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A Series of Smooth Irregular Varieties in Projective Space

CIRO CILIBERTO - KLAUS HULEK

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVIII (1999), pp. 357-380

Abstract. One of the simplest examples of a smooth, non degenerate surface in p4
is the quintic elliptic scroll. It can be constructed from an elliptic normal curve E
by joining every point on E with the translation of this point by a non-zero 2-
torsion point. The same construction can be applied when E is replaced by a
(linearly normally embedded) abelian variety A. In this paper we ask the question
when the resulting scroll Y is smooth. If A is an abelian surface embedded by a
line bundle L of type (dl, d2 ) and r = then we prove that for general A the
scroll Y is smooth if r is at least 7 with the one exception where r = 8 and the
2-torsion point is in the kernel of L. In this case Y is singular. The case
r = 7 is particularly interesting, since then Y is a smooth threefold in p6 with
irregularity 2. The existence of this variety seems not to have been noticed before.
One can also show that the case of the quintic elliptic scroll and the above case
are the only possibilities where Y is smooth and the codimension of Y is at most
half the dimension of the surrounding projective space.

Mathematics Subject Classification (1991): 14M07 (primary), 14N05, 14K99
(secondary).

0. - Introduction

One of the simplest examples of a smooth, non degenerate surface in p4
is the quintic elliptic scroll Y. Its construction goes as follows. Let A be an

elliptic normal curve of degree 5 in P4 and let E be a non zero point of order
two on A. Then the union of all the lines joining pairs of points of type x
and x -~- E on A is an elliptic quintic scroll.

Exactly the same construction can be repeated starting from any abelian
variety A of dimension n, with A linearly normally embedded in a projective
space pN via a very ample line bundle L, and from any non trivial point E E A
of order two. We investigate this construction in the present paper. In this

way we get a scroll Y of dimension n + 1 in pN related to the above data

The present collaboration took place in the framework of the HCM contract AGE (Algebraic
Geometry in Europe), no. ERBCHRXCT940557.
Pervenuto alla Redazione il 20 ottobre 1998 e in forma definitiva il 25 febbraio 1999.
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(A, E, £) and the first interesting question is: when is Y smooth? It is well
known that this is the case if n = 1 and N &#x3E; 4. So the next interesting case
is that of surfaces, i.e. n = 2, embedded in via a (dl , d2)-polarization,
with r = d, - d2. If r  6 there is no hope for Y to be smooth because of
Lefschetz’s hyperplane section theorem. So the question becomes relevant as
soon as r &#x3E; 7. In fact the main part of this paper is devoted to proving that
if A is general in its moduli space (it is enough to assume that End(A) ~ Z
or Z depending on the case under consideration), and if r &#x3E; 7 and

r # 8, then Y is smooth. This is particularly remarkable in the case r = 7,
since Y is then an irregular, codimension three manifold in I~6, whose existence
does not seem to have been previously noticed. As we remark at the end of
Section 2, for no other dimension of A, but 1 and 2, and N = 4 and N = 6
respectively, Y can be smooth of codimension c  2 in P’. The case d = 8
is also interesting. If A is a general abelian surface with a polarization of
type ( 1, 8), then Y is smooth, unless the translation by the point c of order
two fixes the polarization, in which case Y is singular. If the polarization is of
type (2, 4), then the translation by E automatically fixes the polarization and Y
is again singular.

The paper is organised as follows. In Section 1 we present the construction
of a suitable projective bundle X over A = A /E which maps to Y via its

tautological line bundle. In Section 2 we prove that this map is finite and we

compute the double point cycle of the composite map of X - Y with a general
projection in a P~, with n + 1  I  N. From Section 3 on we restrict our
attention to the case of abelian surfaces. In particular in Section 3 we prove
that Y is smooth as soon as r &#x3E; 10. This comes as a consequence of the fact

that, in this situation, if A is general enough, then it has no quadrisecant plane.
A property which, in turn, follows as an application of Reider’s method. Finally
in Section 4 we prove that Y is smooth if r = 7, in Section 5 we analyse the
case r = 8 and in Section 6 the case r = 9. The idea for the proof that Y is
smooth and the tools we use in the cases r = 7, r = 8 and the polarization is
of type (1, 8) with E not fixing it, and r = 9 and the polarization is the triple
of a principal polarization (which is the only critical case for r = 9) are the
same: we first bound dimension and degree of the possible singular locus of Y
by using geometric arguments and the double point formula, then we use the
action of the Heisenberg group to give a lower bound for the degree of the
singular locus, finally contradicting the previous estimate.

ACKNOWLEDGMENTS. We are very grareful to the referee who has not only
made a number of suggestions which have improved the presentation of the
paper, but who has also pointed out some inaccuracies such as that the formula
given in Proposition 2.3 was incorrect as it was stated in the first version of
this paper. The referee’s comments also lead to a shorter proof of Theorem 5.1.
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1. - Some projective bundles over abelian varieties

, 

Let A be an abelian variety of dimension n with a polarization 8 E NS(A)
of type (d 1, ... , dn ) with d 11 ... I dn (our general reference for the theory of
abelian varieties will be [LB]). Let us take a non trivial point E E A of order
two.

Let K(8) be the kernel of the isogeny he : A - A determined

by the polarization. Recall that (Zdl x ... x Zdn) 2 and that, if dI is

even, then 8 is divisible by two in N S (A) and every point of order two of A
is an element of K(8).

Let £ be a line bundle on A representing 6. Then we have:

where tx is the translation by a point x E A and Lo E Pic°(A) is the point of
order two given by Hence £o is trivial if and only if E E A"(0).

Let A be the quotient A /E and let n : A ~ A be the quotient map, which
is an isogeny of degree 2. If E E K (6), then there is a line bundle £ on A,
such that 7r * (Z) = ,C. The line bundle £ represents a polarization 8 on A, of
type (dI, ... , dn), such that:

a relation which is obtained from On = = 2W. In particular, if

d 1 = ... = dn-j 1 = 1, dn = d, then d is even and 6 is of type ( 1, ... , 1, 1 !~).
One has: 

2

where JL4j 1 is a non trivial 2-torsion point in Pic° (A) . The induced map 7r* :

Pic°(A) -~ Pic°(A) is also an isogeny of degree 2, whose kernel is generated
by Therefore we have two line bundles M2, M3 E Pic°(A) such that:

and one has M2 = M3 0 MI. The elements i = 1, 2, 3, and the trivial
bundle form a subgroup G of Pic° (A), which is the inverse image via Jr* of
the subgroup generated by £0.

We have the:

LEMMA 1.1. If E e J~(0) then G is the group of order two generated by MI.
Otherwise G is isomorphic to ~2 x 7 2.

