@article{ASNSP_1998_4_27_3-4_483_0, author = {Hayashi, Nakao and Kato, Keiichi and Naumkin, Pavel I.}, title = {On the scattering in {Gevrey} classes for the subcritical {Hartree} and {Schr\"odinger} equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {483--497}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 27}, number = {3-4}, year = {1998}, zbl = {0931.35161}, mrnumber = {1677998}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1998_4_27_3-4_483_0/} }
TY - JOUR AU - Hayashi, Nakao AU - Kato, Keiichi AU - Naumkin, Pavel I. TI - On the scattering in Gevrey classes for the subcritical Hartree and Schrödinger equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1998 DA - 1998/// SP - 483 EP - 497 VL - Ser. 4, 27 IS - 3-4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1998_4_27_3-4_483_0/ UR - https://zbmath.org/?q=an%3A0931.35161 UR - https://www.ams.org/mathscinet-getitem?mr=1677998 LA - en ID - ASNSP_1998_4_27_3-4_483_0 ER -
Hayashi, Nakao; Kato, Keiichi; Naumkin, Pavel I. On the scattering in Gevrey classes for the subcritical Hartree and Schrödinger equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 27 (1998) no. 3-4, pp. 483-497. http://www.numdam.org/item/ASNSP_1998_4_27_3-4_483_0/
[1] An Introduction to Nonlinear Schrödinger Equations ", Textos de Métodos Mathemáticos, 22 Univ. Federal do Rio de Janeiro, Instituto de Mathematica, 1989.
, "[2] The Cauchy problem for the critical nonlinear Schrödinger equation in HS, Nonlinear Anal. 14 (1990), 807-836. | MR 1055532 | Zbl 0706.35127
- ,[3] Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 (1992), 253-277. | MR 1161092 | Zbl 0785.35067
- ,[4] Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n > 2, Comm. Math. Phys. 151 (1993), 619-645. | MR 1207269 | Zbl 0776.35070
- ,[5] On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case; II. Scattering theory, general case, J. Funct. Anal. 32 (1979), 1-71. | MR 533218 | Zbl 0396.35029
- ,[6] On the scattering theory for the cubic nonlinear Schrödinger and Hartree type equations in one space dimension, Hokkaido Univ. Math. J. 27 (1998), 651-667. | MR 1662961 | Zbl 0921.35163
- - ,[7] Global existence of small analytic solutions to Schrödinger equations with quadratic nonlinearity, Comm. Partial Differential Equations 22 (1997), 773-798. | MR 1452167 | Zbl 0881.35106
- ,[8] Asymptotics in large time of solutions to nonlinear Schrödinger and Hartree equations, Amer. J. Math. 120 (1998), 369-389. | MR 1613646 | Zbl 0917.35128
- ,[9] Scattering theory and large time asymptotics of solutions to the Hartree type equation with a long range potential, Preprint (1997). | MR 1815004
- ,[10] Scattering theory in the weighted L2(Rn) spaces for some Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 48 (1988), 17-37. | Numdam | MR 947158 | Zbl 0659.35078
- ,[11] The Cauchy problem for Hartree type Schrödinger equation in weighted Sobolev space, J. Faculty of Science, Univ. Tokyo, Sec IA 38 (1988), 567-588. | MR 1146361 | Zbl 0766.35053
,[12] Nonlinear evolution equations and analyticity I, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), 455-467. | Numdam | MR 870865 | Zbl 0622.35066
- ,[13] Asymptotics for large time of solutions to nonlinear Schrödinger equation, Izvestia 61, n° 4 (1997), 81-118. | MR 1480758 | Zbl 0894.35103
,[14] Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys. 139 (1991), 479-493. | MR 1121130 | Zbl 0742.35043
,