EDOARDO VESSENTINI

Periodicity and almost periodicity in Markov lattice semigroups

<http://www.numdam.org/item?id=ASNSP_1997_4_25_3-4_829_0>
Periodicity and Almost Periodicity in Markov Lattice Semigroups

EDOARDO VESENTINI

Let K be a compact metric space. A continuous semiflow $\phi : \mathbb{R}_+ \times K \to K$ on K defines a strongly continuous Markov lattice semigroup $T : \mathbb{R}_+ \to \mathcal{L}(C(K))$ acting on the Banach space $C(K)$ of all complex-valued continuous functions on K (endowed with the uniform norm) and expressed by

$$T(t) f = f \circ \phi_t$$

for all $f \in C(K)$ and all $t \in \mathbb{R}_+$.

If $x \in K$ is a periodic point of ϕ, the functions $t \mapsto f(\phi_t(x))$ are continuous periodic functions on \mathbb{R}_+ for all $f \in C(K)$: a fact which imposes constraints on the spectral structure of the infinitesimal generator X of T. Milder restrictions on the spectrum of X are implied by the existence of almost periodic orbits, of asymptotically stable points and of non-wandering points for ϕ. Some of these constraints, together with their consequences on the behaviour of T and of ϕ, are discussed in this article.

In its final section, the paper corrects an error in [5], that was kindly pointed out to the author by C. J. K. Batty.

1. The following results have been established in [5]. Let E be a complex Banach space and let $T : \mathbb{R}_+ \to \mathcal{L}(E)$ be a uniformly bounded, strongly continuous semigroup of continuous linear operators acting on E. Let $X : D(X) \subset E \to E$ be the infinitesimal generator of T. Let $M > 1$ be such that $\|T(t)\| \leq M$ for all $t \geq 0$.

Consider now the dual semigroup $T^+ : \mathbb{R}_+ \to \mathcal{L}(E^+)$ of T, and let $X^+ : D(X^+) \subset E^+ \to E^+$ be its infinitesimal generator (see, e.g., [3] for the definition). For $g \in E$ and $\lambda \in E'$, the topological dual of E, the topological dual $\mathcal{H}'_{i\theta}$ of all λ in the topological dual E' of E for which the limit

$$\lim_{a \to +\infty} \frac{1}{a} \int_0^a e^{-i\theta t} \langle T(t) f, \lambda \rangle dt$$

exists for all $f \in E$, is a linear subspace of E' which contains $\ker(X^+ - i\theta I) \oplus \overline{\mathcal{R}(X^+ - i\theta I)}$ (where $\overline{\mathcal{R}(X^+ - i\theta I)}$ is the closure of the range $\mathcal{R}(X^+ - i\theta I)$ of
$X^+ - i\theta I)$. Since \mathcal{E}' is sequentially weak-star complete, the equation

\begin{equation}
\langle f, R_{i\theta} \lambda \rangle = \lim_{a \to +\infty} \frac{1}{a} \int_0^a e^{-i\theta t} \langle T(t)f, \lambda \rangle dt \quad \forall f \in \mathcal{E}
\end{equation}

defines a continuous linear operator $R_{i\theta} : \mathcal{H}'_{i\theta} \to \mathcal{E}'$ which is a projector with norm $\leq M$, whose range is $\ker(X^+ - i\theta I)$ and whose restriction to $\ker(X^+ - i\theta I)$ coincides with the spectral projector defined on $\ker(X^+ - i\theta I)$ by the ergodic theorem applied to $X^+ - i\theta I$.

The hypothesis on the existence of the limit (2) for all $f \in \mathcal{E}$ and all $\theta \in \mathbb{R}$, is satisfied if $\lambda \in \mathcal{E}'$ is such that the functions $t \mapsto \langle T(t)f, \lambda \rangle$ are asymptotically almost periodic for all $f \in \mathcal{E}$.

