Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

MICHAEL STRUWE Globally regular solutions to the *u*⁵ Klein-Gordon equation

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^{*e*} *série*, tome 15, n° 3 (1988), p. 495-513

<http://www.numdam.org/item?id=ASNSP_1988_4_15_3_495_0>

© Scuola Normale Superiore, Pisa, 1988, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Globally Regular Solutions to the u^5 Klein-Gordon Equation

MICHAEL STRUWE

1. - Introduction

Consider the non-linear wave equation

(1.1)
$$u_{tt} - \Delta u + u^p = 0 \text{ in } \mathbb{R}^3 \times \mathbb{R}_+$$

with initial data

(1.2)
$$u|_{t=0} = u_0, \ u_t|_{t=0} = u_1.$$

In 1961 K. Jörgens proved that, for p < 5, equation (1.1) admits a unique regular solution $u \in C^2$ for any Cauchy data $u_0 \in C^3$, $u_1 \in C^2$, see [1, Satz 2, p. 298].

The case p = 5 was later investigated by Rauch, who obtained global regularity for small initial energies

(1.3)
$$E_0 = \int_{\mathbb{R}^3} \left(\frac{1}{2} \left(|\nabla u_0|^2 + |u_1|^2 \right) + \frac{1}{6} |u_0|^6 \right) \, \mathrm{d}x < \frac{\pi}{\sqrt{3}}$$

see [3, Theorem, p. 347].

Rauch's approach, moreover, reveals that p = 5 arises as a limiting exponent for a Sobolev embedding relevant for problem (1.1), see [3, estimate (14), p. 346]. This and recent progress in elliptic equations involving limiting non-linearities has been our motivation for studying problem (1.1-2).

The supercritical case p > 5 seems to be open.

In this paper we show that Rauch's smallness assumption actually is unnecessary and that Jörgen's result continues to hold - at least for radially symmetric solutions - at the limiting exponent p = 5, which will be fixed from now on throughout this paper.

Pervenuto alla Redazione il 10 Dicembre 1987.

THEOREM 1.1. For any radially symmetric initial data $u_0 \in C^3(\mathbb{R}^3)$, $u_1 \in C^2(\mathbb{R}^3)$, $u_0(x) = u_0(|x|)$, $u_1(x) = u_1(|x|)$, there exists a unique, global, radially symmetric solution $u \in C^2(\mathbb{R}^3 \times [0, \infty[), u(x, t) = u(|x|, t)$ to the Cauchy problem (1.1-2), with p = 5.

The proof involves a blow-up analysis of possible singularities of equation (1.1). Thereby we heavily exploit "conformal invariance" of (1.1), i.e. invariance of (1.1) under scaling

(1.5)
$$u \to u_R(x,t) = R^{1/2}u(Rx,Rt).$$

Acknowledgement

I wish to thank Sergiu Klainerman for his interest and stimulating discussions at an early stage of this work and for bringing Jeffrey Rauch's paper [3] to my attention.

2. - Some fundamental estimates

In this section we recall Rauch's result for equation (1.1) and prove two basic integral estimates which result from testing (1.1) with suitable functions φ . Besides the standard choice $\varphi = u_t$ - which gives rise to the well-known "energy inequality", see Lemma 2.1 -, we will also use u and its radial derivative $x \cdot \nabla u$ as testing functions: the remaining components of the generator

$$rac{d}{dR} \ u_R|_{R=1} = t u_t + x \cdot
abla u + rac{1}{2} \ u$$

of the family (1.5). This will give rise to the crucial "Pohožaev-type identity" Lemma 2.2 (see [2] for a related result in an elliptic setting).

2.1 Notations

Denote z = (x, t) a generic point in space-time. The negative light-cone through $z_0 = (x_0, t_0)$ is given by

$$C(z_0) = \{(x,t) \mid t \leq t_0, |x - x_0| \leq t_0 - t\}.$$

Its mantle and space-like sections are denoted by

$$M(z_0) = \{(x,t) \in C(z_0) \mid |x-x_0| = t_0 - t\},$$

resp. by

$$D(z_0,t) = C(z_0) \cap (\mathbb{R}^3 \times \{t\}).$$

If $z_0 = (0, 0)$ the point z_0 will be omitted from this notation. Truncated cones will be denoted

$$C_s^t = C \cap (\mathbb{R}^3 \times [s,t]), \ C_s^0 = C_s, \ C_{-\infty}^t = C^t.$$

 $B_R(x_0)$ denotes the Euclidean ball

$$B_R(x_0) = \{x \in \mathbb{R}^{|3|} ||x - x_0| < R\}.$$

Again, if $x_0 = 0$ we simply write $B_R(0) = B_R$.

