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Proper Mappings between Reinhardt Domains
with an Analytic Variety on the Boundary

M. LANDUCCI - S. PINCHUK

Introduction

This paper gives a contribute to the study of proper holomorphic mappings

between bounded domains in c~ 2, when D and D’ are pseudoconvex Reinhardt
domains. Many results have been achieved in this area when D and D’ have
a particular shape (e.g. D = D’ = ball see [ 1 ), D and D’ pseudoellipsoids see
[4], [3]) or when, assuming the smoothness of the domains, some restrictions
on the set of the weakly pseudoconvex points are made (see [5], [8]).

In all the previous cases, in particular, the boundary of D and D’ are
not allowed to contain complex analytic varieties and the common statement is
that, when D = D’, the map F is an automorphism.

Here, assuming the existence of a complex analytic variety on aD and
without any smoothness assumption for the boundaries, it is proved that any
F = (Fl , F2) (like in ( 1 )) has both components which depend only on a single
variable and when D = D’ ~polydisc, F is of the form fi = clz, F2 = c2w
(this, in particular, generalizes the theorems in [6]). The precise statement is
the following:

MAIN THEOREM. Let D and D’ be bounded pseudoconvex complete
Reinhardt domains in c~ 2 and

a holomorphic proper mapping. Assume, furthermore, that there exist a complex
analytic variety V and an open neighbourhood U of some P E aD with
V n U c aD. Then:

Pervenuto alla Redazione il 16 Febbraio 1994.
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a) Fl and F2 depend only on a single variable i

b) if D = D’ is not a polydisc, then

with ICI ( _ IC21 = 1.

The scheme of the proof is the following: first it is shown in Section 1 that
the maximal boundary holomorphic foliation, generated by V, has a particular
form and its boundary consists of one or two tori (disc or corona foliation);
then (Section 2) the restriction of F to the leaves of the foliation is. analysed
and by a result on inner functions (Section 3), it is shown the existence of
a polydisc A c D and a polydisc A’ C D’ such that F is a proper mapping
from A onto A’ (Section 4, Claim 4.1’) and part a) of the theorem is proved;
finally, the second part of Section 4 is devoted to prove part b). The results of
the paper have been announced at Convegno GNSAGA, Lecce October 1993,
by the first author. At last the authors want to thank prof. G. Patrizio for his
kindness in discussing the material of this paper.

1. - Holomorphic foliations on the boundary

Let D be a bounded complete Reinhardt domain in C 2, that is a domain
such that

Assume that:

A: there is a connected holomorphic variety V and a neighbourhood U
of P E 9D such that

Then the boundary set = ei02w), (z, w) E V } is a Levi flat set on

aD; if, in addition, D is a pseudoconvex set or equivalently (see [7], pag. 120)
its logarithmic image

is (in JR2) a convex set, more can be said about the foliation in holomorphic
curves that the boundary Levi flat set ei’V produces.

PROPOSITION 1.1. Let D be a bounded complete pseudoconvex Reinhardt
domain in cC2 which fulfills A. If V fl U consists of regular points of V not
intersecting the coordinate hyperplanes, then log IV n U~ I is contained, in the

(log log I w 1) plane, in a straight-line segment (of lenght not necessarily finite).
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PROOF. By contradiction suppose the existence of Po E V and a

neighbourhood U of Po such that log IV n UI I is not contained in a straight-line
segment. Since log ~D~ is convex, there would exist a straight-line L such that

Take then the linear defining function of L, compose it by log and restrict it to
Y : call the resulting harmonic function g. The function g violates the maximum
principle being negative and vanishing only at Po. D

The above proposition has the following corollary:

COROLLARY 1.2. Let D be as in Proposition 1.1. Then eilv n aD is, for
suitable real constants h, k, a, b, c, d, e, the set

PROOF. By Proposition 1.1, any Po E Reg V admits a boundary
neighbourhood such that ( is contained in a straight-line segment:
thus, locally, the foliation e’°V has the form (1.3). The unicity of a foliation
implies, then, that it must hold globally. D

The above corollary reveals that, if P EYe aD, then close to P the
boundary of D is foliated by complex curves of the type (1.3). Call this foliation
F(P); then:

DEFINITION 1.4. A Foliation 7(P) is called maximal if it is connected and
no other connected foliation 9(P) contains 7(P).

It is not worthless to observe that only two (topological) different foliations
may exist:

a. if hk = 0, then the foliation is in discs (i.e. every leaf of the foliation is a
disc);

b. if then the foliation is in annuli (i.e. every leaf of the foliation is an
annulus).

This classification gives a splitting of the boundary a ~ of a maximal
foliation:

case a.: a7 is a single torus;
case b.: a7 is composed by two tori.

