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On Global Real Analytic Solutions
of the Degenerate Kirchhoff Equation

KUNIHIKO KAJITANI - KAORU YAMAGUTI

1. - Introduction

We shall consider the problem of existence and uniqueness of real analytic
solutions of the Cauchy problem for the degenerate Kirchhoff equation

n 

1 /)
where Au(t, x) _ , (Au(t, ), u(t, )) is

i,j=1
an inner product of Au(t, x) and u(t, x) in L2(Rxn ) and is a non-negative
function in oo)). 

L and M(?7) is a non-negative
n

When A = Dj2 the equation (1.1) is called the Kirchhoff equation,
j=l

which has been studied by many authors (cf. [ 1 ], [2], [3], [8], [9] and [10]).
In this paper, we shall treat the case where A is degenerate elliptic, that is,

= 1, ... , n] is a real symmetric matrix and

for x E R~ and ~ = (ç 1, ... , gn) e R . Moreover we assume that there are co &#x3E; 0

and po &#x3E; 0 such that

for a: E a = (al,..., an) E N’ and i, j = 1,..., n, and that Mq &#x3E; E Cl([O, oo)]
and
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for q E [0, oo). We introduce some functional spaces. For a topological space X
and an interval I c we denote by Ck (I ; X ) the set of functions from I to
X which are k times continuously differentiable with respect to t E I in X. For
s E R and p &#x3E; 0 we define a Hilbert space Hpl = lu(x) E E

LZ (II~~ ) } , where stands for Fourier transform of u and = (1+~2+... ç-~)1/2.
For p  0 we define Hps as the dual space of Hi§. For p = 0 we denote by
HS = Hol the usual Sobolev space. Then note that the dual space of Hps becomes
H-’ for any s, p 

For define an operator eP(D) from HP to HS as follows:

for u E where d~ _ (2n-)-ndç. Note that = is a mapping
from HS to ~.

We prove the following result:

MAIN THEOREM. Assume that (1.2) through (1.4) are valid. Let 0 

pol viii. Put p(t) = for ~y &#x3E; 0. Then there exists I &#x3E; 0 such
that for any ul C - Hp’. and for any satisfying eP(t)(D) f E
CO([O,"oo); H1 ), the Cauchy Problem ( 1.1 ) has the unique solution u(t, x) sati-

2 
. 

s fying eP(t)(D)u E n c2-j([0, oo); Hi).
j=o

The idea in the proof of our main theorem is based on the method
introduced in [5] in order to find the global real analytic solution of the

Cauchy problem for a Kowalevskian system. Roughly speaking, we transform
an unknown function u such as v = eP(t)(D) u and then change the hyperbolic
equation (1.1) of the unknown function u into the parabolic equation of v.
Thanks to parabolicity, we can prove local existence of a solution v of the
modified problem in the usual Sobolev spaces by the use of the principle of
a contraction mapping. Finally we can show the existence of a time global
solution of the original equation (1.1) modifying the energy estimate which was
introduced in [3] in the case of A = -A.

2. - Preliminaries

Let Sm be the class of symbols of pseudo-differential operators of order
m whose element a(x, ~) in x R~) satisfies

for x, ~ E and for all multi-indeces a, # E N", where a~a~ (x, ~) -
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We define a pseudo-differential operator a(x, D) as

for u E S where S denotes the Schwartz space of rapidly decreasing functions
in Then we have the following well-known fact:

PROPOSITION 2.1. (i) For a(x, ç) E 8m and s E R, there is C, &#x3E; 0 such

that

for u E Hs+m.

(ii) Assume a(x, ç) E S2 is non-negative. Then there are positive numbers
Cl and C2 such that

and

for u e Hs+2.

