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A Series of Smooth Irregular Varieties in Projective Space

CIRO CILIBERTO - KLAUS HULEK

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVIII (1999), pp. 357-380

Abstract. One of the simplest examples of a smooth, non degenerate surface in p4
is the quintic elliptic scroll. It can be constructed from an elliptic normal curve E
by joining every point on E with the translation of this point by a non-zero 2-
torsion point. The same construction can be applied when E is replaced by a
(linearly normally embedded) abelian variety A. In this paper we ask the question
when the resulting scroll Y is smooth. If A is an abelian surface embedded by a
line bundle L of type (dl, d2 ) and r = then we prove that for general A the
scroll Y is smooth if r is at least 7 with the one exception where r = 8 and the
2-torsion point is in the kernel of L. In this case Y is singular. The case
r = 7 is particularly interesting, since then Y is a smooth threefold in p6 with
irregularity 2. The existence of this variety seems not to have been noticed before.
One can also show that the case of the quintic elliptic scroll and the above case
are the only possibilities where Y is smooth and the codimension of Y is at most
half the dimension of the surrounding projective space.

Mathematics Subject Classification (1991): 14M07 (primary), 14N05, 14K99
(secondary).

0. - Introduction

One of the simplest examples of a smooth, non degenerate surface in p4
is the quintic elliptic scroll Y. Its construction goes as follows. Let A be an

elliptic normal curve of degree 5 in P4 and let E be a non zero point of order
two on A. Then the union of all the lines joining pairs of points of type x
and x -~- E on A is an elliptic quintic scroll.

Exactly the same construction can be repeated starting from any abelian
variety A of dimension n, with A linearly normally embedded in a projective
space pN via a very ample line bundle L, and from any non trivial point E E A
of order two. We investigate this construction in the present paper. In this

way we get a scroll Y of dimension n + 1 in pN related to the above data

The present collaboration took place in the framework of the HCM contract AGE (Algebraic
Geometry in Europe), no. ERBCHRXCT940557.
Pervenuto alla Redazione il 20 ottobre 1998 e in forma definitiva il 25 febbraio 1999.
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(A, E, £) and the first interesting question is: when is Y smooth? It is well
known that this is the case if n = 1 and N &#x3E; 4. So the next interesting case
is that of surfaces, i.e. n = 2, embedded in via a (dl , d2)-polarization,
with r = d, - d2. If r  6 there is no hope for Y to be smooth because of
Lefschetz’s hyperplane section theorem. So the question becomes relevant as
soon as r &#x3E; 7. In fact the main part of this paper is devoted to proving that
if A is general in its moduli space (it is enough to assume that End(A) ~ Z
or Z depending on the case under consideration), and if r &#x3E; 7 and

r # 8, then Y is smooth. This is particularly remarkable in the case r = 7,
since Y is then an irregular, codimension three manifold in I~6, whose existence
does not seem to have been previously noticed. As we remark at the end of
Section 2, for no other dimension of A, but 1 and 2, and N = 4 and N = 6
respectively, Y can be smooth of codimension c  2 in P’. The case d = 8
is also interesting. If A is a general abelian surface with a polarization of
type ( 1, 8), then Y is smooth, unless the translation by the point c of order
two fixes the polarization, in which case Y is singular. If the polarization is of
type (2, 4), then the translation by E automatically fixes the polarization and Y
is again singular.

The paper is organised as follows. In Section 1 we present the construction
of a suitable projective bundle X over A = A /E which maps to Y via its

tautological line bundle. In Section 2 we prove that this map is finite and we

compute the double point cycle of the composite map of X - Y with a general
projection in a P~, with n + 1  I  N. From Section 3 on we restrict our
attention to the case of abelian surfaces. In particular in Section 3 we prove
that Y is smooth as soon as r &#x3E; 10. This comes as a consequence of the fact

that, in this situation, if A is general enough, then it has no quadrisecant plane.
A property which, in turn, follows as an application of Reider’s method. Finally
in Section 4 we prove that Y is smooth if r = 7, in Section 5 we analyse the
case r = 8 and in Section 6 the case r = 9. The idea for the proof that Y is
smooth and the tools we use in the cases r = 7, r = 8 and the polarization is
of type (1, 8) with E not fixing it, and r = 9 and the polarization is the triple
of a principal polarization (which is the only critical case for r = 9) are the
same: we first bound dimension and degree of the possible singular locus of Y
by using geometric arguments and the double point formula, then we use the
action of the Heisenberg group to give a lower bound for the degree of the
singular locus, finally contradicting the previous estimate.