2. - Proper mappings

Let D and D’ be two complete bounded pseudoconvex Reinhardt domains
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in C2 and let

be a holomorphic proper mapping. Then (see [2]) F has a holomorphic extension
to a neighbourhood u of D and it is, then, well defined on aD. Denote by
J(F) the holomorphic jacobian determinant of F and by

PROPOSITION 2.2. Let D satisfy condition A of Section 1, and let F be
like in (2.1 ). If 7 is a maximal foliation on aD and C is one of its leaves not
contained in Z(J), then there exists a foliation 7’ c aD’ and a leaf L’ E 7’
such that

is a proper mapping.

PROOF. Take Po = Z(J); then there exists a neighbourhood
U of Po such that F is biholomorphic in U and thus F(U n L) is a complex
variety V’ on aD’: let 7’ be the relative maximal foliation associated to V’ and
.c’ be the leaf containing V’.

As L n Z(J) cannot disconnect L (L 9 Z(J), by hypothesis), we get that
F(.c) ç ,G’. By absurd, assume, now, the existence of PEa.c such that F(P)
is an interior point of L. If P ¢ Z(J) this would contradict the maximality of
F because F is invertible close to P and hence f would extend beyond P. If
P E Z(J) n L there would exist at least one point Q E arbitrarly close to
P, such that Q V ,Z(J) (otherwise f - Z(J)). The above argument applied to
Q leads, in this case too, to an absurd. The thesis is proved. D

Proposition 2.2 allows to describe the behaviour of the proper mapping F
on the boundary of a maximal foliation F. We have:

PROPOSITION 2.3. Let D satisfy condition A of Section 1, and let F be
like in (2.1). If 7 is a maximal foliation on aD and 7’ is the maximal foliation
given by Proposition 2.2, then

PROOF. Let (zo, wo) E .~ C ~ be such that

and 7’ be the maximal foliation containing £’ = F(L). Call Lo the leaf passing
throught Po = (ei0l zo, ei02wo). It follows that, for 01 and 02 sufficiently small,
condition (2.4) is still satisfied by Po and Lo, so that, by the Proposition 2.2
we get
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As the boundary of the maximal foliation consists of two tori (see the end of
Section 1) and F is holomorphic, condition (2.5) is sufficient to guarantee that

C_ a’f’.

PROPOSITION 2.6. Let F be like in (2.1). If ~’’ is a foliation on aD’ and
F(zo, wo) E a 7’ then

for any 01, 82.

PROOF. c 71 be such that F(zo, wo) E and U an open
neighbourhood of D where F extends holomorphically. Denote by V the analytic
set given by 

-

and by V a component of V n D passing through Po = (zo, wo). We have

because, since F is proper, F(aD) = aD’. The 1- Hausdorff measure of F(V )
is not finite and this implies that (see [10], page 297) the 1-Hausdorff measure
of V too is not finite.

The consequence is that V is a component of V and hence an analytic set
lying on aD: this gives rise to a maximal foliation ~’, containing (zo, wo) on
its boundary (in particular zowo ~ 0). The choice of a leaf L not contained
in Z(J), makes the proposition 2.3 applicable: the thesis then follows recalling
that, for any E D

3. - Inner functions on the polydisc.

Let us start recalling the following definition of inner function:

DEFINITION 3. l. Let 02 be the unit polydisc and let S be its Silov boundary.
A holomorphic function on A2, continuous on a, is an inner function for the
polydisc if

The class of inner functions can be described in a very precise way (see [9],
chapter 5).

PROPOSITION 3.2. Any inner function h for the polydisc has the following
form: 

- 
, ,

where E is a polynomial not vanishing on A2 and h and k are positive
integers.
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The shape of a holomorphic function with constant modulus on two
different tori (roughly speaking inner for two different polydiscs) can be
discovered by an application of the above proposition.

PROPOSITION 3.3. and 0‘ be two different polydiscs in C 2, with Silov
boundaries S and S’:

and suppose that a holomorphic function g, continuous on A U A’, satisfies

Then, assuming there exist constants C, /3, r, k and a holomorphic function
G such that

= 0 if and only if a = a’.
An analogous statement holds if we assume 

PROOF. Define := 2013 then h is inner for A so that (by
Proposition 3.2) 

a

This implies that

where c = a and d = . But, by hypothesis, h’ too is an inner function fora o
A: hence, by Proposition 3.2, the following relations must hold:

for any i, j. Suppose c ~ 1 and solve (3.5), with respect to the integer i: we get
that either ajj f0 or



369

Calling Aj := CK.rj+s,j, the expression (3.4) becomes

As

if the function g assumes the same constant value on two different tori, then
there exists r such that g is constant on any complex curve = constant. If
c = 1 an analogous argument can be performed, arguing with d that must be,
by the hypothesis (0 ~ ~’), different from 1. D

4. - Proof of the main theorem

PROOF OF PART a). Let D and D’ be bounded pseudoconvex domains in
C~ 2 (with no boundary smoothness hypothesis) and let

be a holomorphic proper mapping. Assume, furthermore, that D (and hence D’)
satisfies the condition

A: there is a connected holomorphic variety V and a neighbourhood U
of P E aD such that

As we saw, under these hypotheses, we can construct a maximal foliation
7 c aD and a maximal foliation 7’ such that

Furthermore, as the boundary of a foliation may consist of one or two tori (see
Section 1), there exists one torus I on aD and one torus 1’ on aD’ such that
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This condition, by the maximum principle for holomorphic functions, in

particular says that if A and A’ are the polydiscs (contained respectively in
D and D’) with Silov boundaries I and 1’, then

CLAIM 4.1’. The mapping F given by (4.1 ) is a holomorphic proper
mapping between the polydiscs A and A’, and hence the single components of
F depends only on one variable.

