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Variational Construction of Homoclinics and Chaos
in Presence of a Saddle-Saddle Equilibrium

MASSIMILIANO BERTI - PHILIPPE BOLLE

Ann. Scuola Nonn. Sup. Pisa Cl. Sci. (4)
Vol. XXVII (1998), pp. 331-377

Abstract. We consider autonomous Lagrangian systems with two degrees of free-
dom, having an hyperbolic equilibrium of saddle-saddle type (that is the eingenval-
ues of the linearized system about the equilibrium are :!:À2, ÀI, h2 &#x3E; 0). We
assume that ~.1 &#x3E; ~.2 and that the system possesses two homoclinic orbits. Under
a nondegeneracy assumption on the homoclinics and under suitable conditions on
the geometric behaviour of these homoclinics near the equilibrium we prove, by
variational methods, then they give rise to an infinite family of multibump homo-
clinic solutions and that the topological entropy at the zero energy level is positive.
A method to deal also with homoclinics satisfying a weaker nondegeneracy con-
dition is developed and it is applied, for simplicity, when h j x5 X2. An application
to a perturbation of an uncoupled system is also given.

Mathematics Subject Classification (1991): 34C37 (primary), ~58F05, 58E99
(secondary).

1. - Introduction

Let us consider the following Lagrangian system

where q = (ql, q2) E 2 ,7 = ( l ) and A = ( ) . System (1.1)where q = (q1, q2) E R , j = ( 1 0 
and A = 

0 X2 System (1.1)
can be obtained by the following Lagrangian 

2

where v = (vl, v2) satisfies

Pervenuto alla Redazione il 29 aprile 1998 e in forma definitiva il 2 novembre 1998.
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System ( 1.1 ) admits the energy

as a prime integral. We shall assume

~ (W 1 ) W E C 2 (I1~2 , R), W(O) = 0, VW(O) = 0, D 2W(o) = 0; for some
0  po  pl ( pl is specified after hypothesis (S2)) D2 W is L 1-Lipsch_itz
continuous on the ball Bo : - B (0, po) of center 0 and radius po and L 1-
Lipschitz continuous on B1 := B(O, pl);

~ (P 1) 1/1 E C1 (~2,~) satisfies 1/1(0) = 0 and is L2-Lipschitz continuous
(resp. L2-Lipschitz continuous) on Bo (resp. BI); is L3-Lipschitz
continuous on Bl.

By ( P 1 ), we can assume (1.2), with

Under these assumptions 0 is a hyperbolic equilibrium of ( 1.1 ) and the
characteristic exponents are two couples of opposite real numbers ~~.1, ±~,2, In
this case the equilibrium is called of saddle-saddle type. We shall assume in
the sequel that

We are interested in a chaotic behaviour of the dynamics at the zero energy
level.

The only other possibility for a hyperbolic equilibrium of a Hamiltonian
system in a phase space of dimension 4 is the saddle-focus situation, namely
when the characteristic exponents are ~~, ~ i r~, &#x3E; 0. It would be the case
of system ( 1.1 ) if 11/1(0)1 E (IÀ1 - À21, À1 + À2) (note that if [p(0)[  [hj - h2[ I
then 0 is still a saddle-saddle equilibrium and that if 11/1 (0) 1 &#x3E; ~,1 I + h2 the

equilibrium 0 is no more hyperbolic).
The saddle-focus case has been investigated by Devaney who showed in [8]

that, if the system possesses a nondegenerate (transversal) homoclinic orbit, then
it is possible to embed a horseshoe - and hence a Bernoulli shift - in the

dynamics of the system. This result was extended by Buffoni and Sere in [6],
who relaxed the nondegeneracy condition and proved by variational methods
the existence of chaos at the zero energy level under global assumptions.

