Nonzero time periodic solutions to an equation of Petrovsky type with nonlinear boundary conditions : slow oscillations of beams on elastic bearings
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Volume 20 (1993) no. 1, p. 133-146
@article{ASNSP_1993_4_20_1_133_0,
     author = {Feireisl, Eduard},
     title = {Nonzero time periodic solutions to an equation of Petrovsky type with nonlinear boundary conditions : slow oscillations of beams on elastic bearings},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 20},
     number = {1},
     year = {1993},
     pages = {133-146},
     zbl = {0794.73029},
     mrnumber = {1216001},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1993_4_20_1_133_0}
}
Feireisl, Eduard. Nonzero time periodic solutions to an equation of Petrovsky type with nonlinear boundary conditions : slow oscillations of beams on elastic bearings. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Volume 20 (1993) no. 1, pp. 133-146. http://www.numdam.org/item/ASNSP_1993_4_20_1_133_0/

[1] H. Brézis: Periodic solutions to nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc. 8, 409-426 (1983). | MR 693957 | Zbl 0515.35060

[2] H. Brézis - J.M. Coron - L. Nirenberg: Free vibrations for a nonlinear wave equation and the theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33, 667-689 (1980). | MR 586417 | Zbl 0484.35057

[3] G. Capriz: Self-excited vibrations of rotors, International Union of Theoretical and Applied Mechanics, Sympos. Lyngby/Denmark 1974, Springer-Verlag 1975. | Zbl 0318.73068

[4] G. Capriz - A. Laratta: Large amplitude whirls of rotors, Vibrations in Rotating Machinery, Churchill College, Cambridge 1976.

[5] E. Feireisl: Time periodic solutions to a semilinear beam equation, Nonlinear Anal. 12, 279-290 (1988). | MR 928562 | Zbl 0657.35089

[6] P.H. Rabinowitz: Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31, 31-68 (1978). | MR 470378 | Zbl 0341.35051

[7] A. Salvatore: Solutions of minimal period for a semilinear wave equation, Ann. Mat. Pura Appl. 155 (4), 271-284 (1989). | MR 1042839 | Zbl 0714.35052

[8] K. Tanaka: Forced vibrations for a superlinear vibrating string equation, Recent topics in nonlinear PDE III, Tokyo 1986, Lecture Notes Numer. Appl. Anal. 9, 247-266 (1987). | MR 928195 | Zbl 0651.35055

[9] G. Tarantello: Solutions with prescribed minimal period for nonlinear vibrating strings, Comm. Partial Differential Equations 12, 1071-1094 (1987). | MR 888007 | Zbl 0628.35007

[10] S. Timoshenko - D.H. Young - W. Weaverjr.: Vibrations Problems in Engineering, 4th ed., John Wiley and Sons, New York 1974.