2. Let K be a compact metric space. To avoid trivialities, suppose that K contains more than one point. Let $\phi : \mathbb{R}_+ \times K \to K$ be a continuous semiflow on K, (see, e.g., [1]), and let $T : \mathbb{R}_+ \to \mathcal{L}(\mathcal{C}(K))$ be the strongly continuous Markov lattice semigroup, acting on the Banach space $\mathcal{E} = \mathcal{C}(K)$ of all complex-valued continuous functions on K, endowed with the uniform norm, defined by (1) for all $f \in \mathcal{C}(K)$ and all $t \in \mathbb{R}_+$. The infinitesimal generator X of T is a derivation.

For any $t \in \mathbb{R}_+$, $T(t)$ is a linear contraction; it is an isometry if, and only if, ϕ_t is surjective, and is a surjective isometry if, and only if, ϕ_t is a homeomorphism of K onto K.

If

\begin{equation}
\|T(t_o)f\| < \|f\| \quad \text{for some } t_o > 0 \text{ and some } f \in \mathcal{E},
\end{equation}

and if $t \geq 0$, then

$$
\|T(t_o + t)f\| = \|T(t(T(t_o)f))\| \leq \|T(t_o)f\| < \|f\|.
$$

Thus, if (4) holds, then $\|T(s)f\| < \|f\|$ for all $s \geq t_o$. Equivalently, if there exists $\epsilon > 0$ such that $\|T(\epsilon)g\| = \|g\|$ for all $g \in \mathcal{E}$, then $\|T(s)g\| = \|g\|$ for all $g \in \mathcal{E}$ and all $s \in [0, \epsilon]$. Thus, if (4) holds, then $t_o > \epsilon$. Suppose now that, furthermore, $\|T(t_o - s)g\| = \|g\|$ for all $g \in \mathcal{E}$ and some $s \in (0, \epsilon)$. Then

$$
\|T(t_o)g\| = \|T(s)T(t_o - s)g\| = \|T(t_o - s)g\| = \|g\|,
$$

contradicting (4). The set

$$
S = \{t \in \mathbb{R}_+^* : T(t) \text{ is not an isometry}\}
$$

is either empty or an open half line.

Proposition 1. If $T(t)$ is a contraction of \mathcal{E} for any $t \geq 0$, the set of all t for which $T(t)$ is an isometry is either \mathbb{R}_+ or the empty set.
In other words, either $S = \emptyset$ or $S = \mathbb{R}^*_+(1)$.

Proof. If $S \neq \mathbb{R}^*_+$, there is $\epsilon > 0$ such that $(0, \epsilon] \cap S = \emptyset$, and therefore $T(t)$ is an isometry for all $t \in (0, \epsilon]$. Let $(S \neq \emptyset$ and let $t_1 = \inf S$. Hence $t_1 > 0$. Choose σ in such a way that

$$0 < 2\sigma < \epsilon, \quad \sigma < t_1.$$

Then $t_1 + \sigma \in S$ and $0 < t_1 - \sigma \not\in S$. Since

$$t_1 - \sigma = t_1 + \sigma - 2\sigma > t_1 + \sigma - \epsilon,$$

$T(t_1 - \sigma)$ is not an isometry, contradicting the definition of t_1. \square

As a consequence of this result and of Theorems 1 and 2 of [4], the following theorem holds.

Theorem 1. If ϕ_t is surjective for some $t > 0$, the derivation X is a conservative and m-dissipative operator whose spectrum is non-empty.

