Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 21 (1994) no. 4, p. 595-628
@article{ASNSP_1994_4_21_4_595_0,
     author = {Velazquez, Juan J. L.},
     title = {Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 21},
     number = {4},
     year = {1994},
     pages = {595-628},
     zbl = {0926.35023},
     mrnumber = {1318773},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1994_4_21_4_595_0}
}
Velázquez, J. J. L. Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 21 (1994) no. 4, pp. 595-628. http://www.numdam.org/item/ASNSP_1994_4_21_4_595_0/

[AlAG] S.J. Altschuler - S.B. Angenent - Y. Giga, Motion by Mean Curvature through singularities for surfaces of rotation. Preprint (1991).

[AG] S.J. Altschuler - M.A. Grayson, Shortening space curves and flow through singularities. IMA Preprint 823 (1991). | MR 1158337

[A1] S.B. Angenent, Parabolic equations for curves on surfaces. Part. I, Ann. Math. 132 (1990), 451-483. | MR 1078266 | Zbl 0789.58070

[A2] S.B. Angenent, Parabolic equations for curves on surfaces. Part. II, Ann. Math. 133 (1991), 171-215. | MR 1087347 | Zbl 0749.58054

[A3] S.B. Angenent, On the formation of singularities in the curve shortening flow. J. Differential Geom. 33 (1991), 601-633. | MR 1100205 | Zbl 0731.53002

[A4] S.B. Angenent, Some recent results on Mean Curvature Flow. In: Recent Advances in PDE's. M.A. Herrero - E. Zuazua eds., Research in Applied Math., Masson & J. Wiley, 1994, 1-18. | MR 1266199 | Zbl 0796.35068

[AV1] S.B. Angenent - J.J.L. Velázquez, Nonconvex collapse at rotationally symmetric hypersurfaces evolving by mean curvature flow. In preparation.

[AV2] S.B. Angenent - J.J.L. Velázquez, Asymptotic shape of cusp singularities in curve shortening. Duke Math. J., in press. | MR 1317628 | Zbl 0829.35058

[BDGG] E. Bombieri - E. De Giorgi - E. Giusti, Minimal cones and the Bernstein problem. Inv. Math. 7 (1969), 243-268. | MR 250205 | Zbl 0183.25901

[B] K.A. Brakke, The motion of a surface by its mean curvature. Princeton University Press, Math. Notes, Princeton, New Jersey, 1978. | MR 485012 | Zbl 0386.53047

[B1] A. Bressan, On the asymptotic shape of blow-up. Indiana Univ. Math. J. 39 (1990), 947-960. | MR 1087180 | Zbl 0705.35014

[B2] A. Bressan, Stable blow-up patterns. J. Differential Equations. 98 (1992), 57-75. | MR 1168971 | Zbl 0770.35010

[BQ] C.J. Budd - Y.W. Qi, The existence of bounded solutions of a semilinear heat equation. J. Differential Equations 82 (1989), 207-218. | MR 1027967 | Zbl 0709.35039

[CGG] Y.G. Chen - Y. Giga - S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow. J. Differential Geom. 33 (1991), 749-786. | MR 1100211 | Zbl 0696.35087

[DG] E. De Giorgi, Some conjectures on flow by mean curvature. Preprint.

[ESS] L.C. Evans - H.M. Soner - P.E. Souganidis, Phase Transitions and generalized mean curvature flow equations. To appear in Comm. Pure Appl. Math. | MR 1177477

[ES] L.C. Evans - J. Spruck, Motion of level sets by mean curvature I. J. Differential Geom. 33 (1991), 635-681. | MR 1100206 | Zbl 0726.53029

[F] H. Federer, Geometric measure theory. Springer Verlag, New York, 1969. | MR 257325 | Zbl 0176.00801

[FK] S. Filippas - R.V. Kohn, Refined asymptotics for the blow-up of u t-Δu=up. Comm. Pure Appl. Math. 45 (1992), 821-869. | Zbl 0784.35010

[FL] S. Filippas - W. Liu, On the blow-up of a multidimensional semilinear heat equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 313-344. | Numdam | MR 1230711 | Zbl 0815.35039

[GH] M. Gage - R.S. Hamilton, The heat equation shrinking plane convex curves. J. Differential Geom. 23 (1986), 69-96. | MR 840401 | Zbl 0621.53001

[GP] V.A. Galaktionov - S.A. Posashkov, The equation ut=uxx +uB. Localization, asymptotic behaviour of unbounded solutions, Preprint N. 97, M. Keldish, Inst. Appl. Math. (1985), (in russian). | MR 832277