PROOF. The first assertion is clear. To prove the second assertion let L
be a lattice which defines A = C /L. Then the point E is represented by an
element e E 2 L. The fact that E is not in K (8) is equivalent to the existence
of some element f e L such that for the pairing defined by the polarization
(e, f ) = ~ mod Z. The lattice L which defines the quotient A is the lattice
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generated by L and e. We denote by L’ the dual lattice of L. This defines the
dual variety Pic°(A) = CCg/L" of A. The element e is not contained in L" and
represents the line bundle 120 in Pic° (A) . Similarly f ~ LV , but 2 f E The
element f corresponds to the line bundle 1 in Pic° (A) which is 2-torsion.
The element e also defines a line bundle in Pic°(A), whose pullback to A is 120
and this corresponds to A42 or .il~l3 . The claim follows if we can show that

A42 or is 2-torsion. But this follows since 2e E Lv. (A different proof
will follow from Proposition 1.5 below (see Remark 1.6)). D

Let us set:

This is a rank 2 vector bundle on A, and we can consider the associated

projective bundle:

with its tautological line bundle and its structure map p : X --~ A. We
will denote by F a fibre of p and by H a divisor in . We will use the

same notation to denote their classes in the homology ring of X.
If E E K (8) then, since 7r*(Z) = ,C, the projection formula tells us that:

By contrast, as we shall see in a moment, if E ft K (0), then the bundle E in
general does not split.

The natural map 7r *,E --~ L defines an inclusion i of A into X such that H
restricts to L on i (A). The image i (A) is a 2-section over A. If there is no

danger of confusion we shall denote i (A) also by A. Let

We have a natural etale map f : X - X of degree 2. The inverse image of the
2-section A in X under the map f consists of 2 sections of X corresponding
to the 2 projections .7r*.F -+ L and 7r*g 2013~ whose existence follows from
the construction of S. This shows that 7r*,E splits, more precisely

Notice that, if E E K (O), then X = A x I~l is trivial.

LEMMA 1.2. One has:

Moreover, if e ¢ K (8) then:

(iv) there is no section A’ of X over A which is disjoint from A.
Hence if e ¢ K (6) and A does not contain elliptic curves, then E does not split.
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PROOF. (i) follows by the definition of the tautological bundle.
(ii) There are two sections A 1 and A2 of X over A, which map both

isomorphically to A via f. These sections correspond to the splitting of Jt * (S) =
,C EB (C 0 £o). Since the normal bundle of both these sections in X is given
by Lo, and since f is etale, we have the assertion. 

-

(iii) Since A ~ F = 2013~ F = 2, there is a line bundle on A such
that Ox(Kx) ® ~ * (.I1 ~l ) . On the other hand, by adjunction, one has

OA (Kx). This implies that either M ~ Oi or A4 - This

immediately yields the assertion.

(iv) Suppose A’ is disjoint from A. Then A’ would pull back to a section I’
of X, disjoint from A and A2, which would give another way of splitting 1r*(E0
,C* ) . This is impossible under the assumption E 

splits, we have two sections A’ and A" of X which do not meet.
However they both meet A and they must cut out two divisors C’ and C" on
A which do not meet each other. Hence C’ and C" are pull-backs from an
elliptic curve and so A contains an elliptic curve. D

Notice that the map p : X 2013~ A induces an isomorphism p* : Pic° (A) -
We will identify Pic° (A) and using p*. We have the:

PROPOSITION 1. 3. an element of Pic° (X). One has:
(i) if E E then h° (X, Ox (A) 0 1]) = 0 Ox, in which case

h° (X, Ox (A)) = 2, and t7 = in which case h° (X, Ox (A) 0 = 1 ;
(ii) K (O) then h°(X, O (A) 0 1]) = 0 = which

cases h 0 (X, Ox (A) 0 1]) = 1.
PROOF. We have:

Therefore, by using (1) we have:

Moreover, since A ~ F = 2, there is a line bundle N on A such that:

Hence, by the projection formula, one has:

From Lemma 1.2, (i), (ii) and restricting (3) to A, we obtain:

Now, by (2), (4) and (5), we get:
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and therefore if E E K (O) :

whereas:

otherwise. Notice that:

Then, by (6), resp. (6’) if 17 #- Oi, JL4i, i = 1, 2, 3, we have:

in particular h°(X, Ox (A 0 1])) = 0.
Let E E K ((0). If 17 = 1, we find:

We claim that 2 and h°(X, Ox (A) 0 A4i) = 1. Let A be
a trivial section of X = A x Pl over A. Of course )A) I is a base point free
pencil on X. The image of this pencil under the map f : X - X is a system
of divisors on X which is contained in a linear system. Since A is in this

system, we see that h°(X, Ox(A)) g 2. on the other hand we cannot have
3 because of Lemma 1.2, (ii). Hence the assertion follows,

proving (i).
Let now e V K(8). If 17 = Mi, we find:

and since h°(X, Ox(A)) a 1, we have h°(X, = 1 and h°(X, Ox(A) 0
JL4 i ) = 0. Finally, if 17 = A4 j, i = 2, 3, we have:

We claim that both summands are smaller than 2. Otherwise the linear system,
say, lOx (A) 0 M21 ( would be a pencil, and therefore we would find an element
of it meeting A. But by Lemma 1.2, (ii), the restriction of Ox(A) ® A42
to A is trivial. This would yield that A itself is an element of the pencil,
implying ./1~l 2 ) &#x3E; 0 and hence that M2 is trivial on X, a contradiction.
In conclusion we have:

which finishes our proof.
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REMARKS 1.4. (i) First we consider the case E E K (6). We reconsider the
relation between the pencils )§i( I on X and A ~ I on X. The map f sends each
element of §i ) to an element of I Al. As we saw in the proof of Lemma 1.2, (ii),
we have f * (A) = A + Ã2. Hence f is two-to-one between IÃI I and This
means that all, but two, elements of )A) I are smooth, irreducible, isomorphic to
A, and that there are two elements of IAI of type 2A+, 2A- with A~ sections
of X over A. One moment of reflection shows that these two sections, which

do not meet, correspond to the splitting of S. Of course A~ are isomorphic to
A and one has A41. In addition 2 A ~ - A but of course A+ -#A-.
Hence A+ - A- gives a non trivial point of order two in Pic°(A). By
restricting to A~, we see that this point of order two is Hence 

Ox(Ã-)0MI i and therefore C~x (A) ^-J C~x (A+-~ A-) ®.Nl l, whence
Ox (A) Ox (A + -~ A-), which fully explains the meaning of part (i) of
Proposition 1.3.

Notice that all the smooth abelian varieties in IAI play a symmetric role
in the construction of X and of its tautological line bundle. 

_

One more obvious remark. Let A- correspond to the quotient £ -* £
and A+ to the quotient £ -* Then OA-(I) -- ,C and 
£0 MI.

(ii) Now we take up the case K (8). Consider the varieties A2, A3
which are the unique divisors in the linear systems ,

respectively. As we saw in the proof of Proposition 1.3, we have A n A2 =
A n A 3 = 0. Then, by Lemma 1.2, (iv), A 2 and A 3 are irreducible. We shall see
in Proposition 1.5 that these varieties are smooth abelian. We also set A 1 = A.