Let $x \in K$ be such that the functions

$$t \mapsto \langle T(t)f, \delta_x \rangle = f(\phi_t(x))$$

are asymptotically almost periodic on \mathbb{R}_+ for all $f \in C(K)$. Then, for any $\theta \in \mathbb{R}$, the limit

$$\lim_{a \to +\infty} \frac{1}{a} \int_0^a e^{-i\theta t} \langle T(t)f, \delta_x \rangle dt = \lim_{a \to +\infty} \frac{1}{a} \int_0^a e^{-i\theta t} f(\phi_t(x)) dt$$

exists for all $f \in C(K)$, showing that $\delta_x \in \mathcal{H}_{i\theta}$. As before, let $R_{i\theta} \delta_x \in C(K)'$ be defined by

$$\langle f, R_{i\theta} \delta_x \rangle = \lim_{a \to +\infty} \frac{1}{a} \int_0^a e^{-i\theta t} f(\phi_t(x)) dt \quad \forall f \in C(K);$$

$R_{i\theta} \delta_x$ is (represented by) a Borel measure on K, i.e.,

$$\int f \, dR_{i\theta} \delta_x = \langle f, R_{i\theta} \delta_x \rangle = \frac{1}{a} \int_0^a e^{-i\theta t} f(\phi_t(x)) dt \quad \forall f \in C(K).$$

(1) The proof holds for any normed vector space \mathcal{E} and for every map $T : \mathbb{R}^*_+ \to \mathcal{L}(\mathcal{E})$ such that $T(t)$ is a contraction and $T(t_1 + t_2) = T(t_1) \circ T(t_2)$ for all $t, t_1, t_2 \in \mathbb{R}^*_+$.
For all \(f \in C(K) \), \(\lambda \in \mathcal{H}_i \) and \(s \geq 0 \),

\[
(f \circ \phi_s, R_{i \theta} \lambda) = \lim_{a \to +\infty} \frac{1}{a} \int_0^a e^{-i\theta t} (f \circ \phi_s \circ \phi_t, \lambda) dt \\
= \lim_{a \to +\infty} \frac{1}{a} \int_0^a e^{-i\theta t} (f \circ \phi_{s+t}, \lambda) dt \\
= e^{i\theta s} \lim_{a \to +\infty} \frac{1}{a} \int_s^{s+a} e^{-i\theta t} (f \circ \phi_t, \lambda) dt \\
= e^{i\theta s} \left\{ \lim_{a \to +\infty} \frac{a+s}{a} \int_0^{a+s} e^{-i\theta t} (f \circ \phi_t, \lambda) dt \right\} \\
= e^{i\theta s} \frac{1}{a} \int_0^a e^{-i\theta t} (f \circ \phi_t, \lambda) dt \\
= e^{i\theta s} (f, R_{i \theta} \lambda).
\]

In particular,

\[
(f \circ \phi_s, R_{i \theta} \delta_x) = e^{i\theta s} (f, R_{i \theta} \delta_x)
\]

for all \(f \in C(K) \) and \(s \geq 0 \).

As a consequence of the ergodic theorem for asymptotically almost periodic functions, \(R_{i \theta} \delta_x \neq 0 \) if, and only if, \(\theta \) is a frequency of the asymptotically almost periodic function \(t \mapsto f(\phi_t(x)) \) for some \(f \in C(K) \setminus \{0\} \), i.e., if, and only if, \([5] \), \(i \theta \in p\sigma(X) \cup p\sigma(X^+) \), where \(p\sigma \) denotes the point spectrum. For \(\theta = 0 \), \(R_0 \delta_x \) is a Borel probability measure which is \(\phi_s \)-invariant for all \(s \geq 0 \) and whose support is \(O^+(x) \).

If \(x \) is a periodic point of the continuous flow \(\phi \), the functions \(t \mapsto f(\phi_t(x)) \), are periodic for all \(f \in C(K) \), and the support of \(R_0 \delta_x \) is the forward orbit \(O^+(x) \). Let \(\phi_s \) be uniquely ergodic for some \(s > 0 \), i.e., [6], suppose that there is only one \(\phi_s \)-invariant Borel probability measure \(\mu \) on \(K \).

If \(x_0 \) and \(x_1 \) are two periodic points of \(\phi \), then \(\mu = R_0 \delta_{x_0} = R_0 \delta_{x_1} \). That proves

Theorem 2. If \(\phi \) is a continuous flow on the compact metric space \(K \), and if \(\phi_s \) is uniquely ergodic for some \(s > 0 \), then \(\phi \) has a periodic orbit at most.

