wahl, Gaussian maps on algebraic curves, J. Differential Geom. 32 (1990), 77-98. | MR | Zbl