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Asymptotic Morse Inequalities for
Pseudoconcave Manifolds

GEORGE MARINESCU 1

1. - Introduction

The question of asymptotically estimating the dimensions of cohomology
groups with coefficients in the high tensor powers of a fixed line bundle arised
in connection to the conjecture of Grauert and Riemenschneider [12] which
says that a compact complex space Y of dimension n is Moishezon if and

only if there exists a proper non-singular modification 7r:.Y 2013~ Y and a line
bundle E on X such that the curvature form of E is positive definite on an
open dense set. Let us denote by K(E) the Kodaira dimension of E. If K(E)
is maximal, that is, K(E) equals the dimension of X, then there are many
sections in r(X, El) and by taking quotients of elements of r(X, E~) we get
a large field of meromorphic functions K(X) so that X is Moishezon. Thus, it
is sufficient to show that K(E) = n. This follows from Demailly’s asymptotic
inequalities [8] and from the general fact that 
Indeed, for p = 1 the Strong Morse inequality of [8] gives:

In this statement E is supposed to carry a COO hermitian metric h, ic(E) =
ic(E, h) being its curvature form. Also, X(p, h) are the p-index sets, i.e.,
X(p, h) = ~x C X: ic(E, h) has p negative eigenvalues and n - p positive ones}
and X( p, h) = U X(j, h). The symbol o(k n) is the Landau symbol denoting

a term of order less than that of ~.
T. Bouche [5] extended the holomorphic Morse inequalities to some class

of non-compact manifolds: q-convex manifolds and weakly 1-complete Kahler
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manifolds possesing a holomorphic line bundle which is semi-positive of type
q. Our main purpose is to extend the Morse inequalities, as well as some of
their consequences, to q-concave manifolds. We will prove that if E and F are

holomorphic vector bundles of rank 1 and r over the n-dimensional q-concave
manifold X then the dimensions of the groups dim HP(X, F)) are at
most of polynomial growth of degree n with respect to k, provided p  n - q - 2
(cf. § 4, Theorem 4.2). In particular we obtain the following.

THEOREM 1.1. Let X be an n-dimensional q-concave manifold such that
q  n - 2. Assume that X carries a holomorphic line bundle (E, h) which is

semi-negative outside a compact set and satisfies the following condition

Then

(that is dim HO(X, O(Ek))/kn is bounded from above and from below by positive
constants).

This enables us to prove that, like in the case of compact manifolds, there
are n = dim X independent meromorphic functions on X. Indeed, (1.3) shows
that the Kodaira dimension K(E) of E is then maximal since we can extend
the inequality dim H°(X, O(E k))  c2kK(E) to concave manifolds. There is a

large class of concave manifolds possesing a maximal number of independent
meromorphic functions. For example we can consider the complements of
suitable analytic sets in compact Moishezon manifolds. We shall prove that
in fact 1-concave manifolds satisfying the hypothesis of Theorem 1.1 arise like
those in these examples. Section 5 is devoted to the proof of the following.

THEOREM 1.2. Let X be a connected 1-concave manifold of dimension at
least three carrying a line bundle which satisfies the hypothesis of Theorem 1.1.
There exists an embedding of X as an open subset of a compact Moishezon
manifold.

Non-trivial examples which satisfy these hypotheses are as follows (cf.
Proposition 4.5). Consider the regular part X* of a compact complex space X
with isolated singularities carrying a holomorphic line bundle (which extends
to the singular points) satisfying (1.2). Assume moreover that X* has finite
volume with respect to a suitable complete metric on X*, called Grauert metric
(see (4.10); cf. H. Grauert [11]). Then we can modify the metric on the given
line bundle so that the new metric still satisfies (1.2) and its curvature form is
semi-negative outside a compact set. Of course, the general result one would
expect is as follows.
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CONJECTURE. A connected 1-concave manifold of dimension at least three
is isomorphic to an open subset of a compact Moishezon manifold if and only
if it carries a torsion free quasi-positive coherent analytic sheaf.