These results do not apply in the saddle-saddle case.
The existence of a chaotic dynamics in presence of a saddle-saddle equi-

librium has been studied by Turaev and Shil’nikov [13] ] and more recently by
Bolotin and Rabinowitz [5] for a system on a 2-dimensional torus. In this latter
paper the existence of homoclinic orbits is not assumed a priori, but a simple
geometrical condition is given, which implies that the system possesses chaotic
trajectories either at any small negative energy level or at any small positive
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energy level {~ = h 1. Other results have been stated in [7] for Lagrangian
systems on manifolds.

However, the chaotic trajectories which are obtained in [13] as well as

in [5] or in [7] are not preserved when the energy vanishes.

The existence of a Bernoulli shift at energy level IS = 0} was studied by
Holmes in [ 11 ] (see also [14]). He assumed the existence of two nondegenerate
homoclinics and introduced some conditions on the way these homoclinics ap-
proach 0 which ensure, when (S 1 ) is satisfied, the existence of a horseshoe at
the zero energy level. By the structural stability of the horseshoes there results
chaos also on nearby energy levels IS = h }, see [ 11 ] .

In the present paper we deal as in [ 11 ] with the saddle-saddle case, under
assumption (S 1 ) . We give specific conditions, called (H I - 4), directly inspired
to the assumptions of Holmes, which imply that the system possesses an in-
finite family of multibump homoclinic orbits and of solutions with infinitely
many bumps, which give rise to a chaotic behaviour at the zero energy level.
Furthermore we improve such results requiring for the homoclinics q, q a non-
degeneracy condition weaker than transversality. Rather than performing this
relaxation in a general situation, which would require quite involved conditions,
we restrict ourselves to the case when the eigenvalues are close one to each
other. However we underline that the method introduced to deal with degener-
ate homoclinics is could be adapted to a large variety of situations where it is
difficult or impossible to check the nondegeneracy assumption.

First we shall assume that

~ (S2) System (1.1) has 2 nondegenerate homoclinics "Nondegenerate"
means that the unique solutions of the linearized equation at (for instance)
q 

-- - - -

that tend to 0 as t ~ ~oo are cq , c e R. That means that the stable and
unstable manifolds to 0 intersect transversally at (q-(t), q (t)) at the zero

energy level.

We can now specify the constant p 1 in ( W 1 ) : p 1 &#x3E; + po.
The relaxed nondegeneracy condition is the following

9 (S2’) System (1.1) has 2 "topologically nondegenerate" isolated homoclinics
q, q, (see Definition 2 in Subsection 4.2).

We point out that in some situations such a condition can be checked

for homoclinics obtained by variational methods which are isolated up to time
translations, see for example [2], [10].

In order to get chaotic trajectories in the saddle-saddle case it is necessary
to postulate the existence of (at least) two homoclinic orbits, while only one
is necessary for the saddle-focus case. Even though, there exist systems with
several transversal homoclinic orbits which do not have a chaotic behaviour.
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Consider for example ( 1.1 ) and assume that:

and

Then the system reduces to a direct product of 1-dimensional systems. (0, 0) ~
R 4 is a saddle-saddle equilibrium with 4 transversal homoclinic trajectories but
the system is integrable (another example of an integrable Hamiltonian system
with several transversal homoclinic orbits is given in [9]). Thus additional

assumptions are needed for chaotic behaviour. In order to obtain multibump
homoclinics for system (1.1) as glued copies of q and 4, some hypotheses of
geometrical nature on q and 4, similar to the ones given in [I I], are required.

The results contained in this paper have already been outlined in [4]. In

order to describe them we need some notations. We shall assume that 
and 4(R) are not included in Bo. For r ~ (0, po/2) we define T &#x3E; 0 by

= r [  r for I t I &#x3E; T. We define in the same way T and we

set T = min{7B T}. 
_ _ _ _ _ _

Call (011, Zi2) = (~(-r)~-~))’ (PI’ fJ2) = (~(T~~)) the extremal
intersection points of with the circle in R 2 of radius r; similarly we
introduce (ii 1, ii2) = (41 (- T), 42 (- T)), (P 1, P2) = (~i(~)~2(~)). Let -Nu 9 -ws
be defined by

Wu, Ws are defined in the same way. 
_ _ _

We set A = (L 1 /2) + (3L2;1 I /),2 A = (L 1 /2) + (3L2,1 /.2) +We set A = 2 + 2), A = (L,/)2) + (3L2,kl/;2 +
where Li, Li are defined in assumptions (W 1), (P 1).