Finally, for a C^1 -function u and a space-like region $\Omega(t) \subset (\mathbb{R}^3 \times \{t\})$,

$$E(u; \Omega(t)) = \int_{\Omega(t)} e(u) \mathrm{d}x$$

denotes the energy of u in $\Omega(t)$, with density

$$e(u)=rac{1}{2}\,\,(|u_t|^2+|
abla u|^2)+rac{1}{6}\,\,|u|^6.$$

The letters c, C will denote generic positive constants, occasionally numbered for clarity.

2.2 The energy inequality

Let $u \in C^2(\mathbb{R}^3 \times] - \infty, 0]$ be a solution to (1.1). Actually, by finiteness of propagation speed, all estimates only require u to be C^2 near suitable sections of cones.

Multiply (1.1) by u_t . This gives the identity

(2.1)
$$\left(\frac{1}{2} \left(|u_t|^2 + |\nabla u|^2\right) + \frac{1}{6} |u|^6\right)_t - \operatorname{div}(\nabla u \cdot u_t) = 0.$$

If we integrate this expression over a section C_s^t of the negative light-cone, we obtain the following result:

Note that the outward normal to M_s^t is given by $n(x,t) = \frac{1}{\sqrt{2}} \left(\frac{x}{|x|}, 1\right)$; moreover, we recognize the energy density e(u) inside the left bracket of (2.1).

Rauch [3, p. 345] interprets the boundary integrand as follows:

(2.3)
$$\frac{\frac{1}{2} \left(|u_t|^2 + |\nabla u|^2 \right) + \frac{1}{6} |u|^6 - \frac{x}{|x|} \cdot \nabla u \cdot u_t}{\left| = \frac{1}{2} \left| \frac{x}{|x|} u_t - \nabla u \right|^2 + \frac{1}{6} |u|^6 = \frac{1}{2} |\nabla_y v|^2 + \frac{1}{6} |v|^6,}$$

where

(2.4)
$$v(y) = u(y, -|y|).$$

Thus we may state:

LEMMA 2.1. For any s < t < 0 there holds the energy estimate

$$E(u;D(t))+\int\limits_{B_{\lfloor s
floor}\setminus B_{\lfloor t
floor}}\left\{rac{1}{2}\,\,|
abla v|^2+rac{1}{6}\,\,|v|^6
ight\}\mathrm{d}y=E(u;D(s)),$$

where v is given by (2.4).

2.3 A Pohožaev-type identity

The next result apparently is new. This and Lemma 3.3 are the crucial ingredients in the proof of Theorem 1.1.

LEMMA 2.2. For u as above there holds

$$\begin{split} &\frac{1}{3}\int\limits_{C_{-1}}|u|^{6}\mathrm{d}x\mathrm{d}t+E(u;D(-1))\\ &\leq \int\limits_{D(-1)}u_{t}(x\cdot\nabla u+u)\mathrm{d}x+\int\limits_{B_{1}}\{|y|\ |\nabla v|^{2}+|\nabla v|\ |v|\}\mathrm{d}y, \end{split}$$

where v is given by (2.4).

PROOF. Multiply (1.1) by $tu_t + x \cdot \nabla u + u$. By (2.1) the contribution from the first term is

$$egin{aligned} 0 &= \left(t\left[rac{1}{2}\left(|u_t|^2+|
abla u|^2
ight)+rac{1}{6}\;|u|^6
ight]
ight)_t - \operatorname{div}(
abla u\cdot tu_t) \ &-\left(rac{1}{2}(|u_t|^2+|
abla u|^2)+rac{1}{6}\;|u|^6
ight). \end{aligned}$$

Similarly, we compute

$$\begin{split} 0 &= (u_{tt} - \Delta u + u^5)(x \cdot \nabla u) \\ &= \operatorname{div} \left(-x \ \frac{|u_t|^2}{2} - \nabla u(x \cdot \nabla u) + x \ \frac{|\nabla u|^2}{2} + x \ \frac{|u|^6}{6} \right) \\ &+ \{x \cdot \nabla u \ u_t\}_t + \frac{3}{2} \ |u_t|^2 - \frac{1}{2} \ |\nabla u|^2 - \frac{1}{2} \ |u|^6. \end{split}$$

