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On the Liouville Property for Sublaplacians

ITALO CAPUZZO DOLCETTA - ALESSANDRA CUTRI

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXV (1997), pp. 239-256

1. - Introduction

The Liouville theorem for harmonic functions states that a solution u of

is a constant. This classical result has been extended to non-negative solu-
tions of semilinear elliptic equations in JRN or in half-spaces by B. Gidas and
J. Spruck [19]. For the case of the whole space they proved that the unique
solution of

is u == 0, provided 1  a  N+2 and C is a strictly positive constant.
The Liouville property is more delicate to establish for semilinear elliptic

equations or inequalities of the form

where :E is a cone in JRN and h &#x3E; 0 is a function which may vanish on the
boundary of 1:. Liouville type theorems in this case have been established

recently by H. Berestycki, L. Nirenberg and the first author. In the paper [2]
they obtained, by a simpler method than in [19], a general result in this direction
under some conditions relating the exponent a, the rate of growth of h at infinity,
the opening of the cone I; and the space dimension N. In the special case
E = f x -:- (XI, ...,J~) ~ 0 } and hex) = xN , the above mentioned
theorem states that the unique solution of

is 0, provided 1  a  N+2IS U = , proVI e  a  
N-1 

*

In [19] and [2] these non-existence results have been applied to show via a
blow-up analysis the validity, under restrictions on a dictated by the Liouville
theorems, of a priori estimates in the sup norm for all solutions (u, r) a 0 of
the problem
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where S2 is a bounded open subset of R N and r E R. These estimates allow
to prove, via the Leray-Schauder degree theory, the existence of non-trivial
solutions of the Dirichlet problem

even when the weight a may change sign in S2 (see [2] for such indefinite type
problems).

The approach of [2], which works for general second order uniformly
elliptic operators in non divergence form, has been adapted by I. Birindelli and
the present authors to deal with the semilinear operator AHn u + 
Here, AHn is the second order degenerate elliptic operator

acting on functions u = u(~) where $ = ?1, " - , $2n , $2n+j ) e 
In [5] and [6], the results described above for the case of the Laplace operator
have been indeed extended to the operator in (1.1) under some pseudo-convexity
condition on aQ which allows to manage the extra difficulties posed by the
presence of characteristic points.

The basic idea in [5] and [6] is to look at the Kohn Laplacian AHn as a
sublaplacian on JR2n+1 1 endowed with the Heisenberg group action

By this we mean that Kohn Laplacian in ( 1.1 ) can be expressed as

, with

for i = 1,..., n. This observation allows to exploit conveniently the scaling
properties of the fields X i and of the operator AHn with respect to the anistropic
dilations 

- - I- - -- - -

and the action of on functions depending only on the homogeneous norm
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Liouville theorems, a priori estimates and the existence of non trivial solutions
in Holder-Stein spaces for the Dirichlet problem

are therefore obtained in the above mentioned papers under a restriction on
the exponent a depending on the homogeneous dimension Q = 2n + 2 of the
Heisenberg group rather than on its linear dimension N = 2n + 1.

The ideas and methods outlined above for the case of can be gen-
eralized to sublaplacians L of the form L = ~n 11 X 2 where the first order
differential operators Xi in the preceding generate the whole Lie algebra of
left-invariant vectorfields on a nilpotent, stratified Lie group (G, o), see Section
2 for a quick review of the basic notions and terminology.
In Section 3 of the present paper, which originates from the graduate dissertation
of the second author [10], we propose some abstract results of Liouville type
for operators L as above, both in the linear and the semilinear case. The final
Section 4 is devoted to the study of the semilinear Liouville property for some
second order degenerate elliptic operator which do not fit in the abstract setting
of Section 2, the main example being the Grushin operator which is defined on

RP x Rq by

where k E N and (x 1, ... , x p , y 1, ... , yq ) is the typical point of 
Let us mention finally that different aspects of semilinear subelliptic prob-

lems have been investigated in [17] and, more recently, in [16], [3], [8], 15],
[4], [25], [30]. Liouville type theorems for linear Fuchsian or weighted elliptic
operators have been established in [28], [24], [11].

2. - Sublaplacians on stratified Lie groups

In this section we recall briefly a few notions which are relevant to the
analysis on Lie groups and some fundamental properties of sublaplacians on
stratified, nilpotent Lie groups. For more details, see. e.g. [21], [22].

