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Shape Existence in Navier-Stokes Flow with Heat Convection

RAJA DZIRI - JEAN-PAUL ZOLÉSIO

1. - Introduction

We consider the minimization with respect to the domain of a stationary
viscous flow energy. Let D be a given smooth domain in Jae3, Q a Cacciopoli
set in D (cf. [8]) and ugz the solution of the following Navier-Stokes equations

with "in some sense" on the interface M n = 0 and [Du ~ n]r = [(Du . n, n)]rn,
[ ]r being the jump at the interface r = aS2. The right-hand side f will be
depending on the temperature in the fluid. The energy is chosen in the form

where ygz is the temperature of the fluid, E ( ) is the system free energy, 9
the surface tension and the perimeter of Q relative to D (cf. [8]). We
study the minimization of eo under the volume constraint for the set Q and

give the first order necessary optimality condition. This question arises from
the analogous situation in hydrodynamics involving the Bernoulli condition. A
well known problem is the water wave equilibrium for which several linearized
approaches exist, see Stoker [10]. Nevertheless, the non-linearized approach is
an important issue. If we denote by u the velocity of a given fluid occupying
at time t a given volume Ot (with a given initial data), the evolution of the
fluid is described by the Navier-Stokes equations:

Pervenuto alla Redazione il 24 gennaio 1995 e in forma definitiva il 19 febbraio 1996.
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The classical approach from hydrodynamic consists in looking for irrotational
solution u = V cP, cP being the potential which satisfies the incompressibility
condition: dcp = 0. The previous nonlinear equation takes the form +

= 0 and the Bernoulli condition in the fluid can be derived.
As on the free boundary of the wave the pressure is p = pa (the atmospheric

pressure), we get CPt + + pgz = c, c being constant on r = 
In the case of a stationary free boundary, we have the condition V cP . n = uo

on r and dcp = 0 in Q. We can rewrite this problem with a distributed right-
hand term f and an homogeneous Neumann boundary condition. This Neumann
BVP is solved by the minimization of the energy term

when cp ranges over the Sobolev space 
The problem of minimization with respect to the domain Q of the following

energy 
f&#x3E;I

involves the Bernoulli condition as a necessary optimality condition, see [ 11 ],
[12] or [5]. To obtain existence results in several similar situations, one has
to improve the modelling of the Bernoulli flow by adding the surface energy
8 PD (S2) . We are, thus, led to minimize with respect to the domain Q an energy
term in the following form:

Concerning Navier-Stokes flow, in three dimensions, there is no hope to get
the minimum of the fluid energy only through a variational principle, at least
since the model is not variational, cf. [6]. In the previous variational Bernoulli
modelling the functional represented the system energy. It was the sum
of the kinetic energy and, J Q G dx, the potential energy. In the same way, we
hall consider the whole energy in a steady viscous flow with heat convection:

where y is the temperature of the fluid, le(u) /2 and 3i, i = 1, 2
are fixed positive constants. We shall consider the energy = +

9 PD (S2). In the correspondant shape minimization problem the state is the
solution (ygz, (un, of the stationary Navier-Stokes problem coupled with
the heat equation:
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where f is linear in y and h is a given function independent of u. With the
boundary conditions u - n = 0, s(u) - n = (s(u)n, n)n and aylan = 0 on r.
In order to get existence of solution in the family of measurable subsets with
finite perimeter, we make the standard physical assumption that in the outer
domain, QC = D B Q, there is another fluid following the same rheological law
but with eventually arbitrarily small viscosity and/or density. The two fluids
will be assumed to be immiscible. When the set Q is an open subset in D and
when its boundary in D has a zero 3-dimensional measure, the outer domain
could be understood in the sequel as the smooth open set D B Q. Denote by
k(Q) - + (resp. JL - + the function characterizing
the viscosity (resp. the conductivity) parameters of the two fluids occupying
respectively the domains Q and Oc. The pointwise non-penetration condition at
the interface, u ~ n = 0 on r, and the incompressibility condition, div u = 0 in Q,
div u = 0 in Qc, when Q is a non smooth measurable subset of D turn out to
be the L2(D)3-orthogonality to all functions of the form: with

p, q E Ho’(D). Using that relaxed formulation, we are able to get existence and
uniqueness of solution for the state equations and then existence of solution for
the minimization of the energy on the family of measurable subsets having a
given volume:

