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On the Birkhoff Normal Form of a Completely
Integrable Hamiltonian System Near a

Fixed Point with Resonance

THOMAS KAPPELER* - YUJI KODAMA* - ANDRAS NÉMETHI**

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI (1998),

Abstract. We consider an integrable Hamiltonian system with a real analytic
Hamiltonian H near an elliptic fixed point P. If H has a simple resonance and
admits a semisimple Hessian at P we show that there exists a real analytic change
of coordinates which brings the Hamiltonian into normal form. In the new coordi-
nates, the level sets of the system are analyzed in terms of the nature of the simple
resonance.

Mathematics Subject Classification (1991): 58F07 (primary), 58F18, 58F36
(secondary).

1. - Introduction and summary of the results

In this paper we are concerned with the normal form of a completely
integrable Hamiltonian system near an equilibrium point. Let H = H (z) be
an analytic function, H: U ~ C, defined on an open neighborhood U of the
origin in c2n. Assume that H has a power series expansion near the origin
,z = (x , y ) = 0 E cC2n of the form H = + O(lzI3) where =

Normal form theory for Hamiltonian systems was first studied by Birkhoff
(cf. [Mo]). He proved that in the case where Xl, ... hn are rationally indepen-
dent (i.e. in the nonresonant case), there exists a formal canonical coordinate
transformation, z = ~p (~ ) = ~ + O(I~12), so that H ocp is a formal power series,

with § = (~, 1}) E c2n. Later Siegel [Si] showed that the power series which

* Supported in part by NSF.
** Supported in part by an OSU Seed Grant.
Pervenuto alla Redazione il 10 giugno 1996 e in forma definitiva il 28 gennaio 1998.
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define the coordinate transformation cp are generically divergent. Notice that
if these power series are convergent, then the Hamiltonian system is in fact

integrable with Ij := ( 1  j  n) being functionally independent integrals
which Poisson commute. The converse is also true: first results concerning a
convergent Birkhoff normal form of an integrable Hamiltonian system near a
nonresonant fixed point are due to Vey [Ve] (cf. also [El] where results in the
C°°-case were proved) and were later substantially improved by Ito [Itl].

For the puropose of classification it is useful to generalize the concept of
Birkhoff normal form to Hamiltonian systems near a resonant fixed point and
one might ask again if an integrable Hamiltonian system has a Birkhoff normal
form near a resonant fixed point.

The only results so far in this direction are due to Ito [It2] and concern a
special case of simple resonance. In this paper we treat the general case of a
simple resonance. To state our results we introduce the following notation:

Let Gj = ( 1  j  n) be holomorphic functions, G j : U - C, defined
for z = (xk, in an open neighborhood U of the origin in such

h G G - -.. P.. { G G} - yn aGi i aGjthat Gi,... , Gn pairwise Poisson commute, i.e. - P k Yk

aGl 0, are elements in ./112 and have the property that dGn areayk axk

generically linearly independent. Here .2 denotes the vector space of germs
of analytic functions f at 0, which vanish up to first order at 0 ( f (o) - 0,

= 0, = 0, 1 n). Let ,,4 be the algebra defined by

Then ,A is Abelian ({ f, g} = 0 for all f, g e ,,4), and has the property that
h e A if there exists g E A 0 and h . g e A.

Following Ito [It2], let Pm denote the vector space over C of all ho-

mogeneous polynomials of degree m in 2n variables with complex coeffi-
cients. Then PZ is a Lie algebra under the Poisson bracket { ~, ~ } . The map

