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About the Lamé System in a Polygonal or a Polyhedral Domain
and a Coupled Problem Between the Lamé System

and the Plate Equation
II: Exact Controllability

SERGE NICAISE

7. - Introduction

This paper is the second part of a research, whose purpose is to study the
regularity of the solutions of some problems related to the linear elasticity theory
and the exact controllability of the associated dynamical problems. Part I [22]
concerns the regularity, while Part II, the exact controllability. For convenience,
we have numbered the paragraphs continuously: Paragraphs 1 to 6 form the
first part, while Paraghraphs 7 to 12 forms this second part.

We use the notations and definitions of Part I without comment. But

contrary to Part I, we consider here real Hilbert spaces; this means that all the
functions we use are real-valued. Nevertheless, all the results given in Part I

remain true in the real setting.
In order to avoid some repetitions and confusions, we divide this paper

into two parts A and B, corresponding to the problem studied respectively in
Paragraphs 2 to 4 and Paragraphs 5 to 6 of Part I.

In Part A, we study the linear elasticity system in a polygonal domain of
the plane or a polyhedral domain of the space. Namely (see Paragraph 8 for
more details), if Q denotes this domain, we divide its boundary into two parts
rD U rN. We consider the following dynamical linear elasticity system (using
the classical notations of linear elasticity theory):

Pervenuto alla Redazione il 20 Marzo 1991.
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The problem of exact controllability for (7.1 )-(7.4) states as follows: given
T &#x3E; 0 large enough, for every initial data üo, il 1 in suitable Hilbert spaces, is it
possible to find controls v and w driving our system (7.1)-(7.4) to rest at time
T, i.e., such that the solution £ of (7.1)-(7.4) satisfies

Using his Hilbert Uniqueness Method (HUM), J.-L. Lions in [15] answered
to this question when is smooth and when even rN or rD is empty. In this
second case, he also assumed that Q is star shaped with respect to a point

Here, we remove all these assumptions and following Grisvard’s technics
of [10] (especially Paragraph 5), we adapt HUM to our setting. As in [10],
we impose a regularity assumption, which means that the weak solution of the
stationary Lame system belongs to (H3~2+~(SZ))3, for some 6 &#x3E; 0. Let us notice

that we gave in Part I geometrical hypotheses on SZ, which imply that this

regularity assumption is fulfilled. Finally, the fact that Q is not necessarily star
shaped with respect to a point leads to some difficulties on rN, the part of the
boundary where we impose Neumann boundary conditions.

In Part B, we consider the exact controllability of a coupled problem
between the linear elasticity system in the unit cube of JR.3 with a crack and
the plate equation on this crack. Our motivation comes from a question raised
in Paragraph 6 of [3] concerning the exact controllability of the problem they
obtained in [3]. We answer partially to this question because we modify some
boundary conditions of the problem obtained by [3] (we explain at the end of
Part I the reasons of this modification). In view of the analogy between this
problem and the problem studied in [21], we follow the method of [21] to adapt
HUM to this new problem. As in [21], the main problem lies on the fact that the
3D-part of the weak solution of the stationary problem has never the regularity
H31116, for some E &#x3E; 0. Fortunately, since it has only edge singularities along
the bottom of the crack, a good choice of the multiplier allows us to use HUM.

Since we use HUM, the general method of proof of the exact controllability
of our dynamical problems is similar to those of [15], [10], [21]. This means
that some results stated here seem to be identical with the previous ones; but
of course they are different, especially their proofs. Moreover, some technical
problems are solved in a different way (for instance, the identity with multiplier).
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A. The elasticity system in dimension 2 or 3

8. - Estimate of the energy

In all this Part A, we shall use the notations of the beginning of Part I,
i.e., from Paragraphs 1 to 4. So Q denotes a bounded open connected subset of
JR1&#x26;, n E {2,3}. But here we suppose that s2 is only on one side of its boundary
(so Q has no slit!). For convenience, we also suppose that the set D is not

empty.
We now introduce the operator A associated with the linear elasticity

system

We set H = (L2(Q))n and we recall that

Since Kom’s inequality holds on Lipschitz domains (see [6]), we know that the
bilinear form au is V-coercive. Therefore it induces an isomorphism ,~ from V
into VI defined by

Since V is dense and compactly imbedded into H and the form an is symmetric,
it also induces a positive selfadjoint operator A from H into H, with a compact
inverse, defined by 

- ~ I- - .... -6 ....,

Since H, V and the form ao fulfil the hypotheses of Remark 4.4 of
[21], Theorems 4.1 to 4.3 of [21] may be applied to A. In particular, we
have existence and uniqueness of the following wave equation: Given - E V,
ol e H and f E L1(O, T; H), there exists a unique solution 0 of
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As classically, the estimate of the energy of the solution y~ of (8.4) with
f = 6 will be obtained by proving an appropriate identity with multiplier. This
is our next goal.