As usual in Control Theory, the Eulerian derivative V ) will be charac-
terized through and "adjoint" problem which turns out to be associated with a
linearization of the problem in the neighborhood of the optimal solution (YQ, 
and having a forcing term that arises from the chosen energy equation. If (Y, U)
is the solution to that linear problem, the necessary condition for the optimality
of is the solution to that linear problem, the necessary condition for
the optimality of leads to a boundary condition which is quadratic in
the variables (y, u) and (Y, U). In the same framework, the previous Bernoulli
condition was also quadratic in the potential qJ. If we denote the jump at the
boundary r by [.]r and by R (resp. r) the jump at the interface of the normal
stress associated to the adjoint problem (resp. to the state equations), the op-
timality condition takes the following form (when sufficient smoothness of the
boundary r is assumed)

where H is the mean curvature of r and v = 2k.

Formally the minimization of eo is similar to the problem considered by
L. Ambrosio and G. Buttazzo [1] ] and under smoothness result on the solution
u, which are not available for the Navier-Stokes equations, the optimal set Q
would be open with finite perimeter.
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2. - Preliminaries

2.1. - Main notations

Let Q be a measurable subset contained in a bounded smooth domain
D c ~3. We begin by introducing the main spaces and continuous forms that
will be used:

and

Denoting by the closure of the linear space

and by (.,.) the duality product, we introduce the bilinear form

Let £(Q)’ be the dual space of ~(S2). Define the operator 1

Denote by B * the adjoint operator of B and by X (Q) the kernel of B.
Finally, ( - , ~ ) and CC., .) denote the inner products in and HJCD, ~3)

respectively.
LEMMA 2.1. When the boundary r is a smooth manifold, the linear space 

can be characterized as follows:
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PROOF. Let ~ be given in and cp in Hol (D, R3), by definition

As a result we get that V pk (rep. oqk) is bounded in (resp. 
S2)). We make use of the following inequality: there exists a constant c &#x3E; 0
such that, 

-

Let (meas JQ Pk dx. From the previous inequality we deduce the
boundedness of pk - pk (resp. qk - qk) in (resp. in Finally we
obtain the boundedness in H -1 ~2 ( r ) of the term pk - pk - (qk - qk) and we get
the existence of weak limiting corresponding elements p, q and r. Conversely,
let be given three such elements (p, q, r) E L 2 ( SZ ) x x H -1 ~2 ( r ) . Let
be given_rn E HI/2(r), rn - r in H-1~2(r), pn (resp. qn) in (resp.
Hol (D B Q)), with, pn - p in L 2 (Q) (resp. qn - q in L2(D B Q)).

Let P be a linear continuous extension mapping P E ,C ( H 1 ~2 ( r ) , 
such that P . E H 1/2(r). We set Rn = P. rn and denoting by
dr the distance function to the smooth boundary r, element in we

consider
/ ... M.

For all m, ~ ~Bn I ~ E L 1 (D) and we have the pointwise convergence:
~n (x) - 0(m for almost every x in D. Then from the Lebesgue
convergence theorem we get that Pnm converges to zero in L~(D) as m ---~ 00.
Let m (n) denotes the first integer for which n . 
By construction we get 9njr = rn and On -~ 0 in L~(D). Finally we consider
the element Pn = pn + 9njgz. We get pn - p in L 2(o) while = rn - r

in H- 1/2 (r). 0

2.2. - Equations

Consider the following problem: 
-

For a given h E L (D), find
such that



170

Equations (1)-(2) can be formulated differently (see [7]). Then, system
(1)-(3) is equivalent to the following one: for a given h E L2(D), find (y, u) E
Hol (D) such that

Set a = k2(1 - and C = C1,82g0 + C2JL21 where cl is
the Poincare’s constant, C2 is the norm of the canonical embedding H’(D) -+
L 4(D) and go = 

PROPOSITION 2.1. Assume that the following holds:

Then there exists a unique solution (y; (u, L)) E Ho (D) x (HJ(D, JR3) x ~(S2)) of
system ( 1 )-(3). In the specific case where the boundary r is a smooth manifold, we
have solved the following problem:

such that div u = 0 in D, u - n = 0 on r, and:

The tangential component of the jump of the normal stress is zero:

and the following regularity result for the normal component of the previous jump
across r :

PROOF. Given uo E X (S2), consider the sequence of
is the unique solution of
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Since Vy) for u E HJ(D, JR3), div u - 0 and y E