PROPOSITION 1.5. One has:

(i) i, f E E K (O), then hO(X, = 3;
(ii) ife g K(O), then h°(X, Ox (2A)) = 2. Moreover the has exactly 3
singular elements namely 2Ai for i = 1, 2, 3. All other elements D in I are
smooth abelian. The reduced varieties Ai are also smooth abelian.

PROOF. In case (i) the linear system is composed with the pencil hence
the assertion.

Let us consider case (ii). Since 2A == 2A2 - 2A3, it is clear that
2. Suppose r + 1 &#x3E; 3. Then the lin-

ear system 12AI would have dimension r &#x3E; 2. Moreover is trivial.
Therefore the linear system )A) I would have dimension at least r - 1 ~ 1, con-
tradicting Proposition 1.3. We now look at the pencil 12A 1. We have already
seen that the Ai are irreducible. The same is true for the elements D. In fact
D does not meet A and by Lemma 1.2, (iv) D cannot have a component which
is a section. In addition, there cannot be a non trivial component which is a

2-section either, because such a 2-section would be numerically equivalent to A,
hence would be equal to A2 or A3, which is not possible since A2 + A3 is not

equivalent to 2A. It follows from adjunction that the square of the dualizing
sheaf is trivial and that ú) D is trivial. Our assertion follows if we can

show that the projection onto A defines an etale 2 : 1 cover from Ai to A,
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resp. an etale 4 : 1 cover from D to A. To see this we look at the pencil of
degree 4 cut out by ( 2A ~ I on each ruling. This is base point free and has at

least 3 singular elements consisting of 2 double points each, corresponding to
the 2-sections Ai. By the Hurwitz formula there can be no worse singularities
and this gives the claim. 0

REMARKS 1.6. (i) Assume that e V K(O). Then we have just seen that A2
and A3 are smooth abelian varieties isogenous to A via the degree 2 maps 7~2,
7r3 induced by p. In addition we have A2 n A3 = 0. Hence and

which gives another proof of Lemma 1.1 in the present case.
(ii) In this situation the projection p induces on every smooth element

D E 12A I an isogeny 6 : D -* A of degree 4. We have just seen that

OA2 and It follows from this that 8*(Mi) is trivial for
every i = 1, 2, 3. Hence D is constant in moduli and it is the unique degree
4 cover of A with this property. We also remark that, in view of the above

description, the isogeny 6 factors through degree 2 isogenies 8i : D -~ Ai,
i = 1,2,3.

(iii) We consider the line bundles ,Ci . and the corresponding
polarizations 8i, i = 1, 2, 3. Of course E ^~ i = 1, 2, 3, and the abelian
varieties Ai play a symmetric role in the construction of X and of its tautological
line bundle 

PROPOSITION 1.7. One has:

(i) E K (O), then Ox(Kx) rr 
(ii) K(8), then 0 = 1, 2, 3.

PROOF. (i) By the proof of Lemma 1.2, we know that either 
0 M¡ 1 or Ox(Kx) ~ Ox(-A). The assertion follows by restricting

to A
(ii) As above the proof of Lemma 1.2 tells us that either 

0 A4i or Ox(Kx) ~ Suppose that Ox(Kx) rr Ox(-A).
Then the adjunction formula tells us that Ox (A2 -
A 1 ) 0 OA2 JL43 ® OA2, which is a contradiction, since only A42 ® is
trivial on A2. D

Let us now consider the action of K (O) on A. We will assume 0 is
a primitive polarization, i.e. it is an indivisible element of NS(A), of type
(di, d2, ... , ,dn). This is equivalent to d = 1.

LEMMA 1.8. Let us suppose that the Neron-Severi group of A is generated by 8.
Let y be an e, ffective divisor on A fixed by K(8). Then there is a positive integer a
such that y = a - dn ~ 8 in the Neron-Severi group of A.

PROOF. Let A be the polarized dual variety of A. The primitive dual
polarization 6 is of type (1, dn) and it generates the Neron-Severi

1- d2

group of A. We have the map A ---&#x3E; A. Then an easy computation using
self-intersection numbers shows that:
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On the other hand we have y = Àê(’9), where ’9 is an effective divisor on Qi.
Therefore we have y - a6 for some positive integer a. By pulling this back
to A via he, we get the assertion. D

LEMMA 1.9. Assume that E V K(8) and that the Neron-Severi group of A is
generated by 8. Let D be any irreducible element of the pencil 1- I and let HD
be the element of the Neron-Severi group of D given by the restriction of H to D.
Then HD = 8; (0i), i = 1, 2, 3 and HD is at most divisible by 2 in the Neron-Severi
group of D. _

PROOF. The assumption that NS(A) ^-~ Z implies that also NS(D) -- Z.
The assertion HD = ~i (Oi ) is then purely numerical and follows from the
fact that D = 2A in NS(X). Since the maps 8i are 2 : 1 covers the maps
8i* : Z NS(D) ~ Z have a cokemel which is torsion of order at
most 2. D

In the case of abelian surfaces we can extend Lemma 1.8 above in the

following way:
LEMMA 1.10. Let A be an abelian surface with a polarization 0 of type (1, 2n ),

resp. (2, n) and assume that Z. If C is a curve invariant under a group
G ~ Zn x Zn which acts on A by translation, then C = a - 8 where a is a multiple
of n, resp. n / 2.

PROOF. By the assumption NS(A) -- Z the curve C is a multiple of 6,
resp. O /2. Since C is invariant under the group G the associated line bundle
descends to A/ G. But this implies that G is a totally isotropic subgroup with
respect to the Weil pairing of (cf. [LB, Corollary 6.3.5]). This is only
possible if a is divisible by n, resp. n/2 (cf. the description of the Weil pairing
given in [LB, Example 7.7.4]). 0

2. - Some scrolls of secant lines to abelian varieties

Let us consider a linearly normal abelian variety A c of dimension n,
embedded via a very ample line bundle £ belonging to a polarization a of type
(Ji, d2,..., dn ) . Then r = and the degree of A equals n ! ~ 

Let c be a non trivial 2-torsion point on A. We are interested in the n + 1-
dimensional scroll:

where L (a, b) is the line joining two distinct points a, b in projective space.
We notice that, unless n = 1 and r = d = 3, Y is a proper subvariety in 

As we saw in Section 1, from which we keep the notation, we can associate
to this situation a P1-bundle X on A = A/E . The relation between X and Y is
described in the following lemma:
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LEMMA 2 .1. One has the following commutative diagram:

Moreover the is a morphism and its image is Y.

PROOF. Since 7r,,,C we have a canonical isomorphism of
vector spaces H° (A , ,C) ^~ Moreover, by Lemma 1.2, (ii) we
have This shows the existence of the commutative diagram above,
which in turn, implies ~ (X ) = Y.

Let F be any ruling of X and let x, x + c be the two points where F
intersects A. Since is very ample on A, the linear system 1 separates
these two points and hence 1 has no base points on X, i.e. q5 is a

morphism. D

We can now prove the following propositions:

PROPOSITION 2.2. The map 0 is finite, i. e. Ox (1) is ample.