ACKNOWLEDGMENTS. We are very grareful to the referee who has not only
made a number of suggestions which have improved the presentation of the
paper, but who has also pointed out some inaccuracies such as that the formula
given in Proposition 2.3 was incorrect as it was stated in the first version of
this paper. The referee’s comments also lead to a shorter proof of Theorem 5.1.
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1. - Some projective bundles over abelian varieties

, 

Let A be an abelian variety of dimension n with a polarization 8 E NS(A)
of type (d 1, ... , dn ) with d 11 ... I dn (our general reference for the theory of
abelian varieties will be [LB]). Let us take a non trivial point E E A of order
two.

Let K(8) be the kernel of the isogeny he : A - A determined

by the polarization. Recall that (Zdl x ... x Zdn) 2 and that, if dI is

even, then 8 is divisible by two in N S (A) and every point of order two of A
is an element of K(8).

Let £ be a line bundle on A representing 6. Then we have:

where tx is the translation by a point x E A and Lo E Pic°(A) is the point of
order two given by Hence £o is trivial if and only if E E A"(0).

Let A be the quotient A /E and let n : A ~ A be the quotient map, which
is an isogeny of degree 2. If E E K (6), then there is a line bundle £ on A,
such that 7r * (Z) = ,C. The line bundle £ represents a polarization 8 on A, of
type (dI, ... , dn), such that:

a relation which is obtained from On = = 2W. In particular, if

d 1 = ... = dn-j 1 = 1, dn = d, then d is even and 6 is of type ( 1, ... , 1, 1 !~).
One has: 

2

where JL4j 1 is a non trivial 2-torsion point in Pic° (A) . The induced map 7r* :

Pic°(A) -~ Pic°(A) is also an isogeny of degree 2, whose kernel is generated
by Therefore we have two line bundles M2, M3 E Pic°(A) such that:

and one has M2 = M3 0 MI. The elements i = 1, 2, 3, and the trivial
bundle form a subgroup G of Pic° (A), which is the inverse image via Jr* of
the subgroup generated by £0.

We have the:

LEMMA 1.1. If E e J~(0) then G is the group of order two generated by MI.
Otherwise G is isomorphic to ~2 x 7 2.

PROOF. The first assertion is clear. To prove the second assertion let L
be a lattice which defines A = C /L. Then the point E is represented by an
element e E 2 L. The fact that E is not in K (8) is equivalent to the existence
of some element f e L such that for the pairing defined by the polarization
(e, f ) = ~ mod Z. The lattice L which defines the quotient A is the lattice
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generated by L and e. We denote by L’ the dual lattice of L. This defines the
dual variety Pic°(A) = CCg/L" of A. The element e is not contained in L" and
represents the line bundle 120 in Pic° (A) . Similarly f ~ LV , but 2 f E The
element f corresponds to the line bundle 1 in Pic° (A) which is 2-torsion.
The element e also defines a line bundle in Pic°(A), whose pullback to A is 120
and this corresponds to A42 or .il~l3 . The claim follows if we can show that

A42 or is 2-torsion. But this follows since 2e E Lv. (A different proof
will follow from Proposition 1.5 below (see Remark 1.6)). D

Let us set:

This is a rank 2 vector bundle on A, and we can consider the associated

projective bundle:

with its tautological line bundle and its structure map p : X --~ A. We
will denote by F a fibre of p and by H a divisor in . We will use the

same notation to denote their classes in the homology ring of X.
If E E K (8) then, since 7r*(Z) = ,C, the projection formula tells us that:

By contrast, as we shall see in a moment, if E ft K (0), then the bundle E in
general does not split.