Hol (D), it is easy to verify that the is bounded

in (HJ(D, JR3) x E(S2)) x Hol (D) and its weak limit ((u, L); y) is a solution
of system (1)-(3). As for the uniqueness of solution, we assume that the

problem has two different solutions ( (u i , L i ) ; yi ), i = 1, 2. Then, the functions
and u = yl - y2 verify:

In particular for v = u and z = y, we obtain

Condition (6) implies the existence of an 0 such that a - &#x3E; 0 and

implies that

3. - Continuity with respect to the Domain

The existence of solution for the minimization problem under consideration
requires some continuity properties. In this section, we give a shape continuity
result for the solution of system (4)-(5). A sequence of measurable subsets

is said to converge to Q in the char (D)-topology if 3Q a measurable
subset such that

We shall consider a compact family of measurable subsets S2 of D in that

1 d h rB char(D) (’"). 1.topology and prove that S2n H S2 implies

where HJ(D, ffi.3) and HJ(D) are endowed with their weak topologies and
where denote the solution of problem (4)-(5) in 

We shall consider a compact family of finite perimeter sets in D.
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3.1. - Finite perimeter sets

Denote by B P S ( D ) the family of finite perimeter sets of D:

It is immediate to see that E is contained in BV(D) so the
norm of S2 in BPS(D) is given by

The perimeter of a subset S2 in B P S(D) (relative to D) is given by

We have the following compactness result

LEMMA 3 .1. Let be a sequence in B P S ( D ) such that

Then, there exists a subsequence and S2 E B P S (D) such that

Moreover, for any g in Cc(D; I~3), we have

and PD (0)  lim inf 

REMARK 3.1. The perimeter for any measurable subset Q of D could be
defined by ( 11 ) as being an element of R+ U (cxJ).

For more details see for example [8], [3]. Finally, recall

LEMMA 3.2. Let S2 in B P S(D), Q c D, denoted S2 c c D. There exists a

smooth open set OQ such that

and

a * S2 is the reduced boundary of S2.
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3.2. - Kuratowski limit

Denote the orthogonal of a closed subspace F of Hol (D, and by
PF the projection operator on F. Recall the characterization of elements in
the linear space of divergence-free functions (denoted Xo) by means of the curl
operator (see [7]).

LEMMA 3.3. Every function v of Xo has the following form:

where (D E H2(D, with div (D = 0 is the unique solution of

where n D is the unit normal vector field on a D, outward to D.

In the following, we hall prove that for all v in X (S2), there exists a

sequence vn in X (Qn) such that strongly in Ho (D) if Qn converges
in char(D)-topology to Q.

More precisely, let S2n C C D, n E N*, be a sequence of sets in BPS(D).
From Lemma 3.2, we get the existence of a smooth function ~n solution of

(-A)2~n in = 0 on = 1 on 9D and on

a (D B where 8n belongs to L2 (D) and E. We also define the

following continuous forms

By the generalized Gauss-Green formula for finite perimeter sets, we obtain
that

On the other hand, for any given g in H-1 (D, II~3), we can state the follow-
ing problem: To find E Ho ( D, R3) x such that In) E

LEMMA 3.4. Problem ( 13) is well-posed.
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’ PROOF. It is easily seen that

(it is sufficient to choose 1/1 = It remains to prove that

The worst situation would be when This

would imply that

Thus ~ = 0 and so 1fr = 0. Thus, we can state that for

Moreover, the following "inf-sup" conditions:

and

are obviously satisfied for all 1 E and p E L2(D)/JR. Then (see for
instance [2]) problem (13) has a unique solution. 0

THEOREM 3. I. Let S2n C C D be a sequence in B P S (D).
char(D) .

Assume that S2 E B P S(D) such that Qn ch ) Q. Then, the linear space
X (S2) is contained in the Kuratowski Limit of X (Qn).

PROOF. Let v be a function in X (S2) . For each n E N*, we know, from
Lemma 3.4, that there exists a unique pair (vn, Pn) E X(Qn) x L2(D) verifying
(14) 

_

For z/r~ = vn - v, we obtain
in 

is a constant). Then,
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3.3. - Continuity

The fact that is contained in the Kuratowski limit of when

~ ~h-~ ~ S2 allows us to characterize the weak limit uo as the unique solution
of problem (4)-(5) relative to ~2.