2.1. - Stratified nilpotent Lie groups

Let 9 be a real finite dimensional Lie algebra, i. e. a vector space on R
with a Lie bracket [. , .], that is a bilinear map from g x 9 intro 9 which is
alternating
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and satisfies the Jacobi identity

~ is called m -nilpotent and stratified if it can be decomposed as a direct sum
of subspaces satisfying

Therefore, VI generates, by means of the Lie bracket f-, -1, G as a Lie algebra.
Let (G, o) be the simply connected Lie group associated to the Lie algebra

G = (G, [., .J) as follows:

equipped with the group action o defined by the Campbell-Hausdorff formula,
namely

(for the other terms see e.g. [26]). Note that, in view of the nilpotency of 9, in
the right hand side there is only a finite sum of terms involving commutators
of ~ and 17 of lenght less than m.
Observe that the group law (2.4) makes G = R N a Lie group whose Lie
algebra of left-invariant vectorfields Li e(G) coincides with 9. Recall that the
Lie algebra Lie(G) is the algebra of left-invariant vectorfields Y which satisfy

for every smooth function f, equipped with the bracket [[X, Y]] = X Y -- Y X .
Let et, ... , en 1 be the canonical basis of the subspace I of G; then as a

basis of the Lie algebra 9 = Lie(G) we can choose the vectorfields Zi,..., Xnl 1
defined for smooth f by

Since VI generates 9 as a Lie algebra we can define recursively, for j =
1, ... , m, and i = 1,... ,/, a basis of Vj as
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with a = (i 1, ... , ij) multi-index of length j and X ik E {X 1, ... , 
In terms of the decomposition G = R"i fl3 R"2 fl3 ... fli one defines then

a one - parameter group of dilations Sx on G by setting for

Observe that, for any ~ E G, the Jacobian of the map ~ 2013~ 8À(~) equals 
where

The integer Q is the homogeneous dimension of G. Observe that the linear
dimension of G is N = n j; hence Q 2: N and equality holds only in the
trivial case m = 1 and G = 

Let us recall that a dilation - homogeneous norm on G is, by definition, a
mapping § 2013~ p (~ ) from G to JR+ such that:

All homogeneous norms on G are equivalent; moreover they satisfy the triangle
inequality

for some constant Co &#x3E; 1. For a given homogeneous norm and positive real
R, the Koranyi ball centered at 0 is the set

These balls form, for R &#x3E; 0, a fundamental system of neighborhoods of the
origin in (G, o). Through the group law o one defines then the distance between
~, 11 E G by the position

where 17-1 is the inverse of 1] with respect to o, i.e. = The Koranyi
ball of radius R centered at 17 is defined accordingly.

It is important to point out that the Lebesgue measure is invariant for the
group action and that the volumes scale as RQ.
More precisely, if E I denotes the N - dimensional Lebesgue measure (recall
that N = ¿i’=l we have

as a consequence of (2.7) and (2.8).
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2.2. - Sublaplacians

Let us come back now to the vectorfields Xi (i - 1, ... , n 1 ) defined in
(2.5). The first remark is that Xi are 1 - homogeneous with respect to the
dilations i.e.

Indeed, from the definition (2.5) of Xi we have

...

Setting r = tÀ, the righ-hand side of the preceding is

In a similar way one can check that the vectorfields of V/ are homogenous of
degree j, that is

Let us make now some simple remarks on the representation of the vectorfields
X as first order partial differential operators. If one chooses (e 1, ... , en I , ... , eN )
as the canonical basis of G = then each X i (i - 1,..., nl) can be
expressed in terms of the partial derivatives as

axj

Here, a (x) = is a n I x N matrix of the form

where I denotes the identity on Rn I and are n I x nj matrices ( j =
2, ... , m). As a consequence of (2.3) one has

The sublaplacian L on the group G is defined then on smooth func-
tions u by
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Observe that L is 2-homogeneous with respect to the dilations 8, since the

X i ’s are 1-homogeneous; moreover, L is left-invariant with respect to the group
action o, since the Xi ’s are such.

In view of the preceding discussion, L is a second order partial differential
operator; as a consequence of (2.13) it can be expressed in divergence form as

where A (x ) = is a positive semidefinite N x N matrix.
When m = 1 the sublaplacian L coincides with the Laplace operator

On the other hand, as soon as m &#x3E; 2, the matrix cr has a non trivial kernel.
The sublaplacian L is therefore no more uniformly elliptic but only degenerate
elliptic and, more precisely, a second order operator with non-negative charac-
teristic form according to [27]. Nevertheless, the stratification condition implies
that the fields X i (i = 1,..., n 1 ) satisfy the Hörmander condition

As a consequence of (2.16), L is subelliptic (see [23]). Let us just mention
here that this implies the validity of Bony’s Maximum Principle (see [7]).
In the sequel we will use the notation = 

Let us conclude this section by two basic examples.

2.3. - Examples

Example 1. Take 9 = JRN with the trivial Lie bracket [X, Y] = 0 for all
X, Y and stratification Vl - = (0). The dilation and the homogeneous
norm in this case are, of course, isotropic. They are given, respectively, by

The homogeneous dimension is N, the fields Xi are the partial derivatives and
the sublaplacian is the standard Laplacian A.