P2 - sp(n, C) associating to f e P2 the 2n x 2n matrix ( Old rd ) all - d O ax y f ay f
is a Lie algebra isomorphism. Here sp(n, C) is the Lie algebra of the group
Sp(n, C) of 2n x 2n symplectic matrices. As sp(n, C) is semisimple, P2 is

semisimple and therefore admits a Jordan decomposition: for f e P2, we write
f = fs + fnil where fs = n~ f is the projection of f on its semisimple part and

nil = nnii f is the projection of on its nilpotent part, i.e. ( - 0 I d f .f p J f p p ~ 
is a semisimple and is a nilpotent matrix. Notice that" ‘-Id 0 

fnil} = 0 and one can find a linear symplectic change of coordinates so
The numbers ,1, ... , coincide with the spec-

trum of 
o rd ax fS aXy .fs and are therefore inde endent of the choice oftrum of 0 ) .fs a2 .fs ) and are therefore independent of the choice of’- o 

coordinates. Denote the sublattice of rgn defined by
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where k := (~,1, ... , hn) and (a,,k) = We say that n f is the
resonance lattice associated to f E P2.

For the algebra A above denote by and Anil the semisimple respectively
nilpotent part of the projection A2 of A onto P2.

DEFINITION. (i) ,,4 is said to be nonresonant at 0 if there exists H E ,,4 so
that the resonance lattice AHS associated to the semisimple part HS E P2 of H2
(or of H, for short) is trivial, i.e. AHs = {OJ.

(ii) ,,4 is said to have a simple resonance at 0 if there exists JL E with

IJLI ( := E71JLjl 2: 2 such that for every f in A, E Z} c Afs and for some
H E A, E Z}. The vector it is called a prime resonance vector
of ,A. and is uniquely determined up to sign. We say that AA := E Z}
is the resonance lattice of A. It is a lattice with dim A A = 1.

Let A E be a prime resonance vector. Then we can choose a

basis of so that (p(i), = 8jn. In particular, the n x n matrix
whose columns are given by the is unimodular (i.e. in GL(n, Z)) and
py&#x3E;~ , , , ~ is a basis (over Z) of the n - 1 dimensional sublattice {~ E

= 0 } of Z,. Introduce j r (1 :S j :S n ) as well as

= tn+2 = x/J- yJ-t where JL- :_ ~t,~+ - ~c,c and JL+ is

given by if 0 and := 0 if pk  0. 
k

In the first part of this paper (Section 2) we prove the following

THEOREM 1.1. Assume that A has a simple resonance at 0 and let JL E 
be a prime resonant vector of A (thus, in particular I &#x3E; 2). Then there exists an
analytic, symplectic change of coordinates cp in a neighborhood of 0 in C2n, so that
with respect to the new coordinates, A has the following properties:

(1) 
(2) any element f in A has a convergent power series expansion in Tl, ..., Tn+2.

REMARK 1.1. The special case of Theorem 1.1 where ft2 0, ... , 0)
E is due to Ito [It2]. In the same paper he also considers the case where
it = (1, 0, ... , 0) [It2, Theorem 3] which is not included in the formulation of
Theorem 1.1.

To prove his results Ito uses a rapidly convergent iteration procedure and it
turns out that the same procedure can be applied to prove Theorem 1.1.

REMARK 1.2. As in [It2, Theorem 2], there is an analogous result to

Theorem 1.1 for an algebra .A of germs of real analytic functions at 0, generated
by real analytic integrals G 1, ... , Gn which Poisson commute. We say that A
is elliptic if 0 is an elliptic fixed point (i.e. for H E ,,4 arbitrary, the spectrum
of ( ° d 0 )d s is purely imaginary where d2Hs denotes the Hessian of 

THEOREM 1.1’ . Assume that A is an algebra of germs of real analytic functions
at 0, generated by functionally independent integrals G i , 9 ... Gn which Poisson
commute. Further assume that ,Anil = 0 and that A is elliptic and has a simple
resonance. Let it be a prime resonance vectors IlL &#x3E; 2.
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Then there exists a real analytic, symplectic change of coordinates q; in a

neighborhood of 0 in so that with respect to the new coordinates, (x, y), ,,4. has
the following properties:

(1) ~ := 2  j :S n - 1); 
_ _

(2) any element f in A has a convergent power series expansion in ii , ..., Tn,
where tn :_ (n) - 2 + and tn+i := TIn +H Tn+l, ::JTn+l were Tn := k Pk (Xk + yi)/2 an Tn+l:= k Xk +

_ 
+ 

_ 

- 

i k (xk - i 

Notice that in view of Corollary 1.2 below, Anil =1= 0 implies that = 2.
Further we remark that the case where ,,4 is elliptic with Anil l ,-~ 0 and has
a simple resonance has been treated in [It2] (cf. [Arl, Appendix 6] for a
classification of quadratic Hamiltonians).