THEOREM 8.1. Let us assume that

Then ü E DA fulfils (8.1)-(8.3) with f = Au.
PROOF. To get (8.1 ), it suffices to notice that for all §Y E (D (K2))n, we have

Now, applying Theorem 6.6, we see that

This implies that J fulfils (8.3)..

Let us recall that in Theorems 2.3 and 4.5, we give geometrical conditions
on Q to ensure that (8.5) holds. We looked for these conditions because, as we
shall see later, (8.5) is sufficient to apply the Hilbert Uniqueness Method of
J.-L. Lions [15] to this setting.

So in all this Part A, we shall assume, without repeating it, that the
inclusion (8.5) holds.

LEMMA 8.2. If a E DA and m(x) = x - xo, with some xo E R~. then we
have

where we use the notations
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and 1’k aui denotes the outward normal derivative of ui on the face rk.8v 
de

PROOF. Let us assume for a moment that g belongs to (H 2 (Q))n; applying
two times the Green identity, we obtain

Since H2(S2) is dense in H 1/2,,(Q), for some 6 &#x3E; 0, we see that J E DA fulfils
(8.7) because all the terms in (8.7) have a meaning. To prove that (8.7) is

equivalent to (8.6), we have to transform appropriately the boundary terms of
(8.7). For we directly obtain the result since J fulfils (8.3). On the other
hand, the boundary condition (8.2) implies that

Using this identity (8.8) in the definitions of T(k)ü, m ’ and we

easily show that

Using these two identities in (8.7), we arrive to (8.6).

Let us now fix xo E r. For m(x) = x - xo, we set

We are now ready to establish the main result of this paragraph.

THEOREM 8.3. Let ~p E 0([0, T], DA) n 01([0, T], V) n 02([0, T], H) be a
solution of (8.4) with f = 6. Then there exists a minimal time To &#x3E; 0 and a
constant C &#x3E; 0 such that
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where Eo denotes the energy of 0 at time t = 0, namely

and setting for all k E I, we define

PROOF. By integration by parts with respect to the variable t in (0, T) and
using the Green identity in Q, we show that

where we have set Q = S2 x (0, T).
Integrating (8.6) over (0, T) (applied to 0(t)) and subtracting the obtained

identity to (8.11), we get

Using the identity (4,24) of [21], which holds in the abstract setting of Remark
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4.4 of [2J], we show that

In order to conclude, we need the following inequality (8.14), which is a direct
consequence of (8.8):

Inserting (8.13) into (8.12), using Schwarz’s inequality, the coerciveness of the
form au and (8.14), we obtain (8.9). ·

Let us now fix T &#x3E; To such that the inequality (8.9) holds. Then the
application

is a norm stronger than the norm induced by V x H. As in [15], [10], [21], we
define F as the closure of DA x V for this new norm (obviously, F depends
on xo and T) and we have the algebraic and topological inclusions:

Arguing as in Theorem 5.6 of [10], Theorem 8.3 leads to the (by taking
into account the hypothesis (8.5)).

PROPOSITION 8.4. Let e F and f c L 1 (0, T; V), then the unique
solution 0 of (8.4) fulfils

Moreover, there exists a constant C &#x3E; 0 (independent of 100, ol I and f ) such
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that

9. - Weak solutions of the dynamical elasticity system

We transpose Proposition 8.4 to get the

THEOREM 9.1. For all do E H, ill E V’, ifk) and

v¡7) E i, j E { 1, ... , n }, k E N -, there exist unique Ü E L°° (o, T; V’),
E F’, which are solutions of

for all where y~ is the unique solution of

In order to give an interpretation to the equation (9.1 ), we show that on
the faces where we impose homogeneous Neumann boundary conditions, the
ourward normal derivative is a linear combination of the tangential derivatives.

LEMMA 9.2. For all kEN, there exist coefficients E R, and

dfjlm E R, i, j, 1 E {I, ..., n} and m E 11, ... , n - 11 such that u fulfilling (8.3)
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satisfies

where forms an orthonormal basis of I~n and 19ut denotes the1 ~ L m J 

tangential derivative of in the direction of 

PROOF. By change of variables, there obviously exist coefficients E R

such that

Using the definition of T(k) 9 and (9.5), we prove the existence of a vector

whose components are linear combinations of (9u -, for every j c
,r,(k)

m e I n - 1}, such that 
(9"

where is the vector Therefore, the boundary conditions

(8.3) is equivalent to

Taking the inner product of (9.7) with ¡jk) and m E { 1, ... , n - 1}, we see
that (9.7) is equivalent to

This proves (9.3). Moreover, (9.5) and (9.3) obviously imply (9.4).
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We can now say that a solution i1 of (9.1 ) fulfils formally (9.8) to (9.12)
hereafter:

As classically, the solution 11 of (9.1 ) will be called a weak solution of the

problem (9.8)-(9.11 ).
Analogously to [21], we now show that the solution ü of Theorem 3.1 is

more regular and fulfils (9.12). This is based on the following trace result.