3. Let \(\phi \) be topologically transitive, i.e., \(O^+(x_0) = K \) for some \(x_0 \in K \).

If \(\kappa \in \mathbb{C} \) is an eigenvalue of \(X \), and \(g_1, g_2 \) are two eigenfunctions of \(X \) corresponding to \(\kappa \), then \(g_1(x_0)g_2(x_0) \neq 0 \), and therefore

\[
g_2(\phi_t(x_0)) = e^{\kappa t} g_2(x_0) = \frac{g_2(x_0)}{g_1(x_0)} g_1(\phi_t(x_0))
\]

(2) This fact can be viewed as a generalization of Theorem 6.16 of [6] to continuous semiflows.
for all \(t \in \mathbb{R}_+ \), showing that \(\dim_{\mathbb{C}} \ker(X - \kappa I) = 1 \). Furthermore, the eigenfunctions corresponding to \(\kappa = 0 \), i.e. the \(\phi \)-invariant continuous functions, are constant on \(K \).

If \(f \in \ker(X - \kappa I) \setminus \{0\} \) and \(x \) is a periodic point of \(\phi \), with period \(\tau \), then

\[
f(x) = f(\phi_\tau(x)) = e^{\kappa \tau} f(x).
\]

Therefore, either \(\kappa \tau = 2n\pi i \) for some \(n \in \mathbb{Z} \), or \(f(x) = 0 \). By the same argument, if \(\omega \) is another eigenvalue of \(X \) and \(h \in \ker(X - \omega I) \setminus \{0\} \), then either \(\omega \tau = 2m\pi i \) for some \(m \in \mathbb{Z} \), or \(h(x) = 0 \). Hence, if \(f(x) h(x) \neq 0 \), \(\kappa \) and \(\omega \) are linearly dependent over \(\mathbb{Z} \).

Suppose again that \(\phi \) is topologically transitive. Then the sets \(\{ y \in K : f(y) \neq 0 \} \) and \(\{ y \in K : h(y) \neq 0 \} \) are dense open sets of \(K \), and the following theorem holds.

Theorem 3. If the continuous semiflow \(\phi \) is topologically transitive and the set of its periodic points is dense, either the point spectrum of \(X \) is empty, or all the eigenvalues of \(X \) are rational multiples of some point of \(\mathbb{R} \).

Let \(\zeta \in p\sigma(X) \) and \(g \in \ker(X - \zeta I) \setminus \{0\} \), so that

\[
g \circ \phi_t = e^{\zeta t} g \quad \forall t \in \mathbb{R}_+.
\]

If there is \(x \in K \) such that the functions \(t \mapsto f(\phi_t(x)) \) are asymptotically almost periodic for all \(f \in C(K) \), then

\[
e^{\zeta t} g(R_{t\theta} \delta_x) = \langle g \circ \phi_t, R_{t\theta} \delta_x \rangle = e^{i\theta t} \langle g, R_{t\theta} \delta_x \rangle,
\]

i.e.

\[
(e^{i(\theta - \zeta)t} - 1) \langle g, R_{t\theta} \delta_x \rangle = 0
\]

for all \(t \geq 0 \) and all \(\theta \in \mathbb{R} \). Hence, either \(\theta = -i\zeta \) or

(5) \[
\langle g, R_{t\theta} \delta_x \rangle = 0.
\]

If \(\theta = -i\zeta \), then

\[
\langle g, R_{t\theta} \delta_x \rangle = \lim_{a \to +\infty} \frac{1}{a} \int_0^a e^{-i\theta t} e^{\zeta t} dt \langle g, \delta_x \rangle
= \langle g, \delta_x \rangle = g(x).
\]