Let us contrast Theorem 1.1’ with the corresponding one for integrable
systems without resonances which is due to Vey [Ve] and, in a generalized ver-
sion, to Ito [Itl]. This result asserts that there exist Birkhoff coordinates (z, y)
near 0, i.e. coordinates whose associated symplectic polar coordinates, given by
Ik := (xf -I- ~2) /2, := (I  k  n), are action-angle variables
for the integrable Hamiltonian system under consideration. The Hamiltonian

equations, when expressed in action-angle coordinates, take a particularly easy
form,

and any conserved quantity which is real analytic near 0, has a convergent power
series expansion in I,, ... , In. In the case of an integrable system with a simple
resonance, the Hamiltonian equations are - inevitably - more complicated.
Theorem 1.1’ provides coordinates (x, y) for which the Hamiltonian equations
take a relatively simple form.

REMARK 1.3. The coordinates which have the properties stated in Theo-
rem 1.1 are not unique. One verifies that a symplectic transformation provided
by a Hamiltonian flow whose Hamiltonian has a power series expansion in

tl , ... , tn+2, leads to new coordinates with the same properties as stated in

Theorem 1.1. However, given a power series expansion in il , ... , tn+2 of an
element f E A, one verifies that the coefficients corresponding to the monomials
in tl , ... , Tn-i 1 only, are independent of the choice of coordinates.

REMARK 1.4. One might ask if a result similar to the one of Theorem 1.1 is
true if A has multiple resonances, i.e., a resonance lattice with R = dim AA &#x3E; 2.
Even in the case where the resonances are decoupled (i.e. AA has a basis
/~B ... , &#x3E; such that sUpPJL (i) n = 0 for i ~ j ) it turns out that the

method of proof used for Theorem 1.1 breaks down in general (cf. Appendix A).

As an immediate consequence of Theorem 1.1 we obtain the following

COROLLARY 1. 2. (i) If A is nonresonant, then ,A.nil = 0 and dim As = n.
(ii) If A has a simple resonance then dim As = n - 1. If for a prime resonance

&#x3E; 3, then ,,4nil = [Ol.
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PROOF. (i) By Ito’s result [ltl], there exist coordinates xj, yj 
in a neighborhood of 0 in cC2n so that, when expressed in these coordinates,
,A. consists of power series in i) = xj yj n ) which converge in a
neighborhood of 0 E cC2n . Therefore, dim As = n and Ann = {O}.

(ii) By Theorem 1.1, there exist coordinates xk, yk n) in a

neighborhood of 0 in so that, when expressed in these coordinates, any
element in .,4 has a convergent power series expansion in tl , ... , rn+2 where
rj := n), = xJL yJL and Tn+2 = are

defined as above.

Moreover, Theorem 1.1 guarantees that the functions, tl , ... , are

elements in A. This implies that dimAs - n - 1, as otherwise rn would be
also in and one would conclude that ,,4 is nonresonant at 0. If, in addition,

3, then for any power series f in tl , ... , Tn+2, fni, = 0 and thus in

particular Anil = {0} - a

In the second part of this paper (Section 3), we make a detailed analysis of
the level sets Me := I (i, y ) E (R2n, 0) ) 1 Gj = c~ for real integrable
systems with c = (cl, ... , cn), and study the fibration provided by these level
sets. Here (x, y) are the coordinates provided by Theorem 1.1’, Gj = fi (1 ~
j  n - 1) and 0) denotes a neighborhood of 0 invariant under the flows of
the Hamiltonian vectorfields corresponding (cf. Section 3).
Gn can be expressed as a power series in il, ... , in, (which, due to
the resonance assumption, does not contain a term linear in in ), and is such that
the G j ’s generate A. In particular, we prove that if the prime resonance vector it
oscillates (i.e. it has negative and positive components), then, for generic c,