For a proof refer to [6] and [4] for (i) and (ii) respectively.
Now let us state some properties of the Hilbert space 

LEMMA 2.2. (i) Let p &#x3E; 0. Then it holds that

and

for x E Rn, a E Nn and w E HP.
(ii) Let u(x) be a function in Hoo and s E R. If u satisfies

for every multi-index a E N n, then u(x) belongs to Hp for p  pl IV f n.
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PROOF. (i) It is easy to verify (2.5) using the fact that  
Representing by Fourier transformation, we get

which implies (2.6).
(ii) Since

we have the estimate by virtue of (2.7) that

for any j. Hence we obtain

if -fnPPll  1. 0

Let a(x) be a real analytic function in R" satisfying

for all x E Rn and for all multi-indices a E Define a multiplier a. as

(a.u)(x) = a(x)u(x). Let us define a(p; x, D)u(x) = for u E L2(Rn)
and denote its symbol by a( p; x, ~).

PROPOSITION 2.3. Suppose that a(x) satisfies (2.8).
(i) If a function u belongs to the class and 0  pi  po, then a - u

belongs to the class HP for 0  p  Pl/Jn.
(ii) a(p; x, D) is a pseudodifferential operator of order 0 and its symbol

has the representation

where
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and a2 and r respectively satisfy

for x, ~ p  and a, 13 E Nn.

PROOF. (i) Assume p &#x3E; 0. Taking into account the fact that

if pi  po, we have the estimate that

from (2.5) and (2.7). Therefore it follows from (ii) of Lemma 2.2 that a - u E Hp
for p  

(ii) For u E S and e &#x3E; 0 we put Me(0 = e-el~12 û(ç). u,(x) denotes the
inverse Fourier transformation of ~(0. Then is in for every T &#x3E; 0

and is also in HT for all T &#x3E; 0 and Therefore it follows
from (i) that a. is in HT if T  Note that 
and 1[a. E for lpl  po/Jfi and c y 0. So we can write

where aa (~, C) is given by



284

Putting

we can re-write a8(x, ~) using Stokes formula:

n

for p  poln, where we for z E Thus, by Taylor’s
expansion, we obtain &#x3E;=1

where

satisfies (2.13) (See Lemma 2.4 in [6]). Another application of Taylor’s
expansion yields

where a 1 (x, ~) and a2(p;x, Ç") satisfy (2.11 ) and (2.12) respectively. Since
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we have

ifuES. 0

Let P(t) = x, D)~2~ j-1,...,d be a matrix consisting of pseudo-differential
operators whose symbols Pij(t, x, ç) belong to the class C([O, T]; S‘ 1 ). Let us
consider the following Cauchy problem

where U(t) = t(Ul (t, x), ... , Ud(t, x)) is an unknown vector-valued function and

F(t) = t(Fd(t, X), - - ., Fd(t, X)), U° - Uod) are known vector-valued
functions. Then we have:

PROPOSITION 2.4. Suppose that det(A - p(t, x, 0 for A E Cl with
RA &#x3E; 2013co($). ~ E [0,T] ] and lçl I » 1. Take an arbitrary real number s. Then

for any and for any F(t) E CO([O, T]; there exists a

unique solution U(t) E C’([O, T]; (Hs )d fl CO([O, T]; of (2.14).

This proposition will be used in Section 4 to prove existence of local
solutions of the Cauchy problem (1.6). The proof of this proposition is given
in Proposition 4.5 in [7].

3. - A priori estimates of solutions for the linear problem

Let 0  T  oo and m(t) be a non-negative function in C° ( [0, T~) and p(t)
a positive function in such that pt (t)  0 for t E [0, T).
Consider the following Cauchy Problem,

where A(t) = p(t)(D), At(t) = pt(t)(D) and AA = Then by (ii) of
Proposition 2.3 we have
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where

and

Let fh(t) and be positive functions in and assume A’(t)  0
for t &#x3E; 0. Define

for t E [0, T), where ( ~ , ~ )s stand for an inner product and a norm
of Hs respectively.