Note that A, A do not change if the equation is modified by a time rescaling
q (t) -~ q(at).

In the next conditions wu stands for Wu or 1Ju and úJs for Ws or ws .

. (H 1) w,,, cos =,4 tan úJu tan úJs  0 and ( cos Zi3u cos  0 or

cos Ws cos ws  0).
(the above inequalities are satisfied for example if Wu E (0, 7r/2)9 Ws E
(37r/2, 27r), 1Ju E (Jr, 37r/2) and iOs E (c/2, 7r));

. (H2)

where l(v) = 1 and C1 is a constant
defined by (2.4), which measures the transversality of the homoclinics:
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smaller is Cl weaker is the transversality. T~1 depends only on C1 and po
and it is defined by (2.6), Section 2.

. (H3)

Roughly speaking the first geometric assumption (H 1 ) means that the homo-
clinics q, q enter and leave the origin from different "quadrants". Note that if
(1.3) holds system (1.1) does not satisfy hypothesis (HI). (H2 - 3) quantify
how small tan wu tan Ws I and r must be. Note that if the system is linear (that
is W = 0, ~ = 0) in the ball po) then condition (H4) disappears and con-
ditions (H2 - 3) are simplified (in (H2 - 3), A = 0). Moreover if Àl/À2 -~ 1
then I(À1/À2) - 1 and the second members in inequalities (H2 - 3) tend to 1.

Before stating our first result we introduce some other notations. For

j = ( jl , ... , jk) E10, and for E) = (01, ... , Ok) with 01  ...  Ok we

define Ti = T if ji - 0 and T if ji = 1; di = (0,+, - 7,+i) - (Oi + T )
and d = di.

THEOREM 1. Assume ( W 1 ), ( P 1 ), ( v 1 ), ( S 1 - 2) and ( H 1 - 4). Then there exist
0  D  J such that for every k E N, for every sequence j - ( jl , ... , jk) E to, 1 }k
there is E) = (01, ... , Ok) E Rkwith di E (D, J) for all i = 1, ..., k - 1 and a
homoclinic solution of (l.1 ) xj such that

9 if ji = 0 then on the interval [8i - T, Oi + T]

. if ji = 1 then on the interval [Oi - T, Oi + T]

. Outside T, Oi + T]) U [Oi - T, Oi + I xi (t) I ~ 2r.

Note that, by Theorem 1 and assumption (H1), two distinct sequences
j - (j1, ... , jk) and j’ = (j{,... , jk) give rise to two distinct homoclinics.

REMARK 1. (i) Since the distance di between two consecutive bumps is

bounded by the constant J which is independent of the number of bumps k, by
the Ascoli-Arzela theorem there follows the existence of solutions with infinitely
many bumps, see Theorem 5. In particular it implies a lower bound for the



336

topological entropy at the zero energy level, h op &#x3E; log 2/(2 max f T, T I+ J) and
shows that the system exhibits a chaotic behaviour.

(ii) The fact that ~,1 I &#x3E; k2 is crucial to be able to construct multibump
homoclinics.

(iii) As it will appear in the proof of Theorem 1, smaller are the quanti-
ties + I tanwu tanwsl, , IÀ1 - À21/À2, greater is the distance
between the bumps.

(iv) We do not prove the existence of multibump homoclinics in an arbitrary
small neighborhood of q , q . Indeed in [13] it is proved that there is a neigh-
borhood V of q-(R) U 4(R) such that the only homoclinic solutions contained
in V are q and q .