THEOREM 9.3. Let E k E D+ U N+ and E 0(£k),
i, j E { 1, ... , n }, k E V-. Then there exists v E ( D (o, T, D (S2)))n fulfilling
(9.10)-(9.11 ). Moreover, for all t E [0, T ], v is equal to zero in a neighbourhood
of the vertices of SZ and, in dimension 3, also in a neighbourhood of the edges
ofQ.

PROOF. We actually solve the following more general trace result: Given
v-’’~k~, E ( D (~k ))n, for all k E jr, find v E (D(0, T, D(?i)))n fulfilling

having the same nullity property. But using the argumentations of Lemma 9.2,
we notice that (9.13) is equivalent to

where Z -,(k) E (D(Y-k))’, for all k E 7 (z~k~ is a linear combination of and of
the tangential derivatives of 
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Let us fix l~ E 1. By an eventual rotation and a translation, we may
suppose that rk is included in the hypersurface zn = 0 and that the intersection
between Q and the half-space &#x3E; 0 } is nonempty. Moreover, the compactness
of the support of and -Z,(k) in Yk imply that there exists an open subset Vk
of r~ satisfying Vk C rk (where we consider r~ as an open set of JRn-1 I and
we take the closure of Vk in such that

Since Q is nondegenerate, we can find ?7k &#x3E; 0 such that

Let us take a cut-off function lbk E satisfying

We set

Owing to the previous remarks, we easily check that f1k) fulfils (9.14) on Ek,
is equal to zero in a neighbourhood of the faces Ej, j E ~B{~}, and has the
desired nullity property.

We conclude by taking 
--

THEOREM 9.4. Let u E L°° (0, T; V’), 1,0 1 E F’ be the solutions of (9.1 )
with data go E V, ul E H, E (D(Ek))’, k E D+ U N+ and v~~ ~ E D(yk), i,
j E { 1, ... , n }, k E N-. Then Ü E C( [0, T], H 1 (12)) n 01([0, T], H) and fulfils
(9.8)-(9.10) and (9.12).

PROOF. We proceed as in Theorem 5.3 of [21]. Let v E (D(0, T, Ð(Q))n be
the function built in Theorem 9.3 satisfying (9.10)-(9. 11). We set

By Lemma 1.3.4 of [15], there exists a unique solution 1$ E 0([0, T], V ) n
C’ ([0, T], H) n H2(0, T; V’) of
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We now show that is the unique solution of (9.1 ) when

By Theorem 4.2 of [21], it suffices to check (9.1) for §Y E C([0, T], DA) n
C~([0,r],V)nC~([0,r]~). By integration by parts over ]0, T[, we get

But the following Green identity has a meaning since ~6(t) E DA belongs to H2
far from the vertices and, in dimension 3, also from the edges, while is

precisely equal to zero near the vertices and the edges in dimension 3.

Inserting this identity into the right-hand side of (9.16), using (9.15) and taking
into account the boundary conditions fulfilled by ~6 and v, the right-hand side
of (9.16) is equal to

By integration by parts on Yk, for all 1~ E .Jl~+ (this is allowed since

E (D(Ek))n, vZ~ ~ E and 0([0, T], DA)) and using the identity (9.4),
we deduce that the previous expression is equal to the right-hand side of (9.1 ).
So £ fulfils (9.1).

Now, 9 fulfils (9.8) because (9.15) implies that
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in this distributional sense. This completes the proof of Theorem 9.4..

Before going on, let us notice that the solution u of Theorem 9.4 does not
fulfil (9.11 ) in a strong sense because y is not enough regular to fulfil (8.3).

Nevertheless, using the arguments of the end of Paragraph 5 of [21]
replacing Proposition 4.10 of [21] by Proposition 8.4, we conclude the

THEOREM 9.5. Under the assumption of Theorem 9.1, let 9, be
the solutions of (9.1 ), then i1 E C( [0, T], V’) n C 1 ( [0, T], and satisfies (9.12).

10. - Application of HUM

It is now easy to use HUM in order to conclude the exact controllability
of the elasticity system (see [15], [10] and Paragraph 6 of [21]).

THEOREM 10.1. For all go E H, Ü1 E V’, there exist E (L2 (1k))n, for
all k E Ð+ U )1+, and vi~ ~ E L2CLk), i, j E {I, ..., n 1, k E .JV - such that the weak
solution it E C([0, T], V’) n C1([0, T], DA) of the elasticity system (9.8)-(9.11)
(in the sense of (9.1 )) satisfies

PROOF. By Proposition 8.4, for 01 1 E F, there exists a unique solution
Sp of (8.4) with f = 0, which fulfils (8.15) to (8.17).