Me is a disjoint union of tori of dimension n (cf. Proposition 3.4). If p is

nonnegative (Aj then, for generic c sufficiently small and
generic A (i.e. generic Gn), Me has one connected component diffeomorphic to

(0, 1 ) in case IJLI = 2 or 3 and is a disjoint union of tori of dimension
n if 5 (cf. Proposition 3.5). In Subsection 3.2, we study nongeneric level
sets and in Subsection 3.3 we analyze the fibration provided by the level sets.
In Appendix B we analyze the level sets Me for complex systems.
Concerning the second part, somewhat related results can be found in [Fo] as
well as in [CB] (cf. [Du]) where, in connection with the question of global
action-angle variables, one can find a discussion of the monodromy of the
fibration F : M -~ B, with M denoting the phase space and fibers being
Liouville tori. For a generic class of integrable systems of two degrees of
freedom, Fomenko [Fo] studies - in particular classifies - generic regular
energy surfaces and their fibrations where the fibers are, up to singularities,
Liouville tori for the systems considered and extends some of his results to

generic systems of arbitrary many degrees. Our analysis is concerned with the
study of the foliation by level sets - not necessarily tori - of an integrable
system near a singular point with a simple resonance and is of a local nature.
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2. - Proof of Theorem 1.1

In this section we provide a proof of Theorem 1.1. As we follow Ito’s
method of proof, we present only an outline, emphasizing the parts which are
different. Throughout this section we use the notation introduced in Section 1

and assume that the assumptions of Theorem 1.1 hold.

2.1. - Preliminaries

Choose H in ,,4 so that AA where 77y denotes the semisimple part
of H,

For a power series f = at the origin we use the notation

where f i d) is a homogeneous polynomial of degree j with d =
0. We refer to fd as the lowest order part of f. A power

series f is said to be in HS-normal form (or Birkhoff normal form) if

It is said to be in Hs-normal form up to order d if fd +... + f d+dl is in

H,-normal form. Notice that a power series f which is in H,-normal form can
be considered as a power series in (n + 2) variables tl , ... , tn+2 · Moreover, as

is a function of r = (tl, ... , in), f is of the form

where fj (T, Tn+ j) are power series in Tl,... , rn and ( j = 1, 2). Alter-

natively, f can be considered as a Laurent series in il , ... , eliminating
rn+2 in f2(r, rn+2) by using (2.3).

For the remainder of all of Section 2, given a power series f in HS-normal
form, we denote by az, partial derivative of f with respect§i 
to rj when f is considered as a Laurent series in il , ... , 
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Using that

the Poisson bracket { f, g} of power series f, g in HS-normal form can be
computed as

2.2. - Construction of a formal coordinate transformation

In this subsection, we construct the transformation cp formally. Introduce
the projection of a power series f onto its HS -normal part and define

:= f - For any convergent power series f denote by 
the flow corresponding to the Hamiltonian vector field X f . The

coordinate transformation w of Theorem 1.1 is constructed from a sequence of
transformations each of which is a Hamiltonian flow obtained in a well known
fashion:

PROPOSITION 2.1. Let K = K2 + K3 + ... be a power series with Ks = 
Assume that K is in Hs -normalform up to order 1 + d (d &#x3E; 1). Then

there exists a unique polynomial W of the form

with ON W = 0 such that K o is in HS-normal form up to order 1 + 2d. (The
flow X ~,y (~ ) exists for It I  1 for ~ in a sufficiently small neighborhood of 0.)