THEOREM 3.2. Let S2n C C D be a sequence in B P S(D).
Assume that Qn ch- (~ ) ~2. Then, there exists a subsequence such

that

weakly in

PROOF. Let v E X(S2). There exists a sequence E such that

strongly in

As -~ x~ in L2 (D), we can extract a subsequence (still denoted 
converging to xgz almost everywhere in D. Thus it is easy to show that

strong in

On the other hand, we know that

Moreover the heat equation (3) implies that

Then, converges weakly, in HJ(D), to a function y. Therefore,
as n - oo, and we get:

In the same sense we get equation (5).
This proves the continuity of the solution of Problem (4)-(5) with respect

to the domain. D

3.4. - Existence

The minimization problem we consider is the following

(15) C D, measurable, meas S2 = m o }
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where

81 1 and 82 are positive constants.
We denote by the term and by the term

PROPOSITION 3.1. There exists at least a measurable subset S2 in B P S (D)
solution of the minimization problem (15).

PROOF. First consider the following problem C C Ds, measur-
able, meas S2 = mo}, Dð is the 8-contracted of D, 3 &#x3E; 0 small.

Let S2n,s be a minimizing sequence. The sequence {ee (SZn,s)}n being
bounded, there exists a constant cs such that:

Therefore according to Lemma 3.1, 3Qð c Ds and a subsequence such
char(D)

that meas Q8 = mo and 
From Theorem 3.2. there exists a sequence weakly conver-

gent (in x Ho’(D)) to yn,). Then, using the lower continuity of
the norm in Ho (D, JR3) and of the perimeter, we conclude that Qs is a solution
of our problem. In the other hand, we have

Since the value of C C Ds, measurable, meas S2 = m o } decreases
with 8, we conclude that PD(Q8) is bounded. Then there exists a subsequence
108k I and a set S2 C D, meas Q = mo such that

Moreover, using the same arguments as in the first part of the proof, we get the
existence of a sequence weakly convergent (in x 

to (un, Yo) and hence that is solution of (15). 0



177

4. - Differentiability

In this section we shall study the differentiability of the mapping t H
(ut o Tr, yt o Tt) with respect to the domain. Tt is a given transformation defined
in D.

4.1. - Material derivative

We apply the velocity Method cf. [9]. Consider a family of vector fields
verifying:

and

We know from [9] that there exists an interval 1, 0 E I, and a family of
one-to-one transformations mapping D onto D verifying:

As we are interested in incompressible fluids, transformations I Tt) should satisfy
det DTt = 1. Then the associated vector fields V will be of divergence-free.

DEFINITION 4.1. For any transformation Tt, t E l, we define the following
isomorphisms:

we have
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We make the change of coordinates defined by the transformation Tt (t E I),
and get:

and

we obtain:

and for all z in Ho (D),

REMARK 4.1. Equation (23) can be replaced by (/, = 0 V l 

We shall prove the differentiability at the origin of the mapping t H
(ut, yt) using a weak form of the implicit function theorem:
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THEOREM 4. l. Let E and F be two Banach spaces and

I is an open set in R.

Assume that

is continuously differentiable

denotes its weak derivative.

is continuous from I x E into F-weak,

there exists a function U such that

the mapping f -~ ~ (s, f ) is differentiable and

is continuous.

Moreover at (so, U (so)),

is an isomorphism from E onto F .

Then the mapping s o U(s) is differentiable in E-weak on s = so and

PROOF. Set It is obvious that t goes to 0 as E

goes to 0 that

mapping

is continuously differentiable. Then, for k &#x3E; 0, there exists r &#x3E; 0 such that
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which is equivalent to

where
-j

Since u is Lipschitz-continuous, one can find a constant K such that
Hence, b k &#x3E; 0, 3r &#x3E; 0 such that

Besides Thus

in E-weak. D

Thanks to the previous theorem it is possible to show the existence of the
material derivative of (ugz, solution of problem (4)-(5). First, we prove the
following result

PROPOSITION 4.1. The mapping

is weakly differentiable at the origin.

PROOF. Apply Theorem 4.1 with
X(O)’x H-’(D) and
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where Since conditions (25)
and (26) are obviously verified and we have

The mapping I ) H U (s ) = (us , ys ) satisfies U (s ) ) = 0. To prove

condition (27), we need to compute the difference between equations (3) and

(23) and between (1) and (22). So (3)-(23)=

and the first term in (1)-(22) is