As in the case of the Grauert-Riemenschneider conjecture by compactifi-
cation and desingularisation we can reduce this conjecture to a statement

involving a quasi-positive line bundle. It is then difficult to prove in general that
we can modify the hermitian metric on the line bundle such that its curvature
form is semi-negative outside a compact set and still satisfies (1.2). The proof
of Theorem 1.1 is a slight modification of the proof of the embedding theorem
of Andreotti and Siu [3]: if a connected 1-concave manifold of dimension at
least three carries a line bundle which gives local coordinates on a sub-level set
then it is isomorphic to an open set of a projective manifold. In our situation
the positivity assumption on the curvature implies via the Morse inequalities
that the line bundle gives local coordinates on an open dense subset of X.

Aknowledgements. No amount of thanks would suffice for the encouraging
support I have received from Professor Louis Boutet de Monvel during the
preparation of this paper. I wish to express my heartfelt gratitude to Professor
J.-P. Demailly, for the discussions we had while he invited me to work for
two months at Fourier Institute of Grenoble. I am deeply indebted to Dr.
Mihnea Coltoiu for his pertinent suggestions. This paper was mainly worked
out while the author’s stay at the Universite Paris 7. I thank this institution for
its hospitality.

2. - Preliminaries

Let X be a complex paracompact manifold of dimension n endowed with
a hermitian metric ds2 and let F be a holomorphic vector bundle on X with a
hermitian metric h. For integers s, t &#x3E; 0 and an open set Y C X we define the

following notations:

F): the space of smooth, compactly supported, F-valued (t, s)-
forms on Y.

Lt,S(Y, F, ds2, h): the Hilbert space obtained by completing F) with
respect to the L2-norm II . IIds2,h with respect to ds2 and h.

F, loc): the space of locally square integrable E-valued (t, s)-forms.
On the space of smooth F-valued forms we have the differential operators 8
and ?9, the formal adjoint of 9. These operators have weak maximal extensions
as closed linear operators with dense domain on L2(X, F). If T is one of the
preceding differential operators we denote by Dl,’(T) the domain, by 
the kernel and by the range of the weak maximal extension of T in L 2
We introduce also the Hilbert space adjoint a* of the closure of a. In general
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a* does not coincide with the weak maximal extension of the formal adjointo,
because X may have boundary. One can bypass this difficulty using the following
fundamental result due to Andreotti-Vesentini [4], [23]: if ds2 is a complete
hermitian metric then F) is dense for the graph norm topology in the
domains and Dt,s(a) n of the weak maximal extensions of

j, t9 and a + 3 respectively. From this we easily infer that if ds2 is a complete
metric then a * is the weak maximal extension of the formal adjoint 3 of a .
We denote by F) = Nt,s(a) n the space of harmonic forms. The
L2-Dolbeault cohomology groups are defined as F) = 
There is a canonical map ~lt,s(X, F) -&#x3E; F), which is isometric, with
dense range.

F) is isomorphic to F), if and only if the range of the
weak maximal extension of a + ~9 is closed. This is always the case if it is finite
dimensional, and in particular if from every sequence uk E Dt,s(a) n with

I ~ 1 and 8uk - 0, 3*uk - 0, one can select a L2 convergent subsequence.
Let us consider the antiholomorphic Laplace-Beltrami operator 0" - 83 + 38

;.acting on Cct," (X,F). We can extend 0" to a densely defined, self-adjoint
operator on F). We put

and 0"u = for u E Vt,S(d"). If 0" has closed range one can define the
Green operator as the bounded operator 9 on Lt,S(X, F) such that = Id - JI,
JI 9 = 0, JI being the orthogonal projection on F). A sufficient condition
for A" to have closed range is that the graph norm of 0" to be completely
continuous with respect to the L2-norm (i.e., the unit ball B of Vt,S(8) n 
in the graph norm is relatively compact in Lt,’(X, F)). In this case 0" has
discrete spectrum and the norm of 9 does not exceed where a i 1 is the
lowest non-zero eigenvalue of 0" . Finally, let us notice that

where is the sheaf of germs of holomorphic F - valued t - forms.