Applying Proposition 2.1 successively for H = H2 + H3 + ... , one obtains

COROLLARY 2.2. There exists a sequence of symplectic coordinate transforma-
tions CPj ( j &#x3E; 0), CPj = where Wj is the polynomial provided by Proposition- 

]

2.1 with d = 2i, so that the coordinate transformation (p (po o ... o (pi takes
the Hamiltonian H into Hs-normal form up to order 1 -~ 2j+’. Consequently,

:= is a formal symplectic transformation such that H o cP is in

HS -normal form.

One verifies by a straightforward inductive argument that the following
Lemma holds:

LEMMA 2. 3. Assume that H is in Hs-normalform up to order 2 + d and G is
an integral of H, i. e. { H, G } = 0, then G = Gt + Gt+ 1 -~ ~ ~ ~ is in Hs -normalform
up to order t + d.
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In view of Lemma 2.3 and Corollary 2.2, one concludes that, for a proof of
Theorem 1.1, it remains to establish that the formal coordinate transformation

cp of Corollary 2.2 is given by a convergent power series. For this purpose we
need to estimate the function W obtained in Proposition 2.1. Recall from the
introduction that (1 ~ j:S n ) is a basis of ~n with (P (j), JL) = 

LEMMA 2.4. Let f be a convergent power series. Then the projection ON f of
f on its HS -normal part is given by

where is defined by

and where y is defined similarly.
PROOF. It suffices to consider the case where f is a monomial, f (x, y) =

= Then

In order for such a term not to get averaged when integrated over 91 , ... , On -I ,
it is necessary and sufficient that (/)~Ba 2013 - 0 for 1 ~ 7 ~ ~ 2013 1, i.e. a,

~8 in have to be of the form

where y E and ti , t2 E Z~o. D

Consider the disc Qr := f z EC2, I (zj I where r &#x3E; 0

and ~ &#x3E; 0 (1 ~ y ~ ~).
For a polynomial W introduce

LEMMA 2.5. Let W be a polynomial with IIN W = 0. Then

PROOF. Introduce, for z = (x, y) E Qr fixed,
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where and are defined as above with 0 = (91, ... , 9n _ 1 ), 0 
1. Notice that (x(O), y(O)) := (e 27iO x, E Qr and W (8 - 0) =

W(z). By the mean value theorem,

where

As Tj = one sees that

and

This leads to

and, therefore,

Using the assumption = 0 one concludes from Lemma 2.4 that

Therefore, W(z) = Jo Jo W (0)) and

According to Lemma 2.5, we obtain an estimate of W (as in Proposition 2.1 )
from an estimate of the Poisson brackets I-rk, W} for 1 1.
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2.3. - Estimate for W }

To estimate (rk, W} for 1 1 we make use of the assumption
that G 1, ... , Gn are integrals of H and that d G 1, ... , d Gn are generically
independent.

Assume that the lowest order part of Gj is of degree sj &#x3E;; 1 so that G~ is
of the form

where G§~~~ are polynomials homogeneous of degree sj + d. As pointed out
by Ito [It2, Lemma 4.4, p. 422] we may assume that d Gn are

generically independent. Assume that H is in HS -normal form up to order

I + d (d &#x3E; 1). By Lemma 2.3, Gj is in HS -normal form up to order Sj + d -1.
Write

where gj is in H,-normal form, i.e. gj = and = Notice
that

on an open dense subset near z = 0, where we recall that we view gs’, ... , gnn
as Laurent series in Tl, ... , 

Let z : := w(§ ) = be the transformation described in Proposition 2.1.
Then, again by Lemma 2.3,

is in H,-normal form up to order sj - 1 + 2d. Therefore n)

which can be written as ( 1 n)

This is a linear system of n equations for {Tl, W }, ... , W }, from which
we would like to derive estimates for { tl , W } , ... , Notice that

{Gi , = 0 implies = 0, , which, by (2.6), implies (1  i, j  n)
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This means that the n x 2 matrix (ago -~ ) with gO = ... , gsn ) has rankn Tn+ 1 I n

at most 1, i.e. ag° and ag° are linearly dependent. But due to (2.15) eitherTn n+1 1