PROOF. Assume that there is an irreducible curve C which is contracted

under 0. The curve C can only meet a ruling F once, i.e. the projection of C
to A is birational onto its image. After possibly replacing C by its normalization
we obtain a smooth curve C and a morphism f : C - A which is birational
onto its image such that

for some suitable line bundle 03BE on C. The P1-bundle V = P(f*£) over C is
mapped to a cone W in Y. Let Co be the section of V which is mapped to the
vertex of W and let C1 I be the 2-section which is the pullback of the 2-section
A of X. We denote by f the class of a fibre in V. Then Cl 1 = 2Co + a f
in the Neron-Severi group of V for some integer a. Since Co is contracted it

follows that e = C2  0. On the other hand it follows from Lemma 1.2 (ii)
that C1 = 0 and hence a = -e. But then Co.CI - e  0, i.e. Co and CI have
a common component. This contradicts the fact that the abelian variety A is
embedded by the map 0. D

PROPOSITION 2.3. One has:

If n = 1 and r &#x3E; 4, then 0 is birational onto its image and it is an embedding as
soon as r &#x3E; 5.
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PROOF. The result is well known for n = 1 (see e.g. [CH, Proposition 1.1

and Proposition 1.2]). So we assume n &#x3E; 2. We have:

We can then deduce from formula (1) of Section 1 that:

and hence the assertion. 
_ 

D

In what follows we will need a formula for the double point cycle D(X, /)
(see [F, p. 166]) of a map f : where l  r - 1 and f is the

composition of q5 with a general projection --~ We assume 1 &#x3E; n + 1.
In this situation the map f is finite.

THEOREM 2.4. One has:

in the homology ring of X.

PROOF. By applying Theorem 9.3 from [F, p. 166], one has:

where N f is the normal sheaf to the map f which is defined by the exact
sequence:

By Proposition 2.3 and finiteness of f, we have:

Moreover from the Euler sequence, we see that - (1 + Also

by the exact sequence:

we deduce that c (Tx) = I +A. Since A2 = 0 in homology, the assertion follows
by an easy computation. D
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COROLLARY 2.5. Let n &#x3E; 2 and r = 2n + 3. Then:

which is equal to 0 if and only if n = 2.

PROOF. The formula for D(X, Y - 1) follows right away from the above
theorem. For n = 2 we have D(X, 6) = 0 and for n = 3 one computes that

8) = 6 - 9 ~ 48. In order to prove the second assertion, it is sufficient to
show that: 

, ,

for all n &#x3E; 4. Since

one can easily verify this by induction on n. D

REMARK 2.6. The above corollary suggests that the secant scroll to an

abelian surface of type (1, 7) in I~6 should be smooth. This we are going to
prove in Section 4. Moreover this is the only case, apart from the elliptic scroll
of degree 5 in p4, in which an (n + I)-dimensional scroll obtained as above
from an n-dimensional abelian variety, which is linearly normal in p2n+2, can
be smooth. This is what makes the consideration of the surface case, to which
the main part of this paper is devoted, particularly interesting.

We want to finish this section with a remark which is specific to the case
E E K(G).

REMARK 2.7. If c E K (O), then c acts as an involution on:

the invariant and anti-invariant eigenspaces being H° (A, £) and H° (A, £0MI)
respectively. Recall that represents a polarization of type (di , ... , dn ) on A,
such that 2 . d 1 ..... dn = d ..... dn. Set r = d ..... dn. Then h° (A, Z) =

= rand 2r = r.

Accordingly c acts as an involution on pr-1 = P(H°(A , £)*). The invariant
and anti-invariant subspaces both have dimension r and are P+ = ,C)*)
and P- = P(H°(A, £0MI)*). One has the morphisms q5+ = ~ : ~ ~ P+ and
q5~ = A --~ I~-. The images Y+ and Y- of thes’e maps are nothing
but the images via q5 of the two sections A+ and A- respectively of X (see
Remark 1.4, (i)).
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Finally we have a different description of Y which will be useful to take
into account. Take any point x E A and consider the corresponding points
X± E A+ . Set y~ _ ~ (x~). Then:

3. - Secant scrolls related to abelian surfaces

From now on we will consider the case where the abelian variety A is

a surface, i.e. n = 2, and the polarization 6 is very ample of type (di, d2).
Hence r = d2 and the surface A is embedded into pr-1, via a line bundle
,C representing O, as a surface of degree 2 - d, - d2. We will also denote the
image by A.

We are interested in characterizing the cases in which the map X Y
introduced in general in Section 2 is an embedding, if A is a general polarized
abelian surface of type (dl, d2). Notice that, by Lefschetz’s hyperplane section
theorem, there is no chance that ~ is ever an embedding if r  7 . So we will

assume from now on r &#x3E; 7.

In order to study the X - Y, we need some information about
the embedding of A in We will use a well known result of Reider, in
the following form due to Beltrametti and Sommese [BS, Theorem 3.2.1]:

THEOREM 3. l. Let L be a numerically effective (nef) divisor on a surface S.
Assume that L 2 &#x3E; 4k + 1. Given any 0-dimensional scheme Z of length k on S,
then either the natural restriction map

is surjective, or there exist an effective divisor C on S and a non-empty subscheme
Z’ of Z of length k’  k, such that:

(i) the map

is not surjective;
(ii) Z’ is contained in C and there is an integer m such that m (L - 2C) is effective;
(iii) one has

As a consequence we have the following:
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PROPOSITION 3.2. Let A be a polarized abelian surface of type (dl , d2) and let
L be a line bundle on A representing the given polarization 0. Set r = d, - d2. One
has:

(i) if r &#x3E; 5, then L is very ample, unless there is a curve C on A such that C2 = 0
and 0 - C  2;

(ii) assume that L is very ample and that r &#x3E; 7, then OL (A) has no 3-secant lines,
unless there is a curve C on A such that either C2 = 0 and 0 - C = 3 (a plane
cubic) or C2 = 2 and 6 - C = 5 (a genus 2 quintic);

(iii) assume that L is very ample, that ø¡:, (A) has no 3-secant lines and that r &#x3E; 9,
then q5L (A) has no 4-secant planes, unless there is a C on A such that
either C2 = 0 and 6 - C = 4 (a genus 1 quartic) or C2 = 2 and E) - C = 6 (a
genus 2 sextic).

In particular if N then:

(i’) if r &#x3E; 5, then L is very ample;
(ii’) if r &#x3E; 7, then has no 3-secant lines;
(iii’) if r &#x3E; 9, then (A) has no 4-secant planes unless 8 is the triple of a principal

polarization.