Our other results, Theorems 2, 3 and 4, resp. in ‘Subsections 3.1, 3.2 and
4.3, are variants of Theorem 1 in special systems or when the homoclinics are
degenerate.

The multibump homoclinic solutions of (1.1) will be obtained as critical

points of the following action functional, which is well defined by (Wl) and
on E = WI,2 (R, R2): .

The idea of the proofs goes as follows.
A " pseudo-critical" manifold for f, Zk = {go ! Ð1  ...  Bk ~

is constructed by gluing together translates of the homoclinics q (. - and

q (~ - 8~ ), see Section (2.1 ) and (2.2). Then we show that, when the bumps are
sufficiently separated, that is when

a shadowing type lemma enables to construct immersions Ik : Mk = {0 E
i mini(Ði+1-Ði) &#x3E; D } -~ E with Zk such that the critical points

of gee) = f (lk (6)) gives rise to a k-bump homoclinic solutions. The geometric
properties (H 1 - 4) of the homoclinics q and q ensure the existence of critical
points of gee) satisfying (1.5). We point out that g(@) does not possess critical
points when Ði) - +cxJ; therefore we need to estimate carefully
the minimal distance D for which we obtain the immersions Ik . This is done
in Section 2.

For the sake of clarity we perform all the detailed computations for a

system with 2 degrees of freedom, but the same method can be adapted also
to study systems in dimension n, (see Remark 7) where the analytical technics
based on the study of Poincare sections are more difficult.

The paper is organized as follows. In Section 2 we perform the finite

dimensional reduction for the functional f and we prove Theorem 1. In Sec-

tion 3 we give examples of applications of Theorem 1 when the eigenvalues
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are near one each other (Theorem 2) and for a system which is a perturbation
of 2-uncoupled Duffing equations (Theorem 3). In Section 4 it is shown that
in the case ~,1 1 ~ h2 the transversality condition can be weakened assuming the
topological nondegeneracy (S2’) (Theorem 4). Finally in Section 5 we show
why the above theorems imply a chaotic dynamics (Theorem 5).

2. - Finite dimensional reduction

We shall use the following Banach spaces:

. y = endowed with norm I y I [ = where

~ E = W 1~2(Il~, R 2) endowed with scalar product (x, y) = f~ +

jxjyj and associated norm I. I E .
o X = {h E Y I eÀ2Itllh(t) E L-1.

Since the equilibrium 0 is hyperbolic of smaller positive characteristic ex-
ponent h2 by standard results (see also Lemma 2) any homoclinic solution to
0 of ( 1.1 ) belongs to X.

We have X c Y n E. For A C X we shall use the notation

Note that, by the exponential decay of the elements of X, A1 is well defined
and it is a closed subspace of Y.

We define the operator S : Y - Y by

where LA is the linear operator which assigns to h the unique solution z = LAh
of

with

An explicit definition of L A is

By (2.1 ) it is easy to see that, for all X E Y,
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By (2.2) and ( W 1 ) - ( P 1 ) we see that the operator S is C 1 on Y. We can
also get the straightforward estimate

Note also that S(E n Y) c E n Y and that for all q, x E E n Y

If S(q) - 0 and q E E n Y then q is a homoclinic solution to system (1.1).
We can say a little bit better.

LEMMA 1. Assume that q E Y satisfies S(q) = 0 and that 
~q(t)~/~,2)  min(2/A, po). Then q is a homoclinic solution to (1.1).