Finally,

$$0 = (u_{tt} - \Delta u + u^5) \ u$$

= $\{u_t u\}_t - \operatorname{div}(\nabla u \cdot u) - |u_t|^2 + |\nabla u|^2 + |u|^6.$

Adding, we obtain that

$$egin{aligned} 0 &= rac{1}{3} \; |u|^6 + \left(t \left[rac{1}{2} \left(|u_t|^2 + |
abla u|^2
ight) + rac{1}{6} \; |u|^6
ight]
ight)_t + \left((x \cdot
abla u + u)u_t
ight)_t \ &- \operatorname{div} \; \left(x \; rac{|u_t|^2}{2} - x \; rac{|
abla u|^2}{2} +
abla u(x \cdot
abla u + u) +
abla u \cdot tu_t - x \; rac{|u|^6}{6}
ight). \end{aligned}$$

Thus, when we integrate this expression over the cone $C_{-1}^{-\epsilon}$, we obtain

(2.5)
$$\frac{\frac{1}{3}\int\limits_{C_{-1}}^{C_{-1}}|u|^{6}\mathrm{d}x\mathrm{d}t+E(u;D(-1))-\varepsilon \ E(u;D(-\varepsilon))}{=\int\limits_{D(-1)}^{C_{-1}}u_{t}(x\cdot\nabla u+u)\mathrm{d}x-\int\limits_{D(-\varepsilon)}^{C}u_{t}(x\cdot\nabla u+u)\mathrm{d}x+BI_{t}}$$

with BI denoting the following boundary integral

$$\begin{split} BI &= \frac{1}{\sqrt{2}} \int\limits_{M_{-1}^{-\epsilon}} \left[\left| t \right| \left(\left| u_t \right|^2 + \frac{\left| x \cdot \nabla u \right|^2}{\left| x \right|^2} \right) - 2x \cdot \nabla u \ u_t - \left(u_t - \frac{x}{\left| x \right|} \cdot \nabla u \right) u \right] \ \mathrm{d}o \\ &= \frac{1}{\sqrt{2}} \int\limits_{M_{-1}^{-\epsilon}} \left[\left| t \right| \ \left| u_t - \frac{x}{\left| x \right|} \cdot \nabla u \right|^2 - \left(u_t - \frac{x}{\left| x \right|} \cdot \nabla u \right) \dot{u} \right] \ \mathrm{d}o \\ &\leq \int\limits_{\{y: |y| \leq 1\}} \left[\left| y \right| \ \left| \nabla v \right|^2 + \left| \nabla v \right| \ \left| v \right| \right] \ \mathrm{d}y. \end{split}$$

By Lemma 2.1,

$$E(u;D(-arepsilon))\leq E(u;D(-1))$$

uniformly. Moreover, by Young's and Hölder's inequalities

$$\int\limits_{D(-arepsilon)} u_t (x \cdot
abla u + u) \mathrm{d}x \leq arepsilon \int\limits_{D(-arepsilon)} \left[|u_t|^2 + |
abla u|^2 + arepsilon^{-2} |u|^2
ight] \, \mathrm{d}x$$
 $\leq arepsilon \int\limits_{D(-arepsilon)} \left(|u_t|^2 + |
abla u|^2
ight) \, \mathrm{d}x + arepsilon \left(\int\limits_{D(-arepsilon)} |u|^6 \mathrm{d}x
ight)^{1/3} \leq C \, arepsilon.$

Hence we may pass to the limit $\varepsilon \to 0$ in (2.5) and the proof is complete.

qed

2.4 Small energy

Finally, we recall the integral representation

(2.6)
$$u(0,0) = \underline{u}(0,0) - \frac{1}{4\pi} \int_{M_{t_0}} |t|^{-1} u^5(x,t) do$$

for the value u(0,0) of a solution u of (1.1) in terms of the solution \underline{u} of the homogeneous wave equation

(2.7)
$$\underline{u}_{tt} - \Delta \underline{u} = 0,$$

sharing the Cauchy data u_0, u_1 of u at a time $t_0 < 0$:

(2.8)
$$\underline{u} = u_0 = u, \quad \frac{\partial}{\partial t} \quad \underline{u} = u_1 = \frac{\partial}{\partial t} \quad u \text{ at } t = t_0,$$

see [3, (10), p. 342].