PROOF. The first part is an immediate application of Theorem 3.1, by taking
into account that for any effective divisor C on A, the integer C2 is even and

non-negative.
If NS(A) ^_- Z, then there is no curve on A with C2 = 0. In addition, if

C is an effective divisor such that C2 = 2, then C is irreducible and its class
0 in NS(A) is a principal polarization which is indivisible, hence it generates
NS(A). Thus there is a positive integer a such that 8 = a8. If e. 0 = 2a  6,
then a  3, and E) is a polarization of type (a, a). Since we are assuming
r = a 2 &#x3E; 5, we have a = 3, a case which indeed gives rise to 4-secant planes
(see Section 6). D

As a further consequence we can prove the:

THEOREM 3. 3. Let A C be a linearly normal, smooth abelian surface such
that L = OA (1) determines a polarization 6 of type (dl, d2) with r = d, - d2. Let
E E A be a non trivial point of order two. Suppose that N Z. Consider the

map 0 : X - Y c Then:

(i) distinct rulings of X are sent by 0 to distinct lines in P’-1, as soon as r &#x3E; 7;
(ii) the differential of the map 0 : X - Y is injective along A and Y is smooth

along A, as soon as r &#x3E; 7;
(iii) the map q5 : X -* Y is an isomorphism as soon as r &#x3E; 9, unless 0 is the triple

of a principal polarization, i. e. d, = d2 = 3 and r = 9.

PROOF. (i) If two distinct rulings of X were mapped to the same line L in
then L would be a 4-secant line to A, contradicting Corollary 3.2, (ii’).

(ii) Let x be a point of A. Then the tangent space to X at x is spanned
by TA,x and by the tangent space to the ruling F through x. Since L = ~ (F)
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cannot be tangent to A by (3.2, ii’), it follows that do is injective at x. The
smoothness of Y along A is then a consequence of (3.2, ii’).

(iii) If 0 were not injective, we would have two distinct secant lines to A
meeting at a point, and therefore a 4-secant plane to A, contradicting (3.2, iii’).

Suppose do is not injective at a point z E X, which we may assume not
to be on A by (ii). The Gaussian map y : X -+ G(3, r - 1) is a rational map
whose restriction to each ruling is defined by (ii). By following the argument
in [R, p. 215], we see that such a restriction is given by quadratic forms. If
F is the ruling of X through z, the forms defining yF all vanish at z. Hence

by [R, Lemma 25], the union of the tangent spaces to Y along the image L
of F is a P4. In particular the two tangent planes to A at the points x and
x + 6 where L intersects A meet at a point. This either yields the existence of
a tangent line to A which meets A once more, which is impossible, or of two
tangent lines r, r’ to A at x and x’ = x + E which meet, hence the existence
of a 4-secant plane to A, a contradiction to (3,2, ii’, iii’), unless d, = d2 = 3,
r = 9 and 0 = 39, with 9 a principal polarization on A. C1

We also have the following consequence:

PROPOSITION 3.4. Let A be a polarized abelian surface of type (dl , d2) with
r = d, - d2 &#x3E; 7 such that Z. Then the map q5 : X Y is birational.

PROOF. Let 3 be the degree of 0. Let F be a general ruling of X and let L
be its image under 0. Let x, be the two points of A on L. Let z E L be a
general point. Then by (3.2, ii’) there are 8 - 1 images of rulings of X through
z different from L. This situation produces a (3 - 1 )-cover of L and again by
(3.2, ii’) this cover is totally ramified at x and x + e , i.e. = x and

0 - 1 (o (x + E)) = x + e. Since z is general this implies that q5 itself should be
ramified along the points of A, contradicting (3.3, ii). D

In what follows we will need some information about the hyperplane sec-
tions of Y. Let A c 1 be a linearly normal, smooth abelian surface such
that = determines a polarization 6 of type (~1,~2) with r = d 1 ~ d2.
Let E E A be a non trivial point of order two. Let H be a divisor in 
We abuse notation and we denote by p : H - A the restriction to H of the
projection p : X - A.

LEMMA 3.5. In the above setting, if NS(A) ^_~ Z is generated by 6 and if H is
a general divisor in lOx (1) I, then:

(i) the map p : H - A is the blow-up of A at r distinct points p 1, p, and
the exceptional divisors are r rulings Fj , 9 ... Fr of X contained in H;

(ii) E K (0), then OH (Fl +... + Fr) = Ox (A) 0
OH(FL +... + Fr), whereas if E tt K (O), then Ox (-Kx) ®
OH(f1+...+Fr)=

PROOF. Let H be the zero locus of the section S E One

has HO(X, H°(A, ,C) and HO(X, Ox (1)) ~ HO(Ã, E), thus we may
interpret s as a non-zero section of £ on A and of E on A.
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We let CH be the zero-divisor Of S E on A, i.e. the intersection
of H with A. According to our assumption on A, the curve CH is irreducible
and reduced. Then we consider the curve CH,E = CH+E, which is the zero locus
of the section E HO(A, t;£). The curve CH,E is also irreducible
and reduced. Furthermore, it is distinct from CH. This is clear if E ~ K (8),
whereas, if E E it follows from the considerations in Remark 2.7. Hence
we can consider the zero-cycle Z of lenght 2r given by the intersection of CH
with CH,,

Let Z be the zero locus of s E H° (A, S) on A. It is clear = Z.
Hence the general section of E vanishes in codimension two. Notice that this

fits with the fact that c2 (03B5) = 2= r.2

Now we claim that, by the generality assumption we are making on H, the
cycle Z consists of r distinct points. In view of the above considerations, this
amounts to proving that a general section S E H°(A, S) vanishes at r distinct

points of A. This is a consequence of the following claim, which is a Bertini
type theorem for vector bundles:

CLAIM. Let V be a smooth irreducible variety and let S be a vector bundle
of rank two on V. Assume that:

(i) NS(V) -- Z is generated by c 1 (~),
(ii) E is generated by global sections away from a subvariety of V of codi-

mension &#x3E; 3.

Then the zero locus of the general section of E is reduced.

As for the proof, let a, t be general sections of S. Then a A T is not

identically zero by (ii). Let D be the zero locus of or 1B T. By (i), the subvariety
D is an irreducible, reduced divisor on V. In particular this implies that the
general section of S vanishes in codimension 2 and, again by (ii), the zero loci
of two general sections, like ~, r of E have no common component.

Set s (~, , it) = with [~, , ,u] E P . The zero locus p)
describes, as [~,, varies in a linear system of divisors on D, which, by
the above considerations, has no fixed divisor. Hence Bertini’s theorem ensures
that for [,k, /t] general in P~, the scheme W (~, , ~c,c ) is reduced.

Let us now return to Z. By the above claim (Note that condition (ii) is
fulfilled by Lemma 2.1 ) we can write Z = p l + ... + pr , with p 1, ... , pr
distinct points of A. Then H contains the rulings Fl , ... , Fr over the points
PI, pr. The map p : H - Fi 1 ~ A - Z is clearly an isomorphism
and since the Fi ’s are contracted by p to the smooth points pi, it follows that

p : H - A is the blow-up in Z. This proves part (i).
As for part (ii), we apply the adjunction formula and obtain:

which, by Proposition 1.6, concludes the proof. D
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4. - The case r = 7

In this section we will prove the:

THEOREM 4.1. Let A be a linearly normal abelian surface embedded in JP&#x3E;6
via a line bundle £ which determines a polarization 0 of type ( 1, 7). Assume that
End(A) ~ Z. Then the map 0 : X - Y is an embedding.