The natural map 7r *,E --~ L defines an inclusion i of A into X such that H
restricts to L on i (A). The image i (A) is a 2-section over A. If there is no

danger of confusion we shall denote i (A) also by A. Let

We have a natural etale map f : X - X of degree 2. The inverse image of the
2-section A in X under the map f consists of 2 sections of X corresponding
to the 2 projections .7r*.F -+ L and 7r*g 2013~ whose existence follows from
the construction of S. This shows that 7r*,E splits, more precisely

Notice that, if E E K (O), then X = A x I~l is trivial.

LEMMA 1.2. One has:

Moreover, if e ¢ K (8) then:

(iv) there is no section A’ of X over A which is disjoint from A.
Hence if e ¢ K (6) and A does not contain elliptic curves, then E does not split.
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PROOF. (i) follows by the definition of the tautological bundle.
(ii) There are two sections A 1 and A2 of X over A, which map both

isomorphically to A via f. These sections correspond to the splitting of Jt * (S) =
,C EB (C 0 £o). Since the normal bundle of both these sections in X is given
by Lo, and since f is etale, we have the assertion. 

-

(iii) Since A ~ F = 2013~ F = 2, there is a line bundle on A such
that Ox(Kx) ® ~ * (.I1 ~l ) . On the other hand, by adjunction, one has

OA (Kx). This implies that either M ~ Oi or A4 - This

immediately yields the assertion.

(iv) Suppose A’ is disjoint from A. Then A’ would pull back to a section I’
of X, disjoint from A and A2, which would give another way of splitting 1r*(E0
,C* ) . This is impossible under the assumption E 

splits, we have two sections A’ and A" of X which do not meet.
However they both meet A and they must cut out two divisors C’ and C" on
A which do not meet each other. Hence C’ and C" are pull-backs from an
elliptic curve and so A contains an elliptic curve. D

Notice that the map p : X 2013~ A induces an isomorphism p* : Pic° (A) -
We will identify Pic° (A) and using p*. We have the:

PROPOSITION 1. 3. an element of Pic° (X). One has:
(i) if E E then h° (X, Ox (A) 0 1]) = 0 Ox, in which case

h° (X, Ox (A)) = 2, and t7 = in which case h° (X, Ox (A) 0 = 1 ;
(ii) K (O) then h°(X, O (A) 0 1]) = 0 = which

cases h 0 (X, Ox (A) 0 1]) = 1.
PROOF. We have:

Therefore, by using (1) we have:

Moreover, since A ~ F = 2, there is a line bundle N on A such that:

Hence, by the projection formula, one has:

From Lemma 1.2, (i), (ii) and restricting (3) to A, we obtain:

Now, by (2), (4) and (5), we get:
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and therefore if E E K (O) :

whereas:

otherwise. Notice that:

Then, by (6), resp. (6’) if 17 #- Oi, JL4i, i = 1, 2, 3, we have:

in particular h°(X, Ox (A 0 1])) = 0.
Let E E K ((0). If 17 = 1, we find:

We claim that 2 and h°(X, Ox (A) 0 A4i) = 1. Let A be
a trivial section of X = A x Pl over A. Of course )A) I is a base point free
pencil on X. The image of this pencil under the map f : X - X is a system
of divisors on X which is contained in a linear system. Since A is in this

system, we see that h°(X, Ox(A)) g 2. on the other hand we cannot have
3 because of Lemma 1.2, (ii). Hence the assertion follows,

proving (i).
Let now e V K(8). If 17 = Mi, we find:

and since h°(X, Ox(A)) a 1, we have h°(X, = 1 and h°(X, Ox(A) 0
JL4 i ) = 0. Finally, if 17 = A4 j, i = 2, 3, we have:

We claim that both summands are smaller than 2. Otherwise the linear system,
say, lOx (A) 0 M21 ( would be a pencil, and therefore we would find an element
of it meeting A. But by Lemma 1.2, (ii), the restriction of Ox(A) ® A42
to A is trivial. This would yield that A itself is an element of the pencil,
implying ./1~l 2 ) &#x3E; 0 and hence that M2 is trivial on X, a contradiction.
In conclusion we have:

which finishes our proof.
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REMARKS 1.4. (i) First we consider the case E E K (6). We reconsider the
relation between the pencils )§i( I on X and A ~ I on X. The map f sends each
element of §i ) to an element of I Al. As we saw in the proof of Lemma 1.2, (ii),
we have f * (A) = A + Ã2. Hence f is two-to-one between IÃI I and This
means that all, but two, elements of )A) I are smooth, irreducible, isomorphic to
A, and that there are two elements of IAI of type 2A+, 2A- with A~ sections
of X over A. One moment of reflection shows that these two sections, which

do not meet, correspond to the splitting of S. Of course A~ are isomorphic to
A and one has A41. In addition 2 A ~ - A but of course A+ -#A-.
Hence A+ - A- gives a non trivial point of order two in Pic°(A). By
restricting to A~, we see that this point of order two is Hence 