2 
, ,

Assume that v(t) E n C2-~ ([o, T); Hj+S) is a solution of (3.1 ). Differen-
j=o

tiating (3.3) we have
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for t e [0, T). Since A is a positive operator, by taking into account (2.2) we have

where c is a positive constant depending only on s and A.
The equality

and (3.2) lead us to the estimate

for t E [0, T). Besides, by virtue of (2.3) we have

where c is a positive constant depending only on s and the coefficients of A.
Therefore, from (3.4) through (3.8), we come to the conclusion that
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for t E [0, T).

PROPOSITION 3.1. Assume that m(t) is a non-negative function in2
Z’]). Let met) = m(t) + A(t) = e-2/t, p(t) = and v(t) E n

. 

i=O

C2-j ([O, T); Hj+S). Then there are 6 &#x3E; 0 and -1 &#x3E; 0 such that if v(t) satisfies
(3 .1 ) we have

for t E [0, T), where

PROOF. It suffices to prove that the terms in the right-hand side of (3.9)
except for the first one and the second one are negative, if - &#x3E; 0 and 1 &#x3E; 0

are suitably chosen. In fact the third term is negative because of pt(t)  0. The

fourth term is

if we take

Moreover we have the fifth term

if we take 1 &#x3E; 0 such that
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Therefore, choosing - &#x3E; 0 and 1 &#x3E; 0 such that (3.14) and (3.16) are valid,
we obtain (3.11) from (3.9). 0

For m(t) E L~([0, T]) and e &#x3E; 0, we define

where t - 1 X t and t E C°° (0 1 ) satisfying that x(t) &#x3E; 0 and
1 

ê ê x( ) o ( , ) Y g x( _

x(t)dt = 1.
0

PROPOSITION 3.2. Assume that m(t) is a non-negative function in

T)) f1 T]). Let m(t) be a ,function defined by (3.17) and v(t) E
2 

, ,

n c2-j(0, T); HS+j). Then there are p(t) and A(t) in Cl([O, T)) with pt(t) E
i=o

T]) and s &#x3E; 0 such that if v(t) satisfies (3.1) we have

for t E [0, T), where E(t) = E(t, s, m(t), p(t)) is defined by (3.3) and

where c depends only on s and A.

PROOF. If we choose p(t) and e &#x3E; 0 suitably, we can prove that the terms
in the right-hand side of (3.9) except for the first one and the second one are
negative. We can take p(t) with pt(t)  0 such that the first terms of (3.13)
and (3.15) are negative respectively. In fact, it suffices to find a function p(t)
satisfying
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Put

Here we take e &#x3E; 0 sufficiently small such that p(t) &#x3E; 0 for t E [0, T). Since
p(t)  and a(t)  A(O), we can see easily that p(t) defined by (3.21)
satisfies (3.20). Hence, we obtain (3.18) from (3.9) defining p(t) by (3.19). 0

4. - Existence of solutions for the linear problem

In this section, we consider the following linear Cauchy problem:

Following the idea of the proof of the theorem in [5], we shall prove that
the Cauchy problem (4.1 ) has a unique solution.

THEOREM 4.1. Assume that (1.2) and (1.3) are valid. Let 0  PI  Po/vfn"
s E Rand m(t) E Co([O, T]). Then there is ~y &#x3E; 0 such that for any uo E 
ul I E and eA(t) f (t) E Co([O, t]; Hs+’), (4.1) has a unique solution u(t)~~ 

2

satisfying E n C2 -j ([0, T]; where A(t) = p¡e-,t(D). Moreover if
j=O

m(t) E T]), the solution u(t) satisfies

for t E [0, T], where p(t), ~y and - are given by Proposition 3.1.