3. - Abstract Morse Inequalities for the L2- cohomology of Complex
Manifolds

We shall examine a general situation which permits to prove asymptotic
Morse inequalities for the L2-Dolbeault cohomology groups. Our approach is
based on the seminal article of J.-P. Demailly [8] and generalizes that of T.
Bouche [5] which shows that the basic estimate (3.2) holds for q-convex man-
ifolds and for weakly 1-complete Kahler manifolds possesing a semi-positive
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line bundle of type q. Let us consider a complex manifold X with a complete
hermitian metric ds2 and (E, h) and F holomorphic hermitian bundles over X
of rank 1 and r, respectively. Suppose we are given: (i) a compact subset M
of X and (ii) a real-valued continuous function 1/; on X. If X is non-compact
we assume that 1/; is bounded bellow on the complement of M by a positive
constant and converges to +oo at infinity on X (that is, X admits an exhaustion
with compact sets = 1, 2,... such that 0 &#x3E; t on the complement of Xi, for
l = 1, 2, ...). We consider the following estimate:

REMARK (A). The estimate (3.1 ) implies that there exists Co &#x3E; 0 such

that, for sufficiently large k

where K is any compact set containing M in its interior. Indeed, let p be a
smooth function on X, 0  p  1, which vanishes in a neighbourhood of M
and equals 1 in the complement of K. Then (3.2) follows by applying (3.1) to
pu for any u E "-’C’,Otmp(X, Ek(9 F) and by using the following simple estimate:

Estimates of type (3.2) were introduced by Morrey and used by Kohn to
solve the a-Neumann problem. In this form they appear for the first time in
H6rmander [14] and Ohsawa [17] in order to prove isomorphism and finiteness
theorems. Estimate (3.2) implies that the space of harmonic forms E)
is finite dimensional and is isomorphic to the L2-Dolbeault cohomology group
H:Jt(X, E).

REMARK (B). If the estimate (3.1 ) holds then the antiholomorphic
Laplace-Beltrami operator 0" acting on Ek (9 F) has discrete spectrum.
In fact we have that if G is a holomorphic hermitian vector bundle on X and
M, 1/J satisfy (i), (ii) then it is easily seen that

implies that 0" acting on Ls,t(X, G) has compact resolvent.

PROPOSITION 3.1. Let X be an n-dimensional complex manifold with a
complete hermitian metric ds2 and (E, h) and F holomorphic hermitian bundles
over X of rank 1 and r, respectively. Assume that here exists an integer m &#x3E; 0
such that the estimate (3.1 ) holds for any u E c2tmp(X, Ek (&#x26; F) and p  m. Let
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S2 be a relatively compact open set with smooth boundary such that M C C Q.
Then the following inequalities hold:

for p  m and k - oo.

PROOF. By Remark (B), A" has discrete spectrum. We denote by e O,t (,0)
the direct sum of all eigenspaces of the laplacian A" acting on Ek(9 F)
corresponding to eigenvalues  q. By Remark (A) the basic estimate (3.2)
holds: it implies easily that, for some M C C K C C Q: 

°

for any u E if A  1/(2Co) and p  1n, since u E implies
~9~p+~9~p  be the direct sum of all eigenspaces of
the laplacian d" acting on F) with Dirichlet boundary conditions
on bSZ, corresponding to eigenvalues  J.t. Let PJL be the orthogonal projection
from the closure of E~ @ F) in E~ @ F) onto 

Our aim is to establish a link between the spectral spaces and 
for p  m for suitable tt, since Demailly’s spectral theorem (see Lemma 3.3
bellow) gives the precise asymptotic behaviour of when k - oo. This
is done by the following lemma of T. Bouche. Let ~3 E such that

0  ,Q  1 and ,~ = 1 in a neighbourhood of K. Let C¡ = 4 sup Id{312.
LEMMA 3.2. (Bouche [5]). Let A  1/(2C°). There exists a constant C2

depending only on Co and c1 such that the maps
P!~ m, u - are injective.

We recall now Demailly’s spectral theorem. For this purpose we denote
by a2(x)  ...  An(z) the eigenvalues of ic(E, h)(x) with respect to ds2
and by s = s(x) the rank of ic(F, h)(x). If J is a multiindex we put
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and we make the conventions A° = 0 if A  0 and A° = 1 if A &#x3E; 0. For each
multiindex J we define the function on R+ x X:

where C J = { 1, 2, ... , n } - J .
LEMMA 3.3 (cf. [8], Theoreme 3.14). There exists a countable set D c R*+

such that for any A E R’+ 2013 D and any p = 0, 1,..., n we have that

when I~ -~ oo.

For the sake of simplicity we shall put from now on I(p, A) =
1*

So, by means of of Lemma 3.2 and Demailly’s spectral

theorem, we are able to obtain informations about the asymptotic behaviour of
when k - oo and fixed A. On the other hand by applying Witten’s

technique one can show that the family of Dolbeault complexes 
for varying A &#x3E; 0 have the same cohomology as the usual Dolbeault complex.