Example 2. Take 9 = JR2n+1 1 1) with the Lie bracket [X, Y = XY - Y X
and the stratification G = The homogeneous dimension in this case
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is then Q = 2n + 2. The dilation and the homogeneous norm on G are,

respectively,

It is easy to check that the group action o defined in (2.4) is

From this it follows that the fields Xi are given in this case by (1.2) and the
sublaplacian associated with the Heisenberg group HI = is therefore

given by (1.1).

3. - The Liouville property for sublaplacians on nilpotent stratified groups

3.1. - The linear case

This section is devoted to the generalization to sublaplacians L of the well-
known Liouville property valid for the Laplace operator. Indeed, we prove that
bounded L-harmonic functions on stratified groups G are necessarily constant.

Let L = be the sublaplacian on the stratified group (G, o). A
function u is L-harmonic on G if

where r2 (G) is the space of functions u : G ~ R such that

and

The basic tool in our proof of the linear Liouville theorem is the following
mean value property for L-harmonic functions:

where dL(~, 1]) := CQ is a suitable constant and BL (~, R) denotes
the Koranyi ball associated to an appropriate C°° (G B {OJ) homogeneous norm
pL .). Note that

where r is the fundamental solution of L (see [12], [14], [18]).
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THEOREM 3.1. Let L = ¿7;1 X 2 be the sublaplacian on the nilpotent stratified
group G. If u is L-harmonic on G, then u is a constant.

PROOF. As a consequence of (2.3) the vectorfields X i , m commute with X i
for i = 1, ..., n 1. Hence the sublaplacian L satisfies:

Consequently, if u is L-harmonic the same is true for (i = 1, ... nm ).
Therefore, by the mean value formula (3.1) applied to Xi,mu we get

Integrating by parts the right-hand side of (3.2), we obtain:

Here V denotes the usual gradient; observe also that v = d is the normal
vector to a BL .

Since the Xi are 1-homogeneous with respect to the intrinsic dilation, see
(2.9), and are left-invariant with respect to the group action o, it follows that Xi,m
is homogeneous of degree m with respect to 8~, and left-invariant with respect
to o. The previous remark, together with the fact that dL is homogenous of
degree 1 with respect to 8,, provide the following estimates:

Indeed, for the first estimate in (3.3) observe that -

and that is bounded since dL is Coo on 9~(0,1). The second
estimate is achieved by using the same argument and the 1-homogeneity of V L.
Moreover, Xi,m(IVLdLI2) = VLdL .

Hence,

for every
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Therefore, letting R - oo, one deduces that

Now, from the stratification of G it follows that Xi,m-1 u is also L-harmonic.
Indeed, for k = 1,... n 1,

Thus, being Xi,m a basis of Vm, (3.4) yields 0 in G. Repeating the
same argument and using the fact that the vectorfields form a basis of Vj
and are j-homogeneous with respect to 3,x, see (2.10), one finally obtains that

Consequently, from the Hormander condition span = Lie(Xi) = g,
we deduce that ~u = 0 in G and the claim is proved. D

3.2. - The semilinear case

In this section we prove a Liouville theorem for nonnegative solutions of
semilinear equations associated to sublaplacians L on stratified groups G.
The proof, which is inspired from [2], relies in particular on the behaviour of
the operator L defined in (2.14) on functions which are radial with respect to
the homogeneous norm pL (~), see Section 3.1. From now we shall write, for
simplicity, pL = p.
One can easily check by a direct computation using (2.5) that the following
holds for smooth f : R - R and 0

As recalled in the previous section, r, where r is the fundamental
solution of L. Therefore, using (3.6) with f (p) = p2-Q, one finds that

for p # 0. Hence,

yielding to the following radial expression of L:

Let us observe that oL p is homogeneous of degree zero and therefore is bounded
in G; the same is true for pLp. In the sequel we will use the notation

1fr (p) = IVLP 12.
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THEOREM 3.2. Suppose that U E rfoc(G) satisfies

where k is a continuous nonnegative function such that

for sufficiently large p (~ ) and for some K &#x3E; 0, y &#x3E; -2. Then u = 0, provided

PROOF. For each R &#x3E; 0 consider a cut-off function OR such that

Set then

where - = 1 2013 ~. Observe that IR 2: 0 and that (3.7) implies

Therefore, an integration by parts yields:

where vL (~ ) = cr (~ ) v (~ ), v being the exterior normal to a BL, see (2.12), and
JE denotes the (N - 1) - dimensional Hausdorff measure.

