Commuting holomorphic maps in strongly convex domains
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Volume 27 (1998) no. 1, p. 131-144
@article{ASNSP_1998_4_27_1_131_0,
     author = {Bracci, Filippo},
     title = {Commuting holomorphic maps in strongly convex domains},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 27},
     number = {1},
     year = {1998},
     pages = {131-144},
     zbl = {0941.32018},
     mrnumber = {1658877},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1998_4_27_1_131_0}
}
Bracci, Filippo. Commuting holomorphic maps in strongly convex domains. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Volume 27 (1998) no. 1, pp. 131-144. http://www.numdam.org/item/ASNSP_1998_4_27_1_131_0/

[ 1 ] M. Abate, "Iteration theory of holomorphic maps on taut manifolds", Mediterranean Press, Rende, Cosenza 1989. | MR 1098711 | Zbl 0747.32002

[2] M. Abate, The Lindelöf principle and the angular derivative in strongly convex domains, J. Anal. Math. 54 (1990), 189-228. | MR 1041181 | Zbl 0694.32015

[3] M. Abate, Angular derivatives in strongly pseudoconvex domains, Proc. Symp. in Pure Math. 52 (1991), Part 2, 23-40. | MR 1128532 | Zbl 0741.32004

[4] M. Abate, J.P. Vigué, Common fixed points in hyperbolic Riemann surfaces and convex domains, Proc. Amer. Math. Soc. 112 (1991), 503-512. | MR 1065938 | Zbl 0724.32012

[5] D.F. Behan, Commuting analytic functions without fixed points, Proc. Amer. Math. Soc. 37 (1973), 114-120. | MR 308378 | Zbl 0251.30009

[6] F. Bracci, Common fixed points of commuting holomorphic maps in the unit ball of Cn, To appear in Proc. Amer. Math. Soc. | MR 1610920 | Zbl 0916.58006

[7] C.H. Chang, M.C. Hu, H.P. Lee, Extremal analytic discs with prescribed boundary data, Trans. Amer. Math. Soc. 310, 1 (1988), 355-369. | MR 930081 | Zbl 0708.32006

[8] J.A. Cima, S.G. Krantz, The Lindelöf principle and normalfunctions of several complex variables, Duke Math. J. 50 (1983), 303-328. | MR 700143 | Zbl 0522.32003

[9] E.M. Čirca, The theorems of Lindelöf and Fatou in C n, Math. USSR Sbornik 21, 4 (1973), 619-639. | Zbl 0297.32001

[10] C. De Fabritiis, Commuting holomorphic functions and hyperbolic automorphisms, Proc. Amer. Math. Soc. 124 (1996), 3027-3037. | MR 1371120 | Zbl 0866.32004

[11] C. De Fabritiis, G. Gentili, On holomorphic maps which commute with hyperbolic automorphisms, to appear in Adv. Math. | MR 1695235 | Zbl 0976.32014

[12] A. Denjoy, Sur l'itération des fonctions analytiques, C.R. Acad. Sci. Paris 182 (1926), 255-257. | JFM 52.0309.04

[13] M.H. Heins, A generalization of the Aumann-CarathÇodory "Starrheitssatz", Duke Math. J. 8 (1941), 312-316. | JFM 67.0283.02 | MR 4912 | Zbl 0025.17301

[14] M. Jarnicki, P. Pflug, "Invariant distances and metrics in complex analysis", W. de Gruyter, Berlin-New York, 1993. | MR 1242120 | Zbl 0789.32001

[15] L. Lempert, La métrique de Kobayashi et la representation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474. | Numdam | MR 660145 | Zbl 0492.32025

[16] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261. | MR 690838 | Zbl 0509.32015

[17] A.L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703-706. | MR 165508 | Zbl 0129.29104

[ 18] E.M. Stein, "Boundary behaviour of holomorphic functions of several complex variables", Princeton University Press, Princeton, 1972. | MR 473215 | Zbl 0242.32005

[19] T.J. Suffridge, Common fixed points of commuting holomorphic maps of the hyperball, Michigan Math. J. 21 (1974), 309-314. | MR 367661 | Zbl 0333.47026

[20] J. Wolff, Sur l'iteration des fonctions bornées, C.R. Acad. Sci. Paris (1926), 200-201. | JFM 52.0309.03