PROOF. Let m (t) = ;q (t) (/~,2) and c = We
assume that c  min(2/A, po) and we want to prove that c = 0. Provided

m (t)  po we have

Now easy estimates in the expression of LA show that, if h E Y, then

Therefore, since S (q ) = 0, we get c  Ac~/2, which implies c = 0 by our
assumption. D

REMARK 2. If q is a homoclinic solution to (1.1) then, by the characteristic
exponents of the equilibrium, all y E Y which satisfies d S (q ) ~ y = 0 belongs to
X. So the nondegeneracy condition (S2) amounts to assuming that Ker d S (q )
is spanned by q, where dS(q) is regarded as a linear operator from Y to Y.
Moreover dS(q) has the form Id + K, where K is a compact operator on Y. In
addition d S(q) (Y) C Y’, where Y~ q- Hence d S(q) is a linear automorphism
of

We now introduce another supplemetary space y" to q . The introduction
of the above norm [ and instead the more natural H 1-norm 
is motivated by the fact that this choice allows to obtain better estimates in
hypotheses (H2 - 4).

Consider t such that attains its maximum at t . Let T be some positive
real number such that q (t ) ~ &#x3E; 31;~(t-)1/4 on the interval J = (t - i , t + i ) . Let
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where X-7 is the characteristic function of the interval J. By the expression of
L A (2.1 ), we see that tio EX. We define 

’

V" is a supplementary to q and hence by Remark 2 there exist a positive
constant Co such that for all hEY

(note that, due to the fact that d S(q) = Id + compact, Co  1). This implies
that

where the constant 1 and C1 -~ Co as R - +oo. In the sequel we will
fix R and assume that (2.4) holds (we can choose Cl as close to Co as desired).

Now let a = aao, where a &#x3E; 0 is chosen such that I = Cl 
It is easy to see by (2.3) and (2.4) that

(2.5) 

We shall assume that also for 4 are defined the corresponding quantities t,
i, a and that condition (2.5) holds. In the sequel we will also assume that
maxf-f, fl  T. 

_

Now we define Let the smallest positive time such that

and

We can define in the same way Tcl, and we set max(Tc , 
The reason for this definition will appear in the proof of Lemma 4. It is

easy to see that, if (H4) is satisfied, then by Lemma 2 we have T,
T.

2.1. - Boundary value problems

The aim of this section is to show how solutions of the non-linear system
(1.1) are approximated by solutions of the linear one -4 -~ Aq = 0 in a

sufficiently small neighborhood of the origin Br = {q E I Iql [ s ~}. 
2 ofFirst we consider the linear case. The solution qd,L (t) : [0, d] ~ of

the linear system -q + Aq - 0 with boundary conditions qd,L (0) = fl and

qd ~ L (d ) = a is given by
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whereas the solutions qtL : [0, (resp. qh, L : (201300, d ] -~ Br )
of the linear system 2013~ + Aq = 0 such that - 0 (resp.

= 0) and qtL (0) = f3 (resp. qh,L (d) = a) are given by

We define

By (2.7) and (2.8) we can compute

We shall always assume that d &#x3E; 2/Â2. Setting Sj = max (I ai 1, we deduce
that

We now consider the analogous solutions of the non-linear system. Since
0 is a hyperbolic equilibrium the existence of the local stable and unstable
manifolds is standard. The following lemma would follow from that but we
prove it directly by a fixed point argument because we need some explicit
estimates.

LEMMA 2. For all 0  r  ro with ro = min( 1 /6A, po/2), for all a, fl E R 2
= r there exist unique trajectories of (l.l )

and

such that = 0, = 0 and qh (0) _ P, qh (d) = a.
Moreover for all t we have that

and the corresponding estimates for qh’
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The proof of Lemma 2 is given in the appendix.
Now we give a lemma, which will be used to glue together consecutive

bumps, on the existence and uniqueness of orbits connecting two points a, f3
in a neighborhood Br of 0. Such kind of lemma is certainly not new being
deeply related with the h-lemma. However, since we want to obtain specific
estimates, we will give a proof based on a fixed point argument.

LEMMA 3. For all 0  r  rl with r1 = min( 1 / 10A, po/2), for all a, f3 E ~2
== la - r, for all d &#x3E; 2/~,2 there exists a unique trajectory of (1.1) qd(t)

such qd (d ) = a d]) c B (0, 2r).
Moreover the following estimate holds:

The proof of Lemma 3 is given in the appendix. In the sequel we will
call also a, d) = qd the connecting solution given by Lemma 3 and

the value of the action on the solution qd = a, d).