We F’, the solutions of

for all g E L 1 (o, T ; V ), E F, where g is the unique solution of
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This is possible owing to Theorem 9.1 by inverting the order of time and
because (8.16) implies that -IkUij(i5) belongs to L2(1k), for all k E ).1-.

On the other hand, Theorem 9.5 shows that

As classically, we now define the operator

The next lemma shows that A is an isomorphism and we conclude as in

Paragraph 6 of [21].

PROOF. Applying the identity (10.2) with g = 0 and using the definition of
o, ij (0), we see that

This firstly proves that A = A*. Secondly, taking (po, and hence

~, we deduce (10.4) in view of the definition (8.10) of the norm in F..

B. The coupled problem

11. - An identity with multiplier

In all this Part B, we use the notations of Paragraphs 5 and 6 of Part I of
this paper [22]. We want to establish the exact controllability of the dynamical
problem associated with the boundary value problem (5.1)-(5.7). As we explain
in the Introduction, we use the same method as in Paragraphs 4 to 6 of [21]
or in Part A. Therefore, we only give the great lines and the differences with
the previous results.
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We gave in Paragraph 5 the variational formulation of problem (5.1)-(5.7).
Since the next lemma proves that V is dense in H, we can associate with the
form a (defined by (5.8)) a selfadjoint operator A from H to H with a compact
inverse (see Paragraph 8). So Theorems 4.1 to 4.3 of [21] still hold for A.

Moreover, Theorem 5.3 shows that for all U = (ü, ~) E DA, we have

LEMMA 11.1. V is dense in H.

PROOF. Let 0 = (ii, 0 in H and let us fix E &#x3E; 0. The density of in

L2(W) gives the existence of q E D(w) such that

We now introduce cut-off functions p5 E depending on the real parameter
6 ~]0,1[ [ (b will be determined later) such that

and supp ~

We set

It is immediate that

In view of ( 11.1 ), choosing 6 such that

we deduce that

Finally, owing to the density of P(Q) in there exists 15 E (D(S2))3 such
that

The conclusion follows by setting

Indeed, we easily check that V:= (v, 1/) belongs to V, while the inequalitites
(11.1) to (11.3) imply that
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The second step consists in establishing an identity with multiplier as in
Lemma 8.2. Unfortunately, if U = (ü, ~) E DA, then Theorem 6.2 shows that u
admits the expansion (6.7) and therefore, u has never the regularity for

some s &#x3E; 3 . In spite of this lack of regularity, as in Theorem 4.5 of [21], by a2 
p g Y y

good choice of the point xo, we can prove this identity. Contrary to Theorem
4.5 of [21], where we cannot separate Q and r to prove the identity with
multiplier, here the best regularity of ~ allows us to separate S2 and w. Let us
start with the 3D-part, which is very technical. We postpone the proof of the
2D-part to Theorem 11.7.

THEOREM 11.2. Let us assume that m(x) = x - xo with XO = (0, 0, xo3). Then
for all U = (ü, ~) E DA, we have:

PROOF. For 6 &#x3E; 0, let us denote (we recall that zi = (Oi - ~/2, ~pZ - x/2),
for i = 1 or -1, see Paragraph 6)

Owing to Theorem 6.2, we know that u admits the expansion (6.7); so it

belongs to (H3/2+(Qd))3, for some E &#x3E; 0 and for 6 sufficiently small. Therefore
u fulfils the identity (8.7) in U6; that is
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by taking into account the boundary conditions fulfilled by J and the fact that

We now pass to the limit as 6 goes to zero. Since 0 E DA, the left-hand
side of (11.5) and the first term of the right-hand side of (11.5) tend respectively
to the left-hand side of (11.4) and the first term of the right-hand side of (11.4).
Moreover, as in Lemma 8.2, the boundary terms on r1 in (11.5) are transformed
into the boundary term on r1 in (11.4). So it remains the boundary terms on
r8 and a D8. Let us denote them respectively by 1,6 and 128.

Using the definition of T, we easily check that

But Proposition 6.3 asserts that 1+(122(Ü) - 1-(122(Ü) E for all p E] l, 2[;
while Theorem 6.6 and the Sobolev imbedding theorem imply that V2£ E
Lq(r), for all q &#x3E; 1. Therefore, Hblder’s inequality and Lebesgue’s bounded
convergence theorem allow us to conclude that

In view of the definition of 128, there exists a constant M &#x3E; 0 such that

But it is easily seen that

and using Theorem 11.3 hereafter, we conclude that

So, (11.6) and (11.7) prove the identity (11.4).


