@article{ASNSP_1998_4_27_1_131_0, author = {Bracci, Filippo}, title = {Commuting holomorphic maps in strongly convex domains}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {131--144}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 27}, number = {1}, year = {1998}, mrnumber = {1658877}, zbl = {0941.32018}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1998_4_27_1_131_0/} }
TY - JOUR AU - Bracci, Filippo TI - Commuting holomorphic maps in strongly convex domains JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1998 SP - 131 EP - 144 VL - 27 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1998_4_27_1_131_0/ LA - en ID - ASNSP_1998_4_27_1_131_0 ER -
%0 Journal Article %A Bracci, Filippo %T Commuting holomorphic maps in strongly convex domains %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1998 %P 131-144 %V 27 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1998_4_27_1_131_0/ %G en %F ASNSP_1998_4_27_1_131_0
Bracci, Filippo. Commuting holomorphic maps in strongly convex domains. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 27 (1998) no. 1, pp. 131-144. http://www.numdam.org/item/ASNSP_1998_4_27_1_131_0/
[ 1 ] "Iteration theory of holomorphic maps on taut manifolds", Mediterranean Press, Rende, Cosenza 1989. | MR | Zbl
,[2] The Lindelöf principle and the angular derivative in strongly convex domains, J. Anal. Math. 54 (1990), 189-228. | MR | Zbl
,[3] Angular derivatives in strongly pseudoconvex domains, Proc. Symp. in Pure Math. 52 (1991), Part 2, 23-40. | MR | Zbl
,[4] Common fixed points in hyperbolic Riemann surfaces and convex domains, Proc. Amer. Math. Soc. 112 (1991), 503-512. | MR | Zbl
, ,[5] Commuting analytic functions without fixed points, Proc. Amer. Math. Soc. 37 (1973), 114-120. | MR | Zbl
,[6] Common fixed points of commuting holomorphic maps in the unit ball of Cn, To appear in Proc. Amer. Math. Soc. | MR | Zbl
,[7] Extremal analytic discs with prescribed boundary data, Trans. Amer. Math. Soc. 310, 1 (1988), 355-369. | MR | Zbl
, , ,[8] The Lindelöf principle and normalfunctions of several complex variables, Duke Math. J. 50 (1983), 303-328. | MR | Zbl
, ,[9] The theorems of Lindelöf and Fatou in C n, Math. USSR Sbornik 21, 4 (1973), 619-639. | Zbl
,[10] Commuting holomorphic functions and hyperbolic automorphisms, Proc. Amer. Math. Soc. 124 (1996), 3027-3037. | MR | Zbl
,[11] On holomorphic maps which commute with hyperbolic automorphisms, to appear in Adv. Math. | MR | Zbl
, ,[12] Sur l'itération des fonctions analytiques, C.R. Acad. Sci. Paris 182 (1926), 255-257. | JFM
,[13] A generalization of the Aumann-CarathÇodory "Starrheitssatz", Duke Math. J. 8 (1941), 312-316. | JFM | MR | Zbl
,[14] "Invariant distances and metrics in complex analysis", W. de Gruyter, Berlin-New York, 1993. | MR | Zbl
, ,[15] La métrique de Kobayashi et la representation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474. | Numdam | MR | Zbl
,[16] Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261. | MR | Zbl
,[17] On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703-706. | MR | Zbl
,[ 18] "Boundary behaviour of holomorphic functions of several complex variables", Princeton University Press, Princeton, 1972. | MR | Zbl
,[19] Common fixed points of commuting holomorphic maps of the hyperball, Michigan Math. J. 21 (1974), 309-314. | MR | Zbl
,[20] Sur l'iteration des fonctions bornées, C.R. Acad. Sci. Paris (1926), 200-201. | JFM
,