Ox(Ã-)0MI i and therefore C~x (A) ^-J C~x (A+-~ A-) ®.Nl l, whence
Ox (A) Ox (A + -~ A-), which fully explains the meaning of part (i) of
Proposition 1.3.

Notice that all the smooth abelian varieties in IAI play a symmetric role
in the construction of X and of its tautological line bundle. 

_

One more obvious remark. Let A- correspond to the quotient £ -* £
and A+ to the quotient £ -* Then OA-(I) -- ,C and 
£0 MI.

(ii) Now we take up the case K (8). Consider the varieties A2, A3
which are the unique divisors in the linear systems ,

respectively. As we saw in the proof of Proposition 1.3, we have A n A2 =
A n A 3 = 0. Then, by Lemma 1.2, (iv), A 2 and A 3 are irreducible. We shall see
in Proposition 1.5 that these varieties are smooth abelian. We also set A 1 = A.

PROPOSITION 1.5. One has:

(i) i, f E E K (O), then hO(X, = 3;
(ii) ife g K(O), then h°(X, Ox (2A)) = 2. Moreover the has exactly 3
singular elements namely 2Ai for i = 1, 2, 3. All other elements D in I are
smooth abelian. The reduced varieties Ai are also smooth abelian.

PROOF. In case (i) the linear system is composed with the pencil hence
the assertion.

Let us consider case (ii). Since 2A == 2A2 - 2A3, it is clear that
2. Suppose r + 1 &#x3E; 3. Then the lin-

ear system 12AI would have dimension r &#x3E; 2. Moreover is trivial.
Therefore the linear system )A) I would have dimension at least r - 1 ~ 1, con-
tradicting Proposition 1.3. We now look at the pencil 12A 1. We have already
seen that the Ai are irreducible. The same is true for the elements D. In fact
D does not meet A and by Lemma 1.2, (iv) D cannot have a component which
is a section. In addition, there cannot be a non trivial component which is a

2-section either, because such a 2-section would be numerically equivalent to A,
hence would be equal to A2 or A3, which is not possible since A2 + A3 is not

equivalent to 2A. It follows from adjunction that the square of the dualizing
sheaf is trivial and that ú) D is trivial. Our assertion follows if we can

show that the projection onto A defines an etale 2 : 1 cover from Ai to A,
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resp. an etale 4 : 1 cover from D to A. To see this we look at the pencil of
degree 4 cut out by ( 2A ~ I on each ruling. This is base point free and has at

least 3 singular elements consisting of 2 double points each, corresponding to
the 2-sections Ai. By the Hurwitz formula there can be no worse singularities
and this gives the claim. 0

REMARKS 1.6. (i) Assume that e V K(O). Then we have just seen that A2
and A3 are smooth abelian varieties isogenous to A via the degree 2 maps 7~2,
7r3 induced by p. In addition we have A2 n A3 = 0. Hence and

which gives another proof of Lemma 1.1 in the present case.
(ii) In this situation the projection p induces on every smooth element

D E 12A I an isogeny 6 : D -* A of degree 4. We have just seen that

OA2 and It follows from this that 8*(Mi) is trivial for
every i = 1, 2, 3. Hence D is constant in moduli and it is the unique degree
4 cover of A with this property. We also remark that, in view of the above

description, the isogeny 6 factors through degree 2 isogenies 8i : D -~ Ai,
i = 1,2,3.

(iii) We consider the line bundles ,Ci . and the corresponding
polarizations 8i, i = 1, 2, 3. Of course E ^~ i = 1, 2, 3, and the abelian
varieties Ai play a symmetric role in the construction of X and of its tautological
line bundle 

PROPOSITION 1.7. One has:

(i) E K (O), then Ox(Kx) rr 
(ii) K(8), then 0 = 1, 2, 3.