If \(\omega \in \mathbb{C} \) is an eigenvalue of \(T(s) \) for some \(s > 0 \), there is some \(n \in \mathbb{Z} \) such that

\[
\zeta_n := \log \omega + \frac{2n\pi i}{s} \in p\sigma(X),
\]

and the eigenspace \(\ker(T(s) - \omega I) \) is the closure of the linear subspace of \(C(K) \) spanned by all \(\ker(X - \zeta_n I) \) for which \(\zeta_n \in p\sigma(X) \), [2].
If there is a frequency \(\theta \) of the asymptotically almost periodic function
\(t \mapsto f(\phi_t(x)) \), for some \(f \in C(K) \), such that \(e^{it\theta} \) is not an eigenvalue of
\(T(s) \), then (5) holds for all eigenfunctions \(g \) of \(X \). Suppose now that, for some
\(s > 0 \), \(\phi_s \) has a topological discrete spectrum, i.e., all eigenfunctions of \(T(s) \)
span a dense linear suspace of \(C(K) \). Thus, (5) - holding on a dense subspace
of \(C(K) \) - implies that \(R_t \delta_x = 0 \): which is absurd. Hence

\[
e^{it\theta} \in p\sigma(T(s)),
\]

and therefore

\[
i\theta + \frac{2n\pi i}{s} \in p\sigma(X)
\]

for some \(n \in \mathbb{Z} \). Since \(p\sigma(X) \in p\sigma(X') \), where \(X' \) is the dual operator of \(X \),
the following proposition holds.

PROPOSITION 2. If \(x \in K \) is such that the functions \(t \mapsto f(\phi_t(x)) \) are asymp-
totically almost periodic for all \(f \in C(K) \) and if \(\phi_s \) has a topological discrete
spectrum for some \(s > 0 \), then \(p\sigma(X') \cap i\mathbb{R} \neq \emptyset. \)

4. Let \(d \) be a distance defining the metric topology of \(K \). A point \(x \in K \)
will be said to be an asymptotically almost periodic point of \(\phi \) if, for all \(\delta > 0 \),
there exist \(\alpha \geq 0 \) and \(l > 0 \) such that every interval \([s, s + l] \), with \(s \geq 0 \),
contains some \(\tau \) such that

\[
d(\phi_{t+\tau}(x), \phi_t(x)) < \delta
\]

for all \(t \geq \alpha \). Since

\[
|d(\phi_{t+\tau}(x), x) - d(\phi_t(x), x)| \leq d(\phi_{t+\tau}(x), \phi_t(x)),
\]

if \(x \in K \) is an asymptotically almost periodic point of \(\phi \), the function \(\mathbb{R}_+ \ni t \mapsto d(\phi_t(x), x) \) is asymptotically almost periodic.

If (6) is only required to hold when \(t = 0 \), the point \(x \) is said to be almost
periodic.

Since \(K \) is compact, for any \(f \in C(K) \) and any \(\epsilon > 0 \), there exists \(\delta > 0 \)
such that, if \(d(x_1, x_2) < \delta \), then \(|f(x_1) - f(x_2)| < \epsilon \). If \(x \) is asymptotically
almost periodic for \(\phi \), choosing \(\alpha \) and \(l \) as above, then

\[
|f(\phi_{t+\tau}(x)) - f(\phi_t(x))| < \epsilon \quad \forall \ t \geq \alpha.
\]

That proves the following lemma.

LEMMA 1. If \(x \in K \) is an asymptotically almost periodic point of the continuous
semiflow \(\phi \), for every \(f \in C(K) \) the function \(\mathbb{R}_+ \ni t \mapsto f(\phi_t(x)) \) is asymptotically
almost periodic.
The point will be said to be \textit{asymptotically stable} for the semiflow ϕ if, for every $\epsilon > 0$ and every $\alpha > 0$, there is some $t \geq \alpha$ such that

\begin{equation}
 d(\phi_t(x), x) \leq \epsilon.
\end{equation}

All almost periodic points are asymptotically stable.

Let $\phi : \mathbb{R} \times K \to K$ be a continuous flow, and let $T : \mathbb{R} \to \mathcal{L}(C(K))$ be the strongly continuous group defined by (1) for all $t \in \mathbb{R}$ and all $f \in C(K)$.