LEMMA 3.4 ([8], [5]). If the basic estimate (3.1) holds for any u E
CO’P (X, Ek ® F) and p  m, then the complex:

is a subcomplex, quasi-isomorphic to the L2-Dolbeault complex

Indeed, Remark (B) shows that A" has compact resolvent, so that the
Green operator 9 is bounded and the operator ~9~C is bounded, too. Therefore ~9~C
(Id - Pka) is a homotopy operator(*) between Id and PkA on (DO,P(~~), 
need the following simple algebraic result. Let 02013~C~2013~C~ 2013~...2013~C~2013~0
be a complex of vector spaces of dimension cP and let hP = dim HP(C.). If
cP  oo for p  m, then hP  cP and

~~~ See the separate sheets.



34

We are now able to end the proof of the Proposition 3.1. By Lemma 3.2
for A &#x3E; 0 the following estimates hold, provided k &#x3E; &#x3E; 

dim dim ecoófnp(3CokÀ + C2)  dim for p  m, where
C3 = 3Co + C2 does not depend on k or À (k must be &#x3E; À -1). By (3.8) applied
to the complex (3.7) and Lemmas 3.3 and 3.4 we get that:

for p  m and any A E R*~. 2013 P; we have denoted A’ = A if p is odd aid

A’ = C3 a if p is even. We let now a --~ 0 for A E R"+ - P and we obtain in
the right-hand side and a sum of such integrals. To conclude we use the
following relation:

Indeed,

integral.

which equals the desired

4. - Estimates for the Cohomology of q-concave Manifolds

In this section we will apply the preceding results to the case of q-concave
manifolds. 

_

DEFINITION (Andreotti-Grauert [2]). A complex manifold is said to be

q-concave if there exists a smooth function 1/;: X - II~ such that the &#x3E; c ~
are compact in X for any c &#x3E; inf 1/; is q-convex outside a compact set

of X.

We will use the following equivalent definition (by putting Sp = -1/;):
DEFINITION 4.1. A complex manifold X of dimension n is said to be

q-concave if there exists a smooth function y~ : X --+ Il~ such that the sub-level
sets Xc = _c) are relatively compact in X for any c  sup Sp and the
Levi form of y~, has at least n - q + 1 negative eigenvalues outside a
compact set of X; Sp is called an exhaustion function.
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Examples of q-concave manifolds

EXAMPLE (1) (T. Ohsawa [16]). Let X be a compact Kahler space of
pure dimension n and Y an analytic subset of pure dimension q containing the
singular locus of X. Then X - Y is a (q + I)-concave manifold. In particular,
the regular locus of a projective algebraic variety with isolated singularities is
1-concave.

EXAMPLE (2) (V. Vdjditu [22]). Let X be a compact complex manifold
and Y an analytic subset of pure dimension q. Then X - Y is a (q + I)-concave
manifold.

EXAMPLE (3) (V. Vdjditu [22]). If x: X - Y is a proper holomorphic map
between the manifold X and the q-concave manifold Y such that the dimension
of its fibers does not exceed r, then X is (q+r)-concave (this holds for complex
spaces, too).

According to Andreotti-Grauert theory all cohomology groups HP(X, ~)
with values in a locally free sheaf 7 are finite dimensional and the natural
restriction maps HP(X, ~) --~ HP(Xc, 7’) are bijective for p  n - q - 1.

Furthermore, T. Ohsawa has shown that every cohomology class in HP(Xc, 7),
p  n - q - 2, is represented uniquely by a harmonic form with respect to
suitable hermitian metrics on Xc and ~. We will prove the following theorem:

THEOREM 4.2. If E and F are holomorphic vector bundles of rank 1 and
r over the n-dimensional q-concave manifold X (n &#x3E; 3) then the dimensions of
the groups dim HP(X, O(Ek 0 F)) are at most of polynomial growth of degree
n with respect to k, provided p  n - q - 2.

PROOF. The first step is to show that the estimate (3.1 ) holds on Xc D K
for p  n - q - 1 and to apply Proposition 3.1 in order to obtain Morse

inequalities for the L2-cohomology groups. Let d  c such that Xd D K. We
may assume that ds2 is so chosen that outside some Xe(e  d, Xe :J K) the
following assumptions holds:

(*) 