PROOF. (i) By the proof of Lemma 1.2, we know that either 
0 M¡ 1 or Ox(Kx) ~ Ox(-A). The assertion follows by restricting

to A
(ii) As above the proof of Lemma 1.2 tells us that either 

0 A4i or Ox(Kx) ~ Suppose that Ox(Kx) rr Ox(-A).
Then the adjunction formula tells us that Ox (A2 -
A 1 ) 0 OA2 JL43 ® OA2, which is a contradiction, since only A42 ® is
trivial on A2. D

Let us now consider the action of K (O) on A. We will assume 0 is
a primitive polarization, i.e. it is an indivisible element of NS(A), of type
(di, d2, ... , ,dn). This is equivalent to d = 1.

LEMMA 1.8. Let us suppose that the Neron-Severi group of A is generated by 8.
Let y be an e, ffective divisor on A fixed by K(8). Then there is a positive integer a
such that y = a - dn ~ 8 in the Neron-Severi group of A.

PROOF. Let A be the polarized dual variety of A. The primitive dual
polarization 6 is of type (1, dn) and it generates the Neron-Severi

1- d2

group of A. We have the map A ---&#x3E; A. Then an easy computation using
self-intersection numbers shows that:
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On the other hand we have y = Àê(’9), where ’9 is an effective divisor on Qi.
Therefore we have y - a6 for some positive integer a. By pulling this back
to A via he, we get the assertion. D

LEMMA 1.9. Assume that E V K(8) and that the Neron-Severi group of A is
generated by 8. Let D be any irreducible element of the pencil 1- I and let HD
be the element of the Neron-Severi group of D given by the restriction of H to D.
Then HD = 8; (0i), i = 1, 2, 3 and HD is at most divisible by 2 in the Neron-Severi
group of D. _

PROOF. The assumption that NS(A) ^-~ Z implies that also NS(D) -- Z.
The assertion HD = ~i (Oi ) is then purely numerical and follows from the
fact that D = 2A in NS(X). Since the maps 8i are 2 : 1 covers the maps
8i* : Z NS(D) ~ Z have a cokemel which is torsion of order at
most 2. D

In the case of abelian surfaces we can extend Lemma 1.8 above in the

following way:
LEMMA 1.10. Let A be an abelian surface with a polarization 0 of type (1, 2n ),

resp. (2, n) and assume that Z. If C is a curve invariant under a group
G ~ Zn x Zn which acts on A by translation, then C = a - 8 where a is a multiple
of n, resp. n / 2.

PROOF. By the assumption NS(A) -- Z the curve C is a multiple of 6,
resp. O /2. Since C is invariant under the group G the associated line bundle
descends to A/ G. But this implies that G is a totally isotropic subgroup with
respect to the Weil pairing of (cf. [LB, Corollary 6.3.5]). This is only
possible if a is divisible by n, resp. n/2 (cf. the description of the Weil pairing
given in [LB, Example 7.7.4]). 0

2. - Some scrolls of secant lines to abelian varieties

Let us consider a linearly normal abelian variety A c of dimension n,
embedded via a very ample line bundle £ belonging to a polarization a of type
(Ji, d2,..., dn ) . Then r = and the degree of A equals n ! ~ 

Let c be a non trivial 2-torsion point on A. We are interested in the n + 1-
dimensional scroll:

where L (a, b) is the line joining two distinct points a, b in projective space.
We notice that, unless n = 1 and r = d = 3, Y is a proper subvariety in 

As we saw in Section 1, from which we keep the notation, we can associate
to this situation a P1-bundle X on A = A/E . The relation between X and Y is
described in the following lemma:



366

LEMMA 2 .1. One has the following commutative diagram:

Moreover the is a morphism and its image is Y.

PROOF. Since 7r,,,C we have a canonical isomorphism of
vector spaces H° (A , ,C) ^~ Moreover, by Lemma 1.2, (ii) we
have This shows the existence of the commutative diagram above,
which in turn, implies ~ (X ) = Y.