We will only apply this formula for functions u which are of class C^2 in a neighborhood of C_t , for some t < 0.

Following Rauch [3], we turn (2.6) into a linear inequality for $\sup_{C_{t_0}} |u|$:

Suppose

$$\sup_{C_{t_0}} |u| = |u(0,0)|$$

is achieved at the origin. Then, if we let

$$\mu(s) = rac{1}{4\pi} \int\limits_{M_s} |t|^{-1} \ u^4(x,t) \mathrm{d} o = rac{\sqrt{2}}{4\pi} \int\limits_{B_{|s|}} |y|^{-1} \ v^4(y) \mathrm{d} y,$$

(2.6) implies the inequality, for any $s > t_0$,

(2.9)
$$(1-\mu(s)) \sup_{C_{t_0}} |u| \leq |\underline{u}(0,0)| - \frac{1}{4\pi} \int_{M_{t_0}^s} |t|^{-1} u^5(x,t) \mathrm{d} o.$$

By Hölder's inequality

(2.10)
$$\mu(s) = C \int_{B_{|s|}} |y|^{-1} v^4(y) \mathrm{d}y \le C \left(\int_{B_{|s|}} v^6 \mathrm{d}y \right)^{1/2} \left(\int_{B_{|s|}} \frac{v^2(y)}{|y|^2} \mathrm{d}y \right)^{1/2}.$$

Rauch now invokes Hardy's inequality

(2.11)
$$\int_{\mathbb{R}^3} \frac{\psi^2(y)}{|y|^2} \, \mathrm{d}y \leq 4 \int_{\mathbb{R}^3} |\nabla \psi|^2 \mathrm{d}y, \ \forall \psi \in C_0^\infty(\mathbb{R}^3)$$

to estimate the last integral in (2.10).

If integration extends only over a bounded domain B_{2R} , (2.11) is not immediately applicable. However, if we truncate with a smooth localizing function $\eta \in C_0^{\infty}(\mathbb{R}^3)$ satisfying the conditions: $\eta \equiv 1$ on B_R , $\eta \equiv 0$ off B_{2R} , $0 \leq \eta \leq 1$, $|\nabla \eta| \leq C/R$, then with absolute constants C there holds

(2.12)

$$\int_{B_{2R}} \frac{\psi^{2}(y)}{|y|^{2}} dy \leq \int_{B_{2R}} \frac{(\psi\eta)^{2}}{|y|^{2}} dy + \int_{B_{2R}\setminus B_{R}} \frac{\psi^{2}}{|y|^{2}} dy \\
\leq 4 \int_{B_{2R}} |\nabla(\psi\eta)|^{2} dy + R^{-2} \int_{B_{2R}} \psi^{2} dy \\
\leq C \int_{B_{2R}} |\nabla\psi|^{2} dy + C R^{-2} \int_{B_{2R}} \psi^{2} dy \\
\leq C \int_{B_{2R}} |\nabla\psi|^{2} dy + C \left(\int_{B_{2R}} \psi^{6} dy\right)^{1/3}, \\
\forall \psi \in C^{1}(B_{2R}).$$

Using (2.12) and the energy inequality, Lemma 2.1, the number $\mu(s)$ from (2.10) may now be estimated

(2.13)
$$\mu(s) \leq C \left(\int_{B_{|s|}} v^6 dy \right)^{1/2} \left(\int_{B_{|s|}} |\nabla v|^2 dy + \left(\int_{B_{|s|}} v^6 dy \right)^{1/3} \right)^{1/2} \\ \leq C_0 \left[E(u; D(s)) + E(u; D(s))^{2/3} \right].$$

The remaining terms in (2.9) are easily bounded using Hölder's inequality

(2.14)
$$\int_{M_{t_0}^s} |t|^{-1} |u|^5 do \leq C \int_{B_{|t_0|} \setminus B_{|s|}} |y|^{-1} |v|^5 dy$$
$$\leq C |s|^{-1/2} \left(\int_{B_{|t_0|}} v^6 dy \right)^{5/6} \leq C_1 |s|^{-1/2} E(u; D(t_0))^{5/6} dx$$

From (2.9), (2.13) we immediately obtain Rauch's regularity result for small initial energies - while the more refined estimate (2.14) will be useful later on.