Fist of all we notice that End(A) ~ Z implies Z (see [LB,
p. 122]). Since 6 is indivisible, it generates NS(A). Next we remark that no
non-trivial E is an element of 

The proof will require several steps. Let us start by denoting by E the
singular locus of Y and let S = ljJ -1 (:E). Recall that 2A ~ I is a base point free
pencil on X containing three double fibres A = A 1, A2, and A3, which are the
only reducible, singular members of the pencil (see Section 1, from which we

keep the notation). Notice also that End(Ai) ~ Z, for i = 1, 2, 3, since we have
made the assumption that End(A) ~ Z. In particular ,Ci is very ample on Ai,
i = 1, 2, 3, and A 1, A2, A3 play a symmetric role with respect to X and Y.

LEMMA 4.2. One has:

and for every irreducible component Z of S, there is a unique irreducible, smooth
surface D E 12A on X containing Z.

PROOF. As we noticed, Aj, A2, A3 play a symmetric role with respect to
X and Y. Therefore (1) follows by (3.3, ii). Moreover, z. A = 0 in the

homology ring and 12AI is a base point free pencil, whose elements sweep out
X. Therefore there is an element D e 12AI containing Z. By Proposition 1.5
the surface D is smooth and irreducible. D

We want to prove that E = 0. First we prove that:

LEMMA 4.3. One has dim(£) $ 1.

PROOF. We argue by contradiction and therefore, according to Lemma 4.2,
we may assume that one of the following happens:
(i) there is a surface D E 12A I on which do is not injective;
(ii) there are surfaces D 1, D2 E ~ 2A ~ I which have the same image via q5;
(iii) there is a surface D e 2A ~ I on which 0 is not injective.

In case (i) the differential do would not be injective at 4 distinct points
of a general ruling F of X. By the same argument we made in the proof of
part (iii) of Theorem 3.3, do would not be injective along the whole of F, a
contradiction.

In case (ii) we may assume that both D, and D2 map birationally, via q5,
to some irreducible component of E, otherwise we are in case (iii). Hence we
have a birational map a : D2, which is an isomorphism, since D, and
D2 are both abelian surfaces. Recall that D, and D2 are isomorphic as double
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covers of A and that this isomorphism is compatible with the projection onto
A. Since Z the same is true for D, and D2. Hence the map a is

of type D2, where k is a fixed element in D2. But
then this would imply that the 4 points of intersection of D, with any ruling
F of X are mapped, via a, to the 4 points of intersection of D2 with another
ruling F’. Hence 0 would map F and F’ to the same line in p6, contradicting
Theorem 3.3, (i).

In case (iii), let it be the degree of 4J,D. Since H 2 - D = 28, we can only
have the possibilities J1 = 2, 4, 7, 14, 28. 7, then would be

degenerate, implying that the linear system H - D = ~ 2013 2A ( is effective, a
contradiction, 2A) = -3.

If J1 = 2, then we have an involution a on D and we can argue as we did
in case (ii) to arrive at a contradiction.

Let us consider the last case J1 = 4, in which the degree of I/ is 7, and
we may assume that E’ is non-degenerate in p6 . Let z be a general point of
D and let F be the ruling of X through z. Since 0 maps F isomorphically to
a line L in p6 , every such ruling is a proper 4-secant to the surface ~’, i.e. it

intersects the surface in 4 different points. We see that the fibres containing z
of the maps D -~ A and D 2013~ I/ intersect only at z. This implies that through
the general point p = q5(z) E I:’ there are at least four 4-secant lines to XB

Hence, by projecting I:’ from p down to we have a surface ~" of degree
6 with at least 4 distinct triple points pl , p2, P39 P4.

First we claim that pl , p2, p3, p4 are not collinear for a general projection.
Suppose in fact they lie on a line L. Then a simple application of Bezout’s
theorem shows that the general hyperplane section r of I:" through L consists
of 2L plus a residual curve r’ of degree 4 containing pl, p2, p3, p4. Hence,
again by Bezout’s theorem, r’ must be reducible into degenerate components.
This implies that the projection of I:" from L to p3 is a non-degenerate curve
A. Let a &#x3E; 2 be the multiplicity of E" at a general point of L, let £ g 3 be
the degree of A and let {3 be the degree of the general fibre of the projection
I/’ 2013~ A. Then we have:

This gives us the possibilities: a = 2, ~, = 4 
and fl = 1. In either case E" would be a scroll, and r’ would consist of
3 or 4 rulings. We shall first treat the case where a = 2. Since E" has a
double line we have two possibilities. Either E’ has a double line or E’ has a

pencil of plane curves (recall that the general projection of E’ contains a double
line by our assumption). In the second case the surface E’ cannot span p6.
This follows since in this case every ruling meets each of these plane curves
in one point (recall that and this shows that all rulings are incident
to two planes, i.e. contained in a fixed p5. Finally assume that E’ has a
double line. Recall that there are 4 proper 4-secant lines through a general
point of E’. Hence the multiplicity of the corresponding singular points is

greater than the multiplicity of a general point of the line L and we see that
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when r’ moves, there are infinitely many rulings through each of the points
p3 , p4. Hence 1:’ would be a cone with vertex each one of the points

PI, P2,’P3, P4, a contradiction. It remains to treat the case where a = 3. If
E’ does not have a multiple line then we can argue as above that it cannot

span p6 . Finally assume that E’ has a multiple line. Again, since there are
4 proper 4-secant lines through a general point of E’, the multiplicity of the
corresponding singular points is greater than the multiplicity of a general point
of the line L and our above argument goes through unchanged.

Let us now project 1:" to from one of the points PI, P2, P3, P4. If
the projection is not a surface, then E" is a cone with vertex the point we
are projecting from. This cannot happen for all the points under consideration,
therefore we can assume that the projection from, say, p, is a surface, which
is an irreducible, non-degenerate surface of degree 3 in P4, with at least two
points of multiplicity at least three, a contradiction. D

The next step is to further bound the dimension of the singular locus E
of X.

LEMMA 4.4. One has 0.

PROOF. Again we argue by contradiction and we assume that the locus
E has components of dimension 1. Hence S = Ø-I(1:) has components of
dimension 1. Let S, be their union. According to Lemma 4.2, the curve S, is
contained in the union of finitely many irreducible divisors of 12AI. Let D be
one of these and let y be the part of S, contained in D. By Lemma 1.9 the
polarization HD is of type (1, 14) and hence there is a positive integer a such
that y = aHD in NS(D).

Since the group K (8) fixes ,C, it also acts on the vector bundle E and
therefore it acts on X. Furthermore it acts on This
action is trivial on the pencil - I = 12A I, since the divisors Ai, i = 1, 2, 3,
are fixed. Notice that S is fixed by this action, hence S, is and therefore y is.