\textbf{Theorem 4.} Let $x \in K$. If the functions $\mathbb{R} \ni t \mapsto f(\phi_t(x))$ are almost periodic for all $f \in C(K)$, the point $x \in K$ is asymptotically stable for the restriction of ϕ to \mathbb{R}_+.

\textbf{Proof.} If $x \in K$ is not asymptotically stable, there are some $\epsilon > 0$ and some $\alpha > 0$ such that

\begin{equation}
 t > \alpha \implies d(\phi_t(x), x) > \epsilon
\end{equation}

Let $B(x, \epsilon)$ be the open ball, with center x and radius ϵ for the distance d. Let $f \in C(K)$ be such that

\begin{equation}
 \text{Supp } f \subset B(x, \epsilon) \quad \text{and} \quad f(\epsilon) \neq 0.
\end{equation}

Then

\begin{equation}
 \lim_{a \to +\infty} \frac{1}{a} \int_0^a e^{-i\theta t} f(\phi_t(x)) \, dt = 0
\end{equation}

for all $\theta \in \mathbb{R}$. Hence, all the frequencies of the almost periodic function $t \mapsto f(\phi_t(x))$ vanish. Thus the function is constant, contradicting (9).

\textbf{Corollary 1.} If the group T is weakly almost periodic, every point of K is asymptotically stable.

Suppose there is some $c > 0$ such that

\begin{equation}
 d(\phi_t(u), \phi_t(v)) \leq c \, d(u, v) \quad \forall u, v \in K, \forall t \geq 0;
\end{equation}

ϕ will then be called a c-contractive semiflow (a contractive semiflow when $c = 1$).

If (10) is satisfied and if $x \in K$ is an almost periodic point of ϕ, (6) holds for all $t \geq 0$. As a consequence, the function $t \mapsto d(\phi_t(x), x)$ is asymptotically almost periodic.

\textbf{Proposition 3.} All asymptotically stable points of the continuous semiflow ϕ are non-wandering.

If ϕ is c-contractive for some $c > 0$, all non-wandering points are asymptotically stable.
PROOF. If x is asymptotically stable, for all $\epsilon > 0$ and all $\alpha > 0$ there is some $t \geq \alpha$ satisfying (7). Since $\phi_t(x) \in B(x, 2\epsilon)$, then

$$ x \in B(x, 2\epsilon) \cap \phi_t^{-1}(B(x, 2\epsilon)),$$

showing that x is a non-wandering point.

Conversely, let x be a non-wandering point, and suppose there are $\epsilon_0 > 0$ and $\alpha_o > 0$ such that

$$d(\phi_t(x), x) \geq \epsilon_0 \ \forall \ \tau \geq \alpha_o. \ (11)$$

Choose $\tau_o > \alpha_o$, and let $\sigma \in (0, \frac{\epsilon_0}{2\epsilon_0})$. There exists $\delta > 0$ - which can be assumed $< \frac{\epsilon_0}{2}$ - such that, if $d(x, y) < \delta$, then $d(\phi_{\tau_o}(x), \phi_{\tau_o}(y)) < \sigma$, i.e.,

$$\phi_{\tau_o}(B(x, \delta)) \subset B(\phi_{\tau_o}(x), \sigma).$$

Since x is non-wandering, there is some $\tau \geq \tau_o$ such that

$$\phi^{-1}_t(B(x, \delta)) \cap B(x, \delta) \neq \emptyset,$$

and therefore, being

$$\phi^{-1}_t(B(x, \delta) \cap \phi_t(B(x, \delta))) = \phi^{-1}_t(B(x, \delta)) \cap \phi^{-1}_t \circ \phi_t(B(x, \delta)) \supset \phi^{-1}_t(B(x, \delta)) \cap B(x, \delta),$$

also

$$B(x, \delta) \cap \phi_t(B(x, \delta)) \neq \emptyset.$$

Since, by (10),

$$d(\phi_t(x), \phi_t(y)) = d(\phi_{t-\tau_o} \circ \phi_{\tau_o}(x), \phi_{t-\tau_o} \circ \phi_{\tau_o}(y)) \leq c \cdot d(\phi_{\tau_o}(x), \phi_{\tau_o}(y)) < c \sigma < \frac{\epsilon_o}{2}$$

whenever $d(x, y) < \delta$, then

$$\phi_t(B(x, \delta)) \subset B \left(\phi_t(x), \frac{\epsilon_o}{2} \right).$$