2.2. - Natural constraint

As stated in the introduction our existence results are obtained by means
of a finite dimensional reduction according to the following definition:

DEFINITION 1. Let M be a manifold. An immersion T: M ~ Y such that

T(M) c E is said to induce a natural constraint for the functional f if

In the sequel for j = ( j 1, ... , jk) and for 0 = (8} , ... , 9k ) E 
with 01  ...  9k we will use the following notations:

and

and

and
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For simplicity the dependence on 0 = (91, ... , 9k ) of si, Ui, di and d will
remain implicit.

Fix j - ( jl, ... , jk) E {0, Our aim is to prove the existence of a k-

bump homoclinic associated to j. We now define the "pseudo-critical manifold".
Consider the k parameter family of continuous functions Q o defined in the

following way:

where

We recall that y is defined in Lemma 3. The k-dimensional manifold:

is a k-dimensional "pseudo-critical" manifold for f. This means that II S(Qo) II -
0 as d --~ We will give in Lemma 5 a more precise estimate.

We now show, following [3], how to build the immersions Ik. For (h, p) E
Y x R k we denote II(h, JL)II I = Let us define the
function 

- - -

with components Hi E Y and H2 E given by:

where

Note that H is a C 1 function of (8, h, (Qe is not a C 1 function of 6 but
the function (Qg, ai) = a IJ. I 0’(t) - Qe(t)dt = a II I Qi (t) . is

constant. 
~ 
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Consider the partial derivative of H, aH/a(h, evaluated at (8, Qe, 
It is the linear operator of Y x R k given by:

Note that it is of the form I d + Compact and that it is independent of It (and
so we shall omit to write 

_

Following [3] there results that, provided d is great enough, 1(8,Qe) 
is

invertible also on the pseudo-critical manifold Zk and the norm of the inverse
satisfies a uniform bound. As said in the introduction we need in this case a
specific estimate on d.

LEMMA 4. Let D1 = max(2/~2.2(ln(18/Ci)/~2) - 2(T - and assume

that d &#x3E; D1 and that (H4) holds. Then, for all x E Y, for all 17 = (r~l , ... , r~k) E R ,
we have 

II II

i. e. : 

PROOF. We set mi = [?+1 - Ti+,) + (8~ + Ti)]/2, /i = h -
mil for 2  i  k - 1, Ik = [Mk-1, +oo) and lixlli = max(suprErj lx(t)l,

suprEh !~~)!/~2). 
_ 

We define also the compact operators K, Y - Y by

where

Ri x (s) = for s E ji : :_ [8~ - Tbl,8i + Tc’l ], and Ri x (s) = 0 on 
Here we use the notation = T CI if ji = 0, and Tc, if ji = 1.

For all x E Y we can write = x - Kx. ~e shall prove that
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We first derive the lemma from (2.14). Let (x, r~ ) E Y x set

By the second inequality of (2.14)

We now define zi E Y by zi =x on li and by 0 on (-oo, 

(m¡, +(0) (mi , +(0) if i = 1, (-00, mk_ 1 ) if i = k , I zi (t) = 0. By
the definition of zi and ai it is easy to see that (zi , ai ) = (x, ai), Izi I I = I Ix i

and that [ [zi - 1J¡aïll I - I I x - Kl x - 1Jiaïlli’ Moreover setting Mi -

max (1Iz¡ - and M = maxi Mi, we know by (2.5) and

(2.14) that for all i

As a consequence M &#x3E; 11]1). Now, fix i such that M = Mi .
By (2.15) and the properties of zi we deduce that

We need to estimate IIbjlli i where bj = = Kj zj 
We remark that, by the definitions of ai and of Ki, -#j + Abj = 0 on 
Hence

So, for i =,4 j,

Now,


