Stability of semilinear equations with boundary and pointwise noise
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 22 (1995) no. 1, p. 55-93
@article{ASNSP_1995_4_22_1_55_0,
     author = {Maslowski, Bohdan},
     title = {Stability of semilinear equations with boundary and pointwise noise},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 22},
     number = {1},
     year = {1995},
     pages = {55-93},
     zbl = {0830.60056},
     mrnumber = {1315350},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1995_4_22_1_55_0}
}
Maslowski, Bohdan. Stability of semilinear equations with boundary and pointwise noise. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 22 (1995) no. 1, pp. 55-93. http://www.numdam.org/item/ASNSP_1995_4_22_1_55_0/

[1] H. Amann, On abstract parabolic fundamental solutions. J. Math. Soc. Japan 39 (1987), 93-116. | MR 867989 | Zbl 0616.47032

[2] A.V. Balakrishnan, Applied Functional Analysis. Springer-Verlag, New York 1976. | MR 470699 | Zbl 0333.93051

[3] L. Arnold - R.F. Curtain - P. Kotelenez, Nonlinear stochastic evolution equations in Hilbert space. Report no. 17, Forschungsschwerpunkt Dynamische Systeme, Universität Bremen (1980).

[4] R. Arima, On general boundary value problem for parabolic equations. J. Math. Kyoto Univ. 4 (1964), 207-243. | MR 197997 | Zbl 0143.13902

[5] S. Chen - R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems. Pacific J. Math. 136 (1989), 15-55. | MR 971932 | Zbl 0633.47025

[6] S. Chen - R. Triggiani, Characterizations of domains of fractional powers of certain operators arising in elastic systems. J. Differential Equations 88 (1990), 279-293. | MR 1081250 | Zbl 0717.34066

[7] R. Datko, Extending a theorem of A.M. Liapunov to Hilbert space. J. Math. Analysis Appl. 32 (1970), 610-616. | MR 268717 | Zbl 0211.16802

[8] G. Da Prato - J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge (1992). | MR 1207136 | Zbl 0761.60052

[9] G. Da Prato - J. Zabczyk, Evolution equations with white-noise boundary conditions. Stochastics Stochastics Rep. 42 (1993), 167-182. | MR 1291187 | Zbl 0814.60055

[10] G. Da Prato - D.G. Atarek - J. Zabczyk, Invariant measures for semilinear stochastic equations. Stochastic Anal. Appl. 10 (1992), 387-408. | MR 1178482 | Zbl 0758.60057

[11] T.E. Duncan - B. Maslowski - B. Pasik-Duncan, Adaptive boundary and point control of linear stochastic distributed parameter systems. SIAM J. on Control and Optim. 32 (1994), 648-672. | MR 1269987 | Zbl 0802.93035

[12] D.E. Edmunds - H. Triebel, Entropy numbers and approximation numbers in function spaces. Proc. London Math. Soc. 58 (1989), 137-152. | MR 969551 | Zbl 0629.46034

[13] F. Flandoli, Direct solution of a Riccati equation arising in a stochatic control problem with control and observations on the boundary. Appl. Math. Optim. 14 (1986), 107-129. | MR 863335 | Zbl 0606.93070

[14] F. Flandoli, Dirichlet boundary value problem for stochastic parabolic equations: compatibility relations and regularity of solutions. Stochastics Stochastics Rep. 29 (1990), 331-357. | MR 1042066 | Zbl 0696.60057

[15] F. Flandoli, On the semigroup approach to stochastic evolution equations. Stochastic Anal. Appl. 10 (1992), 181-203. | MR 1154534 | Zbl 0762.60046

[16] I.C. Gokhberg - M.G. Krein, Introduction to the Theory of Linear Non-selfadjoint Operators. Nauka, Moscow (1965), Russian (English translation AMS, Providence, 1969). | Zbl 0181.13504

[17] A. Ichikawa, Stability of semilinear stochastic evolution equations. J. Math. Anal. Appl. 90 (1982), 12-44. | MR 680861 | Zbl 0497.93055

[18] A. Ichikawa, Semilinear stochastic evolution equations: boundedness, stability and invariant measures. Stochastics 12 (1984), 1-39. | MR 738933 | Zbl 0538.60068

[19] A. Ichikawa, Equivalence of Lp stability and exponential stability for a class of nonlinear semigroups. Nonlinear Analysis 8 (1984), 805-815. | MR 750052 | Zbl 0547.47041

[20] A. Ichikawa, A semigroup model for parabolic equations with boundary and pointwise noise. Stochastic Space-Time Models and Limit Theorems, D. Reidel Publishing Company (1985), 81-94. | Zbl 0593.60066

[21] A. Ichikawa, Stability of parabolic equations with boundary and pointwise noise. In "Stochastic Differential Systems" (Proceedings), Lecture Notes in Control and Information Sciences 69, Springer-Verlag, Berlin 1985, 55-66. | MR 798307 | Zbl 0572.93075

[22] I. Lasiecka - R. Triggiani, Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations. J. Differential Eq.'s 47 (1983), 246-272. | MR 688105

[23] I. Lasiecka, Unified theory of abstract parabolic boundary value problems: A semigroup approach. Appl. Math. Optim. 6 (1980), 281-333. | MR 587501 | Zbl 0448.47019

[24] I. Lasiecka - R. Triggiani, Numerical approximations of algebraic Riccati equations modelled by analytic semigroups and applications. Math. Computation 57 (1991), 639-662 and S 13-S37. | MR 1094953 | Zbl 0735.65043

[25] J.L. Lions - E. Magenes, Nonhomogeneous Boundary Value Problems and Applications I. Springer-Verlag, Berlin (1972). | Zbl 0223.35039

[26] R. Manthey - B. Maslowski, Qualitative behavior of solutions of stochastic reaction-diffusion equations. Stochastic Processes Appl. 37 (1992), 256-289. | MR 1191151 | Zbl 0761.60055

[27] X. Mao - L. Marcus, Wave equation with stochastic boundary values. J. Math. Anal. Appl. 177 (1993), 315-341. | MR 1231485 | Zbl 0784.60061

[28] B. Maslowski, Uniqueness and stability of invariant measures for stochastic differential equations in Hilbert spaces. Stochastics Stochastics Rep. 28 (1989), 85-114. | MR 1018545 | Zbl 0683.60037

[29] J. Seidler, Da Prato-Zabczyk's maximal inequality revisited I. Mathematica Bohemica 118 (1993), 67-106. | MR 1213834 | Zbl 0785.35115

[30] R.B. Sowers, New asymptotic results for stochastic partial differential equations. Ph.D. Dissertation, University of Maryland.

[31] R.B. Sowers, Multidimensional reaction-diffusion equations with white noise boundary perturbations. Annals of Probability, to appear. | MR 1331216 | Zbl 0834.60067

[32] I Vrkoč, A dynamical system in a Hilbert space with a weakly attractive nonstationary point. Mathematica Bohemica 118 (1993), 401-423. | MR 1251884 | Zbl 0794.34054

[33] J. Zabczyk, On decomposition of generators. SIAM J. Control Optimiz. 16 (1978), 523-534. | MR 512915 | Zbl 0393.93023