THEOREM 2.3. (Rauch [3]). Suppose u is a C^2 -solution of (1.1) in a neighborhood of C_{t_0} with initial data $u = u_0$, $u_t = u_1$ on $D(t_0)$. There exists an absolute constant $\varepsilon_0 > 0$ with the property:

If $E(u; D(t_0)) \leq \varepsilon_0$, then

$$|u(x,t)| \leq 2 \sup_{C_{t_0}} |\underline{u}| \text{ for all } (x,t) \in C_{t_0},$$

where \underline{u} denotes the solution to the Cauchy-problem (2.7-8) for the homogeneous equation.

PROOF. By passing to a smaller cone $\tilde{C} \subset C_{t_0}$, if necessary, we may assume that

$$\sup_{C_{t_0}} |u| = |u(0,0)|.$$

Determine $\varepsilon_0 > 0$ such that $C_0(\varepsilon_0 + \varepsilon_0^{2/3}) = \frac{1}{2}$. Applying (2.9), (2.13) with $s = t_0$ the Theorem follows.

qed

Note that there is a converse result to Theorem 2.3:

PROPOSITION 2.4. Suppose u is a C^2 -solution of (1.1) in a neighborhood of $C_{t_0} \setminus \{0\}$ with initial data $u = u_0 \in C^3$, $u_t = u_1 \in C^2$ on $D(t_0)$, and suppose that $|u(z)| \to \infty$ as $z \to 0$, $z \in C_{t_0} \setminus \{0\}$. Then for any $t \in [t_0, 0]$ there holds

$$E(u; D(t)) \geq \varepsilon_0 > 0,$$

where ε_0 is the constant of Theorem 2.3.

PROOF. Suppose $E(u; D(t)) \leq \varepsilon_0$ for some $t \in [t_0, 0]$. Note that, since by assumption $|u(z)| \to \infty$ as $z \to 0$, there exists a sequence $\delta_m \to 0$, $\delta_m > 0$, such that $\sup_{C_{t_0}^{-\delta_m}} |u|$ is attained in $D(-\delta_m)$. Hence (2.9), (2.13-14) are applicable

in suitable cones $C_{t_0}(z_m) \subset C_{t_0}$, with $z_m \in D(-\delta_m)$, and we obtain

(2.15)
$$\frac{1}{2} \sup_{C_{t_0}^{-\delta_m}} |u| \leq \sup_{C_{t_0}} |\underline{u}| + C|t|^{-1/2}.$$

Since (2.15) holds for arbitrarily small $\delta_m > 0$, there results a contradiction, and the proof is complete.

qed

3. - Proof of Theorem 1.1

Let $u_0 \in C^3(\mathbb{R}^3)$, $u_1 \in C^2(\mathbb{R}^3)$ with $u_0(x) = u_0(|x|)$, $u_1(x) = u_1(|x|)$ be given radial functions. By [1; Satz 1, p. 297] the Cauchy problem (1.1-2) admits a unique (and hence radially symmetric) C^2 -solution u(x,t) = u(|x|,t)locally, i.e. in a neighborhood of $\mathbb{R}^3 \times \{0\}$.

Suppose (by contradiction) that u is not globally regular. Then there is a singularity $\overline{z} = (\overline{x}, \overline{t})$ such that $|u(z)| \to \infty$ as $z \to \overline{z}, z \in C_0(\overline{z})$, see [1, p. 301]. Replacing \overline{z}_0 by another singular point in $S = \{(x,t): 0 \le t < \overline{t}, |x| \le |\overline{x}| + \overline{t} - t\}$, if necessary, we may assume that $u \in C^2$ in S.

Radial symmetry implies

LEMMA 3.1. $\overline{x} = 0$, in particular $u \in C^2(\mathbb{R}^3 \times [0, \overline{t}])$.

PROOF. By Proposition 2.4 and since u(x, t) = u(|x|, t):

$$E(u;D(z,t))\geqarepsilon_0$$

for any $z = (x, \overline{t}), |x| = |\overline{x}|$, and any $t < \overline{t}$.

Now, if $|\overline{x}| > 0$, for any given $K \in \mathbb{N}$ we can choose points x_1, \dots, x_K satisfying $|x_k| = |\overline{x}|, 1 \le k \le K$, and $t < \overline{t}$ such that with $z_k = (x_k, \overline{t})$ we have:

$$D(z_j,t)\cap D(z_k,t)=\emptyset, \ j\neq k.$$

But then, letting $T = |\overline{x}| + \overline{t}$, Z = (0, T), by Lemma 2.1:

$$egin{aligned} K \ arepsilon_0 &\leq \sum_{k=1}^K E(u; D(z_k, t)) = E\left(u; igcup_{k=1}^K \ D(z_k, t)
ight) \ &\leq E(u; D(Z, t)) \leq E(u; D(Z, 0)) < \infty, \end{aligned}$$

uniformly in K, and for large K we obtain a contradiction.