PROOF. Put v(t) = e A(t)u(t). If v(t) is a solution of (3.1 ), it is evident that

u(t) satisfies (4.1 ). So it suffices to prove that problem (3.1 ) has a solution.
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Now we put

Then if v(t) is a solution of (3.1), V(t) satisfies

where F(t) = Vo = t (vo, v 1 ) and

Conversely, it is evident that if V(t) is a solution of (4.3), then v(t) = 
becomes a solution of (3.1). It follows from (4.4) and (ii) of Proposition 2.3
that P(t) is a pseudo-differential operator of order 1 with symbol satisfying

Since m(t) &#x3E; 0, a(x, ~) &#x3E; 0 and r E 81 1 there are 70 &#x3E; 0 and R,o &#x3E; 0

such that det(A - p(t, x, ~)) ~ 0 for ~a &#x3E; - 2-1 ~ewT ~ ~ ~, -t ~! ,0 sup m(t)
otT

&#x3E; Ro,-le21T. Therefore it follows from Proposition 2.4 that there
exists a unique solution V(t) of (4.3) and consequently v(t) = (D)-lVl(t) satis-

2 
,

fies (3.1 ) and belongs to n C2-j ([0, T ]; HS+j). Put u(t) = e -A(t) v(t). Then u(t)
j--o 2

satisfies (4.1) and e A(t) u(t) is in n C2-j([O, T]; If m(t) is in T]),
j=o

it follows from Proposition 3.1 that v(t) satisfies (3.10) so u(t) satisfies (4.2).
2 

, ,

In particular, if uo = ul - 0, f (t) = 0 and eA(t;1)u(t) C n C2-j ([0, TI; Hs+j)
j=o

for some 1 &#x3E; 0, u(t) identically vanishes. This implies the uniqueness of the
the solution of (4.1 ). Note that v(t) may depend on I but u(t) = e-A(t) v(t)
does not depend on i. In fact, u(t) - u(t; -1) - u(t; ,’) satisfies (4.1) with

2 
, ,

uo = ul - ,f (t) --_ 0 and E n C2-j ([0, T]; HS+j), where y = 
j=o

Therefore we have u(t) = 0 from the uniqueness of solution of (4.1 ), and

consequently u(t; -1) = u(t; -1’). 0

Finally we remark that it follows from (4.2) that u(t), the solution of (4.1 ),
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satisfies

for t E [0, T], where the positive constant c is independent of 1.

5. - Local existence of solutions of the nonlinear problem

THEOREM 5.1. Assume that the conditions (1.2), (1.3) and (1.4) are valid.
Let s E Rand 0  P2  Then for any uo E H;2’ ul E HP2 and

E where A(t) = p2e-~’~t-T~ (D~, there are T E (T, Tl ] and
10 &#x3E; 0 such that the Cauchy problem (4.1) has a unique solution u(t) satisfying

2 
, ,

eA(t) u(t) E (1 C’2-’ ([T, Z’]; for any ~y &#x3E;_ 10.
j =0

PROOF. We may assume T = 0 without loss of generality. We shall prove
the existence of solutions of (5.1 ) by the principle of contraction mapping. For
T &#x3E; 0 and s E R, we introduce a space of functions

equipped with its as

for every w E We now define two functions
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for each w E XT. Note that m(t) E 01([0, T]) if w E XT, and it satisfies

where K is a positive and continuous function defined in [0, oo).
Let us consider the Cauchy problem (4.1) with m(t) = m(t ; w). Then it

follows from Theorem 4.1 that there exists a unique solution u(t) of (4.1 )
2 

, ,

satisfying that T]; where A(t) = Ple-ït(D). So the
j=o

correspondence with each w E XT to u E XT defines a map

such that

We shall prove that HF is a contraction mapping if T is sufficiently small.
For k &#x3E; 0, let us define a set

Then we can prove that for every k » 1 there is a real number T = T(k) &#x3E; 0

such that E BT(k) as long as w E BT(k). Actually, we can gain an estimate

which is deduced from the estimate (4.5) with s = 1 and the fact that

Note that the constant c appearing in (5.5) is independent of T, k and
w. Since p(t) is determined by (3.1 ) and (5.3), we can find a function

p(t, k) E CO ([0, T] x [0, oo)), by virtue of (5.4), such that

if w E BT(k). Since the constant c in (5.5) is independent of k and the function
p(t, k) is continuous in (t, k), we can find T = T(k) &#x3E; 0 such that
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for every k &#x3E; c. Hence (5.5) implies that T(w) belongs to BT(k) provided
w E BT(k).