Let F be any ruling of X and let x, x + c be the two points where F
intersects A. Since is very ample on A, the linear system 1 separates
these two points and hence 1 has no base points on X, i.e. q5 is a

morphism. D

We can now prove the following propositions:

PROPOSITION 2.2. The map 0 is finite, i. e. Ox (1) is ample.

PROOF. Assume that there is an irreducible curve C which is contracted

under 0. The curve C can only meet a ruling F once, i.e. the projection of C
to A is birational onto its image. After possibly replacing C by its normalization
we obtain a smooth curve C and a morphism f : C - A which is birational
onto its image such that

for some suitable line bundle 03BE on C. The P1-bundle V = P(f*£) over C is
mapped to a cone W in Y. Let Co be the section of V which is mapped to the
vertex of W and let C1 I be the 2-section which is the pullback of the 2-section
A of X. We denote by f the class of a fibre in V. Then Cl 1 = 2Co + a f
in the Neron-Severi group of V for some integer a. Since Co is contracted it

follows that e = C2  0. On the other hand it follows from Lemma 1.2 (ii)
that C1 = 0 and hence a = -e. But then Co.CI - e  0, i.e. Co and CI have
a common component. This contradicts the fact that the abelian variety A is
embedded by the map 0. D

PROPOSITION 2.3. One has:

If n = 1 and r &#x3E; 4, then 0 is birational onto its image and it is an embedding as
soon as r &#x3E; 5.
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PROOF. The result is well known for n = 1 (see e.g. [CH, Proposition 1.1

and Proposition 1.2]). So we assume n &#x3E; 2. We have:

We can then deduce from formula (1) of Section 1 that:

and hence the assertion. 
_ 

D

In what follows we will need a formula for the double point cycle D(X, /)
(see [F, p. 166]) of a map f : where l  r - 1 and f is the

composition of q5 with a general projection --~ We assume 1 &#x3E; n + 1.
In this situation the map f is finite.

THEOREM 2.4. One has:

in the homology ring of X.

PROOF. By applying Theorem 9.3 from [F, p. 166], one has:

where N f is the normal sheaf to the map f which is defined by the exact
sequence:

By Proposition 2.3 and finiteness of f, we have:

Moreover from the Euler sequence, we see that - (1 + Also

by the exact sequence:

we deduce that c (Tx) = I +A. Since A2 = 0 in homology, the assertion follows
by an easy computation. D
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COROLLARY 2.5. Let n &#x3E; 2 and r = 2n + 3. Then:

which is equal to 0 if and only if n = 2.

PROOF. The formula for D(X, Y - 1) follows right away from the above
theorem. For n = 2 we have D(X, 6) = 0 and for n = 3 one computes that

8) = 6 - 9 ~ 48. In order to prove the second assertion, it is sufficient to
show that: 

, ,

for all n &#x3E; 4. Since

one can easily verify this by induction on n. D

REMARK 2.6. The above corollary suggests that the secant scroll to an

abelian surface of type (1, 7) in I~6 should be smooth. This we are going to
prove in Section 4. Moreover this is the only case, apart from the elliptic scroll
of degree 5 in p4, in which an (n + I)-dimensional scroll obtained as above
from an n-dimensional abelian variety, which is linearly normal in p2n+2, can
be smooth. This is what makes the consideration of the surface case, to which
the main part of this paper is devoted, particularly interesting.

We want to finish this section with a remark which is specific to the case
E E K(G).

REMARK 2.7. If c E K (O), then c acts as an involution on:

the invariant and anti-invariant eigenspaces being H° (A, £) and H° (A, £0MI)
respectively. Recall that represents a polarization of type (di , ... , dn ) on A,
such that 2 . d 1 ..... dn = d ..... dn. Set r = d ..... dn. Then h° (A, Z) =

= rand 2r = r.

Accordingly c acts as an involution on pr-1 = P(H°(A , £)*). The invariant
and anti-invariant subspaces both have dimension r and are P+ = ,C)*)
and P- = P(H°(A, £0MI)*). One has the morphisms q5+ = ~ : ~ ~ P+ and
q5~ = A --~ I~-. The images Y+ and Y- of thes’e maps are nothing
but the images via q5 of the two sections A+ and A- respectively of X (see
Remark 1.4, (i)).