Choose any

$$z \in B(x, \delta) \cap \phi_t(B(x, \delta)).$$

Thus, $z \in B(\phi_t(x), \frac{\epsilon_o}{2})$, i.e., $d(\phi_t(x), z) < \frac{\epsilon_o}{2}$. Since $d(x, z) < \delta < \frac{\epsilon_o}{2}$, then

$$d(\phi_t(x), x) \leq d(\phi_t(x), z) + d(x, z) < \frac{\epsilon_o}{2} + \frac{\epsilon_o}{2} = \epsilon_o,$$

contradicting (11). \qed
5. If the forward orbit of $x \in K$ is not dense, there are $u \in K$ and $r > 0$ such that

$$B(u, r) \cap O^+(x) = \emptyset.$$

If (10) holds, and if $y \in K$ is such that $d(x, y) < \frac{r}{2c}$, then

$$d(\phi_t(x), \phi_t(y)) \leq c d(x, y) < \frac{r}{2},$$
and therefore

$$d(u, \phi_t(y)) \geq |d(u, \phi_t(x)) - d(\phi_t(x), \phi_t(y))|$$

$$> r - \frac{r}{2} = \frac{r}{2} \quad \forall \quad t \in \mathbb{R}_+. $$

Thus,

$$y \in B\left(x, \frac{r}{2c}\right) \Rightarrow B\left(u, \frac{r}{2}\right) \cap O^+(y) = \emptyset.$$

That proves

Lemma 2. If (10) holds, the set of points of K whose forward orbits are dense, is closed.

Let $\phi_s(K) = K$ for some $s > 0$. Then, the set of points of K whose forward orbits are dense, is either empty or a dense G_δ, [6]. Hence, the following proposition holds.

Proposition 4. If (10) holds, and if ϕ_s is surjective and topologically transitive for some $s > 0$, then every point of K has a dense orbit.

As a consequence, ϕ has no fixed point and a periodic orbit at most. If x is a periodic point with period $\tau > 0$, then

$$K = O^+(x) = \{\phi_t(x) : 0 \leq t \leq \tau\}.$$

Thus, K is homeomorphic to the circle $\mathbb{R} \setminus \tau \mathbb{Z}$ and the map $t \mapsto \phi_t(x)$ is topologically conjugate to the the restriction to \mathbb{R}_+ of the covering map $\mathbb{R} \rightarrow \mathbb{R} \setminus \tau \mathbb{Z}$.

If $y \neq x$, then $y = \phi_r(x)$ for some $r \in (0, \tau)$, and therefore

$$\phi_t(y) = \phi_t(\phi_r(x)) = \phi_{t+r}(x)$$

$$= \phi_r(\phi_t(x)) = \phi_r(x) = y.$$

Hence, the period σ of y is $\sigma \leq \tau$, and $x = \phi_t(y)$ for some $t \in (0, \sigma)$. Being

$$\phi_\sigma(x) = \phi_\sigma(\phi_t(y)) = \phi_{\sigma+t}(y)$$

$$= \phi_t(\phi_\sigma(x)) = \phi_t(y) = x,$$

then $\tau \leq \sigma$, and, in conclusion, $\sigma = \tau$, proving thereby the following theorem.
THEOREM 5. If the c-contractive continuous semiflow $\phi : \mathbb{R}_+ \times K \to K$ has a periodic orbit and is such that ϕ_s is surjective and topologically transitive for some $s > 0$, then K is homeomorphic to a circle, and ϕ is topologically conjugate to the restriction to \mathbb{R}_+ of the group of rotations of \mathbb{R}^2.