PROOF OF THE CLAIM. We first observe that if P, Q E F-1(1’) then P, Q
belong to the same torus and, hence, to 1. In fact, if not, by Proposition
3.6, there would exist two different tori on which IFl [ and are constant:

Proposition 3.3 then would imply the constancy, for a suitable real r, of F on
the family of holomorphic curves of the type zrw = constant. This is impossible
because F is proper.

Thus F-1(1’) must be a single torus and, as F(1) g 1", this torus has to
be 1.

Assume now, by absurd, that Po = (zo, wo) E A be such that F(zo, wo) E 
Denoting by F-1 the algebroidal corrispondence inverse of the mapping F,

the existence of Po would imply (by the maximum principle for algebroidal
correspondences and since F-1 (I’) = S ) the constancy of G1 or G2. Absurd.
The claim has been proved. D

By the claim Fl and F2 are Blaschke products and each depends only on
a single variable.

PROOF OF PART b). Assume, first, that the foliation ? is a disc foliation,
say

Then F being proper, T’ too is a disc foliation. We can, without loosing
generality, suppose that

because, otherwise, we can either replace F by F o F or rename l’ and
~’" ~ F(l’) by I’ (with a possible symmetry z - w, w - z). In addition, by a
suitable homotety, we can assume

By the maximality of 7 and the completeness of D, it follows that
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and thus, denoting by A the unit polydisc, the mapping F is a holomorphic
self-proper mapping of A.

If again by the maximality of 7 and the completeness of D, there
exists a boundary point

Let, then, (zo, wo) be such that F(zo, wo) = (~o, wo): by the claim, this implies that
the moduli of Fl and F2 are constant (different from 1) on the torus generated
by (zo, wo).

Proposition 3.3 is then applicable and this, jointly with the fact that the
components of F depend only on one single variable, implies that, for some
positive integers a and {3,

The exponent « must be 1: in fact if r is the radius of the disc {w = ol n D,
by (4.1 ), we have 

-

with r &#x3E; 1 (otherwise D should be a polydisc). Plugging a = 1 in (4.1 ) we get,
in particular, that the disc = (z = has to be mapped properly onto
itself and thus being the radius of this disc)

that is ~3 = 1.
It remains to show the theorem under the assumption that 7 and T be

corona foliations (and that F( a ’f) c ar). Ixt T 1 and T2 (resp. ’~ 1 and 1’~)
be the two tori such that a 7 = T 1 U T2 T~ U 1’~) and assume T 1
is the Silov boundary of A: Proposition 3.3 assures that it cannot happen that

c T 1 (or T2) because in this case F would not be proper; furthermore
(Corollary 1.2) the polyradii (a’, b’) and (c’, d’) of T I and T 2 satisfy the conditions

Then, again by Proposition 3.3 jointly with the fact that the components of F
depend each on a single variable, we get

Assume now that F is a proper mapping between A and the polydisc whose
Silov boundary is T~; then by (4.2)
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If, by absurd, a &#x3E; 1 then, denoting by if r &#x3E; 1 the radius of the disc fw = 0} n D
and by p the radius of the disc {z = 0} n D, the following must hold:

and, as b’ too cannot be strictly less than 1, it follows that f3 = 1 and consequently
b’ = 1. Recalling that D is complete and logarithmically convex, the condition
that ( 1, 1 ), (a’, 1) E aD(a’  1) means that

(see next section) in contrast with 7 being a corona foliation. An analogous
argument shows that ~3 = 0. The proof is complete. D

5. - Appendix

This section is devoted to the proof of a property of pseudoconvex
Reinhardt domains.

PROPOSITION 5.1. Let D be a bounded complete Reinhardt domain in (~ 2
and suppose that (b, a), (b’, a) E aD with

Then aD contains the complex analytic set

If, in addition, D is pseudoconvex then

PROOF. Consider the open set:

then we claim that,

In fact, otherwise, there would exist ~ E A n D and hence (b’, a) would belong
to D.

In particular (5.2) reveals that , C2BD being closed,
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and this, jointly with the fact that

implies the first part of the thesis.
The completeness of D assures, furthermore, that

To get the second part of the statement it is sufficient to remark that no

(z, w) E A’ can be an inner point because the straight line joining (log Ibl,
log I a 1) with (log I b’l, log lal) is a supporting line for the log-image of D.
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