0 (case 1 ) or 0 (case 2). By reordering the Gj’s, if necessary,atn atn+1 J

a sn a sn
we have that either agn i= 0 (case 1 ) or 0 (case 2). Let us outline

Tn atn+1 1
how one proceeds in case 1 to obtain estimates for (ri, W }, I-rn-1, W }
from the system (2.18). One uses equation (2.18)n to eliminate (rn, W } and
obtains a system of n - 1 equations for I-rl, W } , ... , irn-1, W } and I-rn+,, W } .
Using that {Gn, = 0, one concludes that the terms involving I-rn+,, W } are of
sufficiently high order and, therefore, can be included in the error term. In more
detail, we eliminate (rn, W } from the system (2.18) by forming (2.18)i agn -aTn

(2.18)n agi n to obtain (1 :S i  n - 1)

where aij are defined as

Both sides of (2.19)i are meromorphic functions of with a possible pole
at points , il with j = i7j = 0 for some 1 n. To remove the poles
in (2.19)i we multiply this equation by the polynomial P(~) := ·

To see that P serves its purpose, write (I  j  n + 1)

where Drj denotes the partial derivative of a function f = f (-rl, ... , 
(when not considering it as a function of Ti,... , Recall that =

r~~‘++~‘ and, therefore,

Further n)
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To compute this derivative introduce the inverse B = (bkj) of A where A is

the unimodular n x n matrix whose j’th row is given by p ~~ ~ . Then

Moreover,

Altogether, we obtain 

From (2.22) and (2.23) we, therefore, conclude that

and

These computations are now used to estimate the term W } on
the right hand side of (2.19)1. Using (2.6) we see that

Now we make use of the assumption that 0 = {Gn, (integrability) to con-
clude that

Combining (2.24) and (2.25) we conclude that the order of P (~ )al,n+1 (~ ) is

given by 2n + sn + d - 2, i.e.
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where mi = 2n + si 2. This is the key point in this proof. It uses
the integrability of the system to insure that W) can be treated as an
error term in (2.19).

Further, one verifies that

The system of equations (2.19)i i is, therefore, reduced to (I s I s n - 1) ,

By compairing homogeneous parts of (2.27), we can obtain equations to be
solved for Wd+2, ... , I inductively, which we describe below.

In case 2, we argue similarly to obtain ( 1  i  n - 1 )

where := b ~L 2013 agn agi f1  I, j y  n).wnere .2013 I: ;.

To treat case 1 and case 2 simultaneously, introduce the polynomials aij(~)

Denote by the leading order part of aij (~ ),

with in case 1 and in case 2.

We summarize the results obtained above in the following
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LEMMA 2.6. Assume that there exists a polynomial W = Wd+2 +... + W2d+l
with II N W = 0 so that, with z = ~p (~ ) = X yy 1 (~ ), Gjocparein HS -normal form up
to order sj + 2d - 1. Then each homogeneous polynomial Wl+2 (d  t  2d - 1 )
satisfies the following system of (n - 1) equations (I  i  n - 1)

where

Moreover,

The system (2.30) can be solved for W ~+2 },

is given by

where qk+.e+2 (~ ) is also a determinant and given by Cramer’s rule.
We point out that, W~+2 I being a polynomial, formula (2.33) shows

that the numerator q/ (§) is divisible by p(~).

2.4. - Estimate of W

We now combine Lemma 2.5 and Lemma 2.6 to obtain an estimate for W.
For convenience, we assume that the Hamiltonian H is normalized so that

llitll = llh ll .
According to Ito [It2, Lemma 5.1], for a small but otherwise arbitrary

positive number r &#x3E; 0, there exist constants 0  6i  1 (1 2n ) such that,
for E 0 := l = (Fi , ... , C2n I lfj = 8jr (1 :S j :S 2n)l, 

’