THEOREM 6. If (10) holds and if the set of all periodic points of the c-contractive semiflow ϕ is dense in K, then ϕ is asymptotically almost periodic at all points of K.

PROOF. Let $x \in K$ and let $\{x_v\}$ be a sequence of periodic points $x_v \in K$ converging to x. If $t > 0$,

$$d(\phi_t(x), x) \leq d(\phi_t(x), \phi_t(x_v)) + d(\phi_t(x_v), x_v) + d(x_v, x).$$

For any $\epsilon > 0$ there is an index v_0 such that, whenever $v > v_0$, $d(x_v, x) < \epsilon$. Let $\tau > 0$ be the period of x_{v_0}. Then, for any integer $p \geq 1$,

$$d(\phi_{p\tau}(x), x) \leq d(\phi_{p\tau}(x), \phi_{p\tau}(x_{v_0})) + d(\phi_{p\tau}(x_{v_0}), x_{v_0}) + d(x_{v_0}, x)$$

$$= d(\phi_{p\tau}(x), \phi_{p\tau}(x_{v_0})) + d(x_{v_0}, x)$$

$$< (c + 1)\epsilon.$$

Since every interval $[s, s + 2\pi]$ contains some $p\tau$, the point x is almost periodic and therefore asymptotically almost periodic. \square

6. C. J. K. Batty has kindly pointed out to me that Theorem 6 of [5] is not correct. In fact, the inclusion length $l > 0$ appearing in the inequality (16) of [5] depends on x and λ, and - as x and λ vary - may increase to ∞. To make (16) a uniform estimate - i.e., an estimate holding for all x and λ chosen as in i) and ii) of [5] - assume that T fulfills, besides i) and ii), the following condition:

iii) there exists $\epsilon_o \in (0, \sqrt{2})$ such that, for every choice of x and λ satisfying i) and such that $\langle x, \lambda \rangle = 1$, the set of lengths $l > 0$ for which (12) holds is bounded.

A correct version of Theorem 6 of [5] can be phrased as follows.

THEOREM 7. If the function $\langle T(x), \lambda \rangle$ is asymptotically almost periodic for all $x \in D(X)$ and all $\lambda \in D(X^1)$ and if i) and iii) hold, then the set $(p\sigma(X) \cup p\sigma(X^1) \cap i\mathbb{R})$ is discrete.

EXAMPLE. Let T be the unitary group in the Hilbert space l^2 generated by the self-adjoint linear operator X defined on the standard basis $\{e_n : n \in \mathbb{Z}\}$ of l^2 by

$$X e_n = \text{sign}(n) i \left(\sum_{0}^{\lfloor |n| \rfloor} \frac{1}{p} \right) e_n$$

if $n \neq 0$, and by $X e_0 = 0$. The group T is almost periodic and satisfies iii), but is not uniformly almost periodic.

Condition iii) shall be added to the hypotheses of Theorems 9 of [5]. Theorem 10 can be correctly stated, with the same notations as in [5], as follows.
Theorem 8. Let the semigroup defined in B of [5] be strongly asymptotically almost periodic. If \(p\sigma(X) = \emptyset \), the function \(T(\bullet)x \) vanishes at \(+\infty\) for all \(x \in C(K) \). If \(p\sigma(X) \neq \emptyset \), and if iii) holds, there is \(\omega > 0 \) such that

\[
p\sigma(X) \cap i\mathbb{R} = \{in\omega : n \in \mathbb{Z}\}
\]

and, for every \(x \in \mathcal{E} \), \(T(\bullet)x \) is the sum of a continuous function vanishing at \(+\infty\) and of a periodic function with period \(\omega \).

REFERENCES

Politecnico di Torino
Dipartimento di Matematica
Corso Duca degli Abruzzi 24
10129 Torino, Italy