[GaP] A. Galindo - P. Pascual, Quantum Mechanics. Vol. I (1990) and vol. II (1991), Springer Verlag. | Zbl 0824.00008

[G] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston, 1984. | MR 775682 | Zbl 0545.49018

[GK1] Y. Giga - R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math. 38 (1985), 297-319. | MR 784476 | Zbl 0585.35051

[GK2] Y. Giga - R.V. Kohn, Characterizing blow-up using similarity variables. Indiana Univ. Math. J. 36 (1987), 1-40. | MR 876989 | Zbl 0601.35052

[GK3] Y. Giga - R.V. Kohn, Nondegeneracy of blow-up for semilinear heat equations. Comm. Pure Appl. Math. 42 (1987), 845-884. | MR 1003437 | Zbl 0703.35020

[Gr] M. Grayson, The heat equation shrinks embedded plane curves to round points. J. Differential Geom. 26 (1987), 285-314. | MR 906392 | Zbl 0667.53001

[HV1] M.A. Herrero - J.J.L. Velázquez, Blow-up behaviour of one-dimensional semilinear parabolic equations. Ann. Inst. Henri Poincaré 10 (1993), 131-189. | Numdam | MR 1220032 | Zbl 0813.35007

[HV2] M.A. Herrero - J.J.L. Velázquez, Flat blow-up in one-dimensional semilinear heat equations. Differential Integral Equations 5 (1992), 973-998. | MR 1171974 | Zbl 0767.35036

[HV3] M.A. Herrero - J.J.L. Velázquez, Blow-up profiles in one-dimensional semilinear parabolic problems. Comm. Partial Differential Equations 17 (1992), 205-219. | MR 1151261 | Zbl 0772.35027

[HV4] M.A. Herrero - J.J.L. Velázquez, Generic behaviour of one-dimensional blow-up patterns. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 19 (1992), 381-450. | Numdam | MR 1205406 | Zbl 0798.35081

[HV5] M.A. Herrero - J.J.L. Velázquez, Generic behaviour near blow-up points for a N-dimensional semilinear heat equation. In preparation.

[HV6] M.A. Herrero - J.J.L. Velázquez, A blow-up result for semilinear heat equations in the supercritical case. To appear.

[HV7] M.A. Herrero - J.J.L. Velázquez, Explosion de solutions d'equations paraboliques semilinéaires supercritiques. C.R. Acad. Sci. Paris 319 (1994), 141-145. | MR 1288393 | Zbl 0806.35005

[H] G. Huisken, Asymptotic behaviour for singularities of the mean curvature flow. J. Differential Geom. 31 (1991), 285-299. | MR 1030675 | Zbl 0694.53005

[LSU] O.A. Ladyshenskaya - N.N. Solonnikov - V.A. Uralceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical monographs, A.M.S. vol. 23, 1988. | Zbl 0174.15403

[L] L.A. Lepin, Countable spectrum at eigenfunctions of a nonlinear heat conduction equation with distributed parameters. Differentsial'nye Uravneiya 24, 7 (1988), 1226-1234. | MR 958417 | Zbl 0675.35054

[RS] M. Reed - B. Simon, Functional analysis, vol. II, Academic Press (1980). | MR 751959

[S] J. Simons, Minimal varieties in riemannian manifolds. Ann. of Math. 88 (1968), 62-106. | MR 233295 | Zbl 0181.49702

[So] H.M. Soner, Motion of a set by the curvature of its boundary. J. Differential Equations 101 (1993), 313-372. | MR 1204331 | Zbl 0769.35070

[T] W.C. Troy, The existence of bounded solutions of a semilinear heat equation. SIAM J. Math. Anal. vol. 18, 2 (1987), 332-336. | MR 876275 | Zbl 0655.35039

[V1] J.J.L. Velázquez, Classification of singularities for blowing up solutions in higher dimensions. Trans. Amer. Math. Soc. 338 (1993), 441-464. | MR 1134760 | Zbl 0803.35015

[V2] J.J.L. Velázquez, Higher dimensional blow-up for semilinear parabolic equations. Comm. Partial Differential Equations 17 (1992), 1567-1596. | MR 1187622 | Zbl 0813.35009

[V3] J.J.L. Velázquez, Estimates on the (N-1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation. Indiana Univ. Math. J. 42 (1993), 446-476. | MR 1237055 | Zbl 0802.35073

[V4] J.J.L. Velázquez, Blow-up for semilinear parabolic equations. In Recent Advances in PDE's, M.A. Herrero - E. Zuazua eds., Research in Applied Math., Masson & J. Wiley, 1994, 131-145. | MR 1266206 | Zbl 0798.35072