Consider now a general map f : X -~ P~ as in Section 2. A straightforward
parameter count shows that the singular locus of f (X ) has still dimension 1.
Then by applying Theorem 2.4, we see that D(X, 5) = 6 H ~ ( H + A). Hence
6H . (H + A) - y is represented by an effective cycle. By Lemma 1.10 we have
y = 7a HD in N S ( D ), with a a positive integer. Hence we have y = 14aH . A.
Therefore 6H2 + (6 - 14a)H . A is represented by an effective cycle. By
Lemma 3.5, (ii), we have H2 = H ~ A + 7F. Hence (12 - 14a ) H ~ A + 42F is
xepresented by an effective cycle, whose intersection with the pull-back W on X
of an ample divisor on A is non negative. This forces a  0, a contradiction. 0

Finally we can finish the:

PROOF OF THEOREM 4.1. Since we know now that S = 0-’(E) is finite,
we can use the double point formula from Corollary 2.5, which tells us that
D(X, 6) = 0, implying that S is empty. D
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5. - The case r = 8

In the case r = 8 we have two possibilities, namely the abelian surface A
is either embedded in p7 via a line bundle £ belonging to a polarization 8 of
type ( 1, 8) or to a polarization 0 of type (2, 4). In the former case there are three
non trivial points E E A of order two which are contained in K (O) ^_- Z/8xZ/8,
in the latter case every such point is an element of 

As we will see in a moment, the two cases 6 ~ K (6) and E E K (6) give
rise to a completely different behaviour of the map 0 : X - Y.

The main result of this section is the following:
THEOREM 5.1. Let A be an abelian surface such that End(A) -- Z, linearly

normally embedded in p7 via a line bundle L giving a polarization 8 in N S (A). Let
E be a non-trivial point of order two on A. Then:

(i) if E E K (8), the map 0 : X - Y fails to be an embedding along the sections
Ã:f: of X (see Remark 1.4, (i)), whereas it is an embedding on the open subset
which is the complement of these two sections;

(ii) K(8), which implies 8 to be of type (1, 8), the map q5 : X -* Y is an
embedding.

PROOF. (i) We use the notation of Remark 2.7. The spaces Pl are both of
dimension 3 and the maps q5+ : A~ --~ Y+ cannot be embeddings. On the other
hand q5 is an embedding on X - (A+ U A-). This follows from Theorem 3.3,
(ii): the linear system I A I is a base point free pencil whose elements, with the
exception of 2A+ and 2A-, are smooth and isomorphic to A. The pencil A ~ I
sweeps out X and its smooth elements play a symmetric role in the description
of X and 0.

(ii) The structure of the proof in this case is somewhat similar to the one
of the case d 1 - 1, d2 = 7, r = 7. We still denote by E the singular locus of
Y and we let S = ~-1 ( E ) . Lemma 4.2 still holds. The proof of Lemma 4.3
can be adapted with minor changes to the present situation, showing again that
the dimension of E is at most 1. We leave these details to the reader.

Let now S, be the union of the one-dimensional components of S. Again
S, is contained in the union of finitely many irreducible divisors D of 
By Theorem 2.4 we find for the double locus D(X, 5) = 9H2 + 6N . A =
15N-A+72F where the last equality follows from Theorem 3.5. By Lemma 1.9
the polarization HD is of type (1, 16) or (2, 8). By Lemma 1.10 there is an

integer a such that S, = 4aH - D = 8aH - A in homology. Since D(X, 5) - S, =
(15 - 8a)H - A + 72F is effective it follows that a = 1 and that S1 is contained
in a unique surface D e 2A ~ .

We first remark that S1 is reduced by Lemma 1.10. It then follows that
the map 0 restricted to S, is generically two-to-one onto the curve r = ~ (S1 ).
(Here we use the fact that if a point P is simple for the double point cycle, then
the differential at P is injective and there is only one other point Q mapped
to the same point as P. This can be deduced from the construction of the

double point locus (cf. [F, p. 166]).) But then the degree of r is 64. Let C be
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a general tangent hyperplane section of 0 (D). This is an irreducible reduced
curve of degree 32 with 65 nodes. Its pullback on C has self-intersection 32
and one node, hence geometric genus 16. Thus the arithmetic genus of C is
81 which is equal to the Castelnuovo bound for non-degenerate curves in p6
(cf. [EH, p. 87]). Since this bound can only be achieved by smooth curves we
obtain a contradiction.

We may therefore assume that the singular locus E of Y is finite. Assume
E is not empty. Then S = (jJ -1 (b) consists of orbits of Z2. From

Theorem 2.4 we see that 6) = 72. This implies that S consists of a unique
orbit formed by 64 distinct points that are pairwise coupled by q5, which sends
them to 32 distinct points of Y where two branches of Y meet transversally.
Let Z be this set of 32 points in p7.

Since every surface D e 12AI is must lie on a unique
surface D E 12AI, which is therefore mapped by 0 to a surface A with at least
32 double points at Z. Since Z is also K (O)-invariant, there is for each z E Z
an element hz of order 2 of K ( O ) fixing it. The element h Z does not depend
on z. This follows since the stabilizers of elements in the same orbit for a

group action are conjugated, resp. equal if the group is abelian.
Now there are three elements of order two in K (O) ^_J Z2 . Remember how

K (G) acts on p7 where the coordinates are [xo,..., X7] - We have the two

generators cr and i of K(@) acting as follows (cf. [LB, p. 169]):

where § = exp ( 2’~ g ) . The elements of order two are T4 and their product.
Suppose h = T4 (the discussion is similar in the other cases). Then:

and therefore its eigenspaces are both of dimension 3. Since Z is contained in
their union, we deduce that at least 16 points of Z lie in a p3 which we denote
by P. Notice that P n A is finite. Otherwise we could deduce by applying a
that both eigenspaces of h would intersect A in a curve. But then D would
contain 2 curves which do not intersect which contradicts our assumption that

Z and hence also Z. Now consider the intersection of A
with a hyperplane through P. This is an irreducible curve B of degree 32,
non degenerate in p6, with at least 16 singular points on P. Let q be a point
on B. Any hyperplane in p6 containing P and q has to contain B by Bezout’s
theorem, a contradiction. D
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6. - The case r = 9

In this section we prove the following
THEOREM 6.1. Let A be an abelian surface such that Z, linearly

normally embedded in via a line bundle L giving a polarization 8 in NS(A)
and let E be any non trivial point of order 2 on A. Then the map X -* Y is an
embedding.