At least n - q + 1 eigenvalues of with respect to ds2 are less than

~ ~ 
-2q - 1 and all the others are less than 1.

We shall denote these eigenvalues by 11  12 ~ ...  in .
Let Xé: (-oo, c) - R be smooth functions with the following properties:

X,(t) &#x3E; 4 and x~ (t) &#x3E; 0 everywhere.
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In fact, let us consider for sufficiently small - &#x3E; 0 the function

such that

which is differentiable and satisfy (4.1)-(4.3). We approximate fe by smooth
functions to obtain a smooth function Xe with properties (4.1 )-(4.3). Moreover,

1

We set:

where A is a positive constant and h is some hermitian metric along the fibres
of E. We denote by ~ ~ ’ ~ ~ ~ the L2-norm with respect to ds~ and h, and by dve
the volume element with respect to ds~ and by A. is the adjoint of the left

multiplication with the fundamental (1, I)-form associated to ds 6 2. By (4.2), ds~
is a complete hermitian metric on Xc’ If h’ is a metric along the fibres of F
then:

By examining the eigenvalues with respect to ds~ of the right hand-side terms
in the above formula, as well as the torsion operators of ds2we shall be able
to derive the basic estimate by applying Nakano’s inequality:

for any u E F). Here T = [A, e(aw)] is the torsion operator of
some hermitian metric ds2 and w is the fundamental (1, I)-form associated to
ds2, A is the interior product with w, is the left multiplication with aw
(see [17] and [9]).

(i) Let us examine the eigenvalues of + To

begin with, let us denote by 1, 2,..., n, the eigenvalues of with

respect to ds~ . It is easily seen that the rank of a~p A a~o is less than one. By
the minimum-maximum principle we get that:

so by (*) we have that Finally, if

are the eigenvalues of with
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respect to ds~, the minimum-maximum principle gives that rJ is equal to the
minimum over all subspaces F c Tr~ of dimension j of the expression:

Ii 1). Therefore any sum of (q + 1) eigenvalues rJ is less than 

on Xc - Xe.

(ii) Applying the minimum-maximum principle again one obtains that

aj  where a are the eigenvalues of ic(E, h) with respect to ds2
and aj are the eigenvalues of the same curvature form with respect to ds. Let
us denote by Cl = E Xc} and Ci = Hence o:j  di
and on X~ for every j. Also, we infer that there exists a constant C2 such that

(iii) As for the torsion operators, we let wand c~~ be the fundamental
(1,1)-forms of ds2 and ds~. We have that dws = hence
the pointwise norms of the torsion operators of 6~ with respect to ds~: T, 7,
T*, 7*, are bounded by C3X~(Sp)1~2, where C3 does not depend on e. We apply
now the results of (i)-(iii) combined with the Nakano inequality. We have that

By (ii), a~ are bounded by a constant on Xc.
Then, using (iii) we obtain that for

If we put then, since x(t) &#x3E; 4 we obtain that



38

Therefore, for k &#x3E; 4C3 and we have:

Thus, we have obtained a basic estimate of type ( 3.1 ) with V) and
_ 

3
M = Xe. The estimate (4.5) yields also:

As in § 3, Remark (A), one readily cheks that the basic estimate (3.2) holds on
Xc’ Indeed, let q &#x3E; 0 satisfying e~+~d-7yd and p E such
that p = 1 on Xc - Xd-q. By applying (4.5) to pu,
u E c2tmp(Xc, Ek 0 F), p  n - q - 1 then we get that:

where C4(e) = 4 sup Since ds2 we have that where

Idpl is the norm with respect to ds2. Therefore, the above estimate holds with
C4(e) replaced by C4 = 4 sup which does not depend on e. Consequently,
dividing by k the last relation we obtain:

for u E F), p 5 n - q - 1, 1~ &#x3E; ko = max{4C3, 6C4}, that is,
the basic estimate (3.2) holds on Xc, with subellipticity constant Co = 4/3.
Moreover, the exceptional set Xd-,7 and the integer ko are independent on -.
The estimate (4.5) shows that we can apply Proposition 3.1 (with m = n - q - 1)
to get

for p  n - q - 1 and d - q  f  d. The L2-Dolbeault cohomology groups in
the left hand-side are with respect to ds~ and he .