Next we shall prove T is Lipschitz continuous in that is, with

sufficiently small T &#x3E; 0 we have the inequality

for any w, w’ E BT(k). Since the difference Bf(w) - Bfew’) satisfies

we obtain, by virtue of (4.5) with s = 0

On the other hand, an application of Proposition 2.3 to A and the estimate
(4.5) with 5=1 yield

for w’ E BT(k). Moreover, taking into account (5.4) we gain

Hence, from (5.7) we have C3(k) &#x3E; 0 satisfying

for w, w’ E BT(k), which proves assertion (4.6) if T  (2C3(A:))’~.
Thus once we choose T = min{T(k), (2C3(l~))-1 }, we can find the solution

u of (5.1) with the initial plane T = 0 which belongs to BT(k). D
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6. - Existence of time global solutions for the nonlinear problem

In this section we shall prove our main theorem. According to D’ Ancona
and Spagnolo [3], we introduce the following energy,

11

where = M(A)dA, r~(t) - «Au(t), U(t))L2 and ~ - ~ stands for a norm

of 0

PROPOSITION 6.1 ([3]). Assume that non-negative continuous
function in [0, oo) and f (t) e C~([0,r];L~). If u(t) is a solution of the Cauchy

2 
, ,

problem of (I.I) in (0, T ) such that u E n CZ-~ ([0, T ); H~ ), then we have the

energy inequality ~-°

for t E [0, T).

PROOF. Differentiating (6.1 ), we get from ( 1.1 )

for t E [0, T), which yields (6.2). D

PROPOSITION 6.2 ([3]). If (6.2) holds and T  oo, then M(r¡(t» E L 1 ([0, T]).

PROOF. From (6.2), it is evident that M(r¡(t»r¡(t) E T]). On the other
hand

for all t E [0, T), which implies that E L~([0,T]), D
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Now we can prove our main theorem. Let A(t, -1) = PI e-¡t(D), and let T*
be a real number defined by

Theorem 4.1 ensures that T* &#x3E; 0. We claim that T* = oo. Suppose that
T*  oo. Then it follows from Proposition 6.2 that m(t) = M((Au(t), u(t))
is in Ll([o, T*]). Hence, Proposition 3.2 and the fact that m(t) E 

yield that which satisfies (3.18) with s = 0, 1 and

T = T*, where = p(t)(D) and p(t) is what is introduced in (3.21). Let us
take &#x3E; 0 such that  p(t) for t E [0, T*). Then the definition of T* and

2 
,

(3.18) imply where Hence
j=0

we have the limits u(T* - 0) and atu(T* - 0) which satisfy e^~T * ~’~~u(T * - 0) E
H2 and Therefore, applying Theorem 5.1 with P2=Pl

we have a solution of the Cauchy problem (5.1 ) in (T*, T)(T &#x3E; T*)
with initial data u(T*) = u(T* - 0) and atu(T*) =,9tu(T* - 0), which satisfies

2 
, ,

Then A(t, -1) = y implies that eA(t’¡)u(t) E n C2-~ ([T*, T]; Hi).
Now let us define j=°Now let us define 

w(t) _ 
u(t), t E (o, T * ) 

j=o

w(t) = j u(t), 
t e (0, T*)u(t), t E [T*, T).

2 
, ,

Then w(t) has to satisfy ( 1.1 ) in (0, T) and eA(t’¡)w(t) C2-j ([0, T); Hi). This
j=o

contradicts the definition of T*. Thus, we have proved that T* = 00. Since M(77)
is of class we can prove easily the uniqueness of the solution of ( 1.1 ). D
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