PROOF. The polarization 6 is of type (dl , d2) with 9 d, - d2, hence we
have only the two cases 1, d2 = 9 and d l - d2 - 3. In both cases

~(0). In the former case the assertion follows by Theorem 3.3. Hence
we consider only the latter case, in which 6 = 30 in NS(A), where 9 is a

principal polarization.
By Proposition 3.4, the morphism ~ : X - Y is birational. Suppose two

distinct points z, z’ of X are mapped to the same point w by 0. By Theorem 3.3,
(ii), z and z’ do not lie on A. Let F and F’ be the two rulings of X through
z and z’ respectively, and let x, x + E and y, y + E the pair of points where
F and F’, respectively, meet A. Then the points are

coplanar in p8 , hence we have a 4-secant plane to A. By Proposition 3.2, (iii),
there is an irreducible curve C, representing the polarization 0, passing through
x, x + 6, y, y + e. Consider the curve CE - tE(C). Since e g A"(~) = 1, 9 it
follows that C. On the other hand ;c,~+6,y,y+6 belong to both C
and CE . Since C. C, = C2 = 2, we get a contradiction.

Suppose do is not injective at z E X. Again z g A. Let F be the ruling
of X through z and let x, x’ = x + 6 be the pair of points where F meets A.
The same argument we made in the proof of Theorem 3.3, (iii), shows that
there are two tangent lines r and r’ to A at x and x’ which lie in a plane
7r which is therefore 4-secant. Once more by Proposition 3.2, (iii) there is a
curve C representing 0. passing through x and x’ and whose tangent cone at
these points contains the lines r and r’.

Since Hl (A, ,C(-C)) - J~(A,(~(2C)) = 0, the map HO(A, L) -* H°
(C, ,Cp) is surjective, i.e. C is a curve of degree 6 which spans a p4 . It follows
that the linear system on C cut out by the hyperplanes through the plane jr

contains 2x + 2x’ and a residual g2 I which must be the canonical g2 I of C, i.e.
As before C n CE = {x , x’ } . Hence x -f-x’, as a divisor

on C, is linearly equivalent to Kc + 1], where 17 is a suitable point of order two
in Pic° ( C ) . Therefore 2x + 2x’ n and this yields that 
This implies that actually L - OA(3C) (see [CFM, Proposition 1.6]).

This picks out exactly 81 curves C representing 0 and therefore 81 rulings
of X on which such a point z can lie. Note that these rulings form an orbit
under the free action of the group Z3 on the set of rulings of X.
Hence the set of points Z of X where do is not injective is finite. The image
of Z via 0 is the set of singular points of Y, which is therefore also finite.
Moreover Z is stable by the action of Z3 on X. This implies that Z
is of order 81 n, so that Z consists of 81 n-tuples of points, each n-tuple lying
on one of the aforementioned 81 rulings of X.
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Let us assume that n &#x3E; 1. We consider the projection of Y in p6 from a
general line R in p8. Since Y has finitely many singularities the same holds
for Y’. The degree of D(X, 6) is 162 and since each point of Z clearly appears
in D(X, 6) with multiplicity at least 2, we see that D(X, 6) = 2Z. In particular
n = 1. As a consequence, we also have that the secant variety of Y cannot meet
the general line R of p8, hence it has dimension v  6, i.e. it has dimension
smaller than expected. This is excluded by a theorem of Scorza [S]. Hence we
come to a contradiction, which proves that n = 0, thus proving that 0 is an

embedding.
Scorza’s argument in [S] is long and rather complicated. We give here, for

the reader’s convenience, a shorter version of it, adapted to our case. Assume
the secant variety of Y has dimension v  6. By Terracini’s lemma (see [LV,
p. 18] or [Z, Prop. 1]), two general tangent spaces to Y meet in a subspace of
dimension 6 - v. Actually we see that v = 6. Otherwise the general surface
section S is such that two general tangent spaces to it meet. Then it is well
known that S lies in a P~, with r  5 (see [LV] or [CC]), a contradiction.

Let us now make the projection 1/1 of Y to P4 from the tangent space 7r
at a general point y E Y. Since any other general tangent space to Y meets
7T at one point, we see that the differential of 1/1 has generic rank 2. Hence
W = is a surface. 

"

Notice that the general ruling of Y does not meet 7 . Otherwise the general
ruling would be contained in the span of two general tangent spaces to Y, which
is a p6 . Then the whole Y would be contained in this p6, a contradiction.

Therefore, since Y is a scroll, W is also a scroll. Notice that W has only a
1-dimensional system of lines, otherwise it would be a plane, contrary to the
fact that it has to span a P4. Let R be a general line of W and let V be the
closure of 1/r~-1 (R), which is a surface in a p5. Then there is an irreducible

component V’ of V which is a scroll. The intersection of V’ with A contains
a curve C which is fixed by t,. Hence C represents a8 with a positive and
even. Furthermore C, as well as V’, spans at most a p5. Consider the exact

sequence:

Since OA(-C)0£ represents (3 -a)8, we see that H 1 (A, OA(-C)0£) = 0 (see
[LB, p. 66]). Hence the restriction map HO(A, L) - HO(C, LIC) is surjective.
Then we must have:

i.e. h° (A, OA ((3 - a)9)) &#x3E; 3. Since a is positive and even, h0 (A, OA ((3 -
a)8))  h°(A, OA (0)) = 1, a contradiction. D



380

REFERENCES

[BS] M. BELTRAMETTI - A. SOMMESE, Zero-cycles and k-th order embeddings of smooth
projective surfaces, In: "Problems in the theory of surfaces and their classification" (F.
Catanese, C. Ciliberto, M. Cornalba eds.), Symposia Math. 32 (1991), 33-48.

[CC] L. CHIANTINI - C. CILIBERTO, Weak defective surfaces, in preparation.
[CFM] C. CILIBERTO - P. FRANCIA - M. MENDES LOPES, Remarks on the bicanonical map for

surfaces of general type, Math. Z. 224 (1997), 137-166.
[CH] C. CILIBERTO - K. HULEK, A remark on the geometry of elliptic scrolls and bielliptic

surfaces, Manuscripta Math. 95 (1998), 213-224.
[EH] D. EISENBUD - J. HARRIS, "Curves in projective space", Montreal University Press,

1982.

[F] W. FULTON, "Intersection Theory", Ergebni. der Math., Springer-Verlag, 1984.
[LB] H. LANGE - CH. BIRKENHAKE, "Complex Abelian Varieties" Grund. der Math., Springer-

Verlag, 1992.
[LV] R. LAZARSFELD - A. VAN DE VEN, "Topics in the Geometry of Projective Space", DMV

Seminar, Band 4, Birkäuser Verlag, 1984.
[R] E. ROGORA, Varieties with many lines, Manuscripta Math. 82 (1994), 207-226.
[S] G. SCORZA, Determinazione delle varietà a tre dimensioni di Sr (r &#x3E; 7) i cui S3 tangenti

si tagliano a due a due, Rend. Circ. Mat. Palermo (2) 25 (1908), 193-204.
[Z] F. ZAK, Projections of algebraic varieties, Math. USSR Sb. 44 (1983), 535-544.

Universita di Roma "Tor Vergata"
Dipartimento di Matematica
Via della Ricerca Scientifica
I 00173 Roma, (Italy)
Cilibert@axp.mat.uniroma2.it t

Institut fur Mathematik
Universitdt Hannover
Post fach 30060
D 3167 Hannnover, (Germany)
Hulek@math.uni-hannover.de