On the other hand, (3.6) implies
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Thus, by the assumptions made on q5R and taking (3.10) into account, we find,
for

since * and p L p are bounded. Then, by Holder inequality,

Choosing R &#x3E; 0 sufficiently large so in ER, we obtain

Therefore, for large R,

Letting R - oo in the above we conclude that, if 1  a  then

This implies u = 0 outside a large ball since k is strictly positive there. Choose
now R &#x3E; 0 in such a way that k &#x3E; 0 for p &#x3E; R. Then, as proved above, u = 0
on 

Hence u satisfies:

for some 3 &#x3E; 0. Therefore, by the Bony’s Maximum Principle, see [7], u has
to be identically zero on G since u is not strictly positive in view of the last
condition in (3.13).
Consider now the case a = Q-2. In this case, from (3.12) we deduce that IR
is uniformly bounded with respect to R. Moreover, since R - IR is increasing
the integral on the right - hand side of (3.11), which coincides with IR - IR ,2

goes to zero as R tends to infinity. This implies I = 0 and we conclude as
before. D
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REMARK 3.1. The claim of Theorem 3.2 holds under the less restrictive

assumption that, for some K &#x3E; 0 and y &#x3E; -2, k(~) ~: for sufficiently
large p (~ ) . The proof is similar but one has to take into account that p L p =
(Q - 1)* and also that * vanishes, by its very definition, on the characteristics
points of the Koranyi’s ball which are, by the way, a set of N-dimensional
measure equal to zero (see [13]).

REMARK 3.2. The exponent Q±2 in Theorem 3.2 is optimal. To see this,
observe first that in view of (3.6) the function u (p) _ ( 1 + p2)- ~ satisfies

Thus, were a &#x3E; Q± 2 , one could choose p such that

Therefore, setting v = C u with i one obtains easily
that

4. - Other Liouville type results

Here we prove some semilinear Liouville type results like those of the

previous section for some degenerate elliptic second order operators of the
form

which are 2-homogeneous with respect to a family of dilations but do not fit
in the setting of Section 3 since they are not left-invariant with respect to any
group action on JRN.

The first example we consider is the Grushin operator L defined on JRN =
x by

where kEN and (x , y ) = (x 1, ... , x p , y 1, ... , yq ) denotes the typical point
of JRN.
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This operator may be written in the form (4.1 ) by choosing

It is easy to check that L satisfies the Hormander condition (2.16) since the X i
generate by commutators of lenght  k. It is also easy to realize that the
Lie algebra generated by X i for k &#x3E; 1 has no constant dimension.

However, for the dilation

we have

Hence, L is 2-homogeneous with respect to (4.3). Moreover, the norm

where $ = (x, y) and ~ ~ ~ I denotes the euclidean norm on is 1-homogeneous
with respect to the dilation in (4.3).
It follows that N-dimensional measure of the ball

associated with (4.4) (here Bp denotes the euclidean ball of RP) is proportional
to R Q , with

4.1. Let u be a solution of

Then u - 0, provided that k &#x3E; 1 and :
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PROOF OF THEOREM 4.1. Set := R) x Bq (0, Let CPR and

OR be the cut-off functions satisfying, for some constant C &#x3E; 0,

where r [ and s = lyl. . Let us set then, for

From (4.5) we obtain

where and

being the exterior normal to 
On the other hand, simple computations show that

where 0p, Aq denote the Laplacians on RP and JRq, respectively.
The integral on the boundary in (4.8) vanishes since = 9RvR = 0
on and fi &#x3E; 1. Therefore, by the properties of CPR and 9R and setting

we obtain

By the Holder inequality then

yielding
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At this point the claim follows by the same arguments as in the proof of
Theorem 3.2. 0

The next result concerns the k-dimensional ( 1  k  N) Laplace operator
on jRN, that is 

-

This example shows that subellipticity is not necessary to obtain semilinear
Liouville type results. The main ingredients in the proof are again the 2-

homogeneity of the operator with respect to a suitable family of dilations and
that the balls associated with an appropriately defined distance invade the whole
space as the radius diverges.

The result is as follows:

THEOREM 4.2. Let u E C2 be a solution of

If k &#x3E; 2 and 1  a  k k 2, then u - 0. The same conclusion holds if k = 2 and
a&#x3E; l.

PROOF OF THEOREM 4.2. The proof is similar to that of Theorem 4.1. The
first observation is that, for every E &#x3E; 0, the operator Ok is 2-homogeneous
with respect to the following dilations:

since Ok does not act on the variables xj for j = k + 1,..., N.
As in the proof of Theorem 4.1 one considers then the sets

where Bj denotes the j -dimensional euclidean ball. Set ~ = (x, y) with x =
(X 1, - - - , Xk) and y = (xk+ 1, ... xN ) and consider the same cut-off functions CPR,
OR defined in (4.6) with k + 1 replaced by e.
Proceeding as in the proof of Theorem 4.1 one shows then that the integral

satisfies

Let k &#x3E; 2. By assumption, a  k k 2 ; hence one can choose E &#x3E; 0 so small

that a  ,~~_,.. . Thus (4.12) implies that IR goes to zero as 7P 2013~ oo.