Hence a singularity is first encountered on the line $\{x = 0\}$.

qed

For convenience we shift coordinates such that $\overline{z} = 0$ in our new coordinate frame, and denote $-\overline{t} = t_0$. Thus our solution u is transformed into a solution (indiscriminately denoted by u) of (1.1), of class C^2 in a neighborhood of $C_{t_0} \setminus \{0\}$, which becomes unbounded as $z \to 0$, $z \in C_{t_0} \setminus \{0\}$.

Denote by \underline{u} the solution of the homogeneous wave equation (2.7) sharing the Cauchy data of u at t_0 . \underline{u} is uniformly bounded in a closed neighborhood of C_{t_0} .

For $R_m = 2^{-m}$, $m \in \mathbb{N}$, define the blown-up functions

$$u_m(x,t) = R_m^{1/2} u(R_m x, R_m t).$$

Each u_m is of class C^2 in a neighborhood of a deleted cone $C_{t_m} \setminus \{0\}, t_m = t_0/R_m$.

As in (2.4) we denote the trace of u_m on M_{t_m} by

$$v_{m}(y) = u_{m}(y, -|y|) = R_{m}^{1/2}v(R_{m}y).$$

Relabelling $\{u_m\}$, if necessary, we may assume that $t_0 \leq -1$.

Note that for any m, any $t \in [t_m, 0]$, by Lemma 2.1:

$$(3.1) E(u_m; D(t)) \le E(u_m; D(t_m)) = E(u; D(t_0)) =: E_0 < \infty.$$

On the other hand, since u_m becomes unbounded at 0, by Proposition 2.4:

(3.2)
$$E(u_m; D(t)) \ge \varepsilon_0, \quad \text{for all } t \in [t_m, 0[,$$

for any $m \in \mathbb{N}$.

By Lemma 2.1 the energy E(u, D(t)) is non-increasing in t, hence tends to a positive (by (3.2)) limit as $t \to 0$. But then, by Lemma 2.1 again,

(3.3)
$$\int_{B_{1}\setminus B_{|t|}} \left(\frac{1}{2} |\nabla v_{m}|^{2} + \frac{1}{6} |v_{m}|^{6}\right) dy$$
$$= \int_{B_{R_{m}}\setminus B_{|t|R_{m}}} \left(\frac{1}{2} |\nabla v|^{2} + \frac{1}{6} |v|^{6}\right) dy$$
$$\leq E(u; D(-R_{m})) - E(u; D(tR_{m})) \to 0,$$

as $m \to \infty$, uniformly in t < 0.

LEMMA. 3.2. There exists t < 0 such that, for some $s_m \in [-1, t]$, there holds

(3.4)
$$\int_{D(s_m)} (u_m)_t \ u_m \ \mathrm{d}x \leq o(1),$$

where $o(1) \rightarrow 0$ as $m \rightarrow \infty$.

PROOF. We may assume that

$$\int_{D(-1)} u_m^2 \mathrm{d}x \ge C_2 > 0.$$

(Otherwise we can choose $s_m = -1$ to achieve our claim). Choose $t \in]-1, 0[$ such that

$$\int_{D(t)} u_m^2 \mathrm{d}x \le ct^2 \left(\int_{D(t)} u_m^6 \mathrm{d}x \right)^2$$
$$\le c \ t^2 \ E(u_m; D(t))^{1/3} \le c \ t^2 < C_2.$$

Suppose by contradiction that

$$\int\limits_{D(s)} (u_m)_t \ u_m \mathrm{d}x \ge C_3 > 0$$

uniformly in $m \in \mathbb{N}$, for all $s \in [-1, t]$. Then by (3.3) we obtain

$$\int_{D(t)} u_m^2 dx - \int_{D(-1)} u_m^2 dx$$

= $2 \int_{C_{-1}^t} (u_m)_t \ u_m dx dt - \frac{1}{\sqrt{2}} \int_{M_{-1}^t} u_m^2 do \ge 2(1+t)C_3 - o(1),$

which, for large m, is in conflict with our choice of t.

qed

Since $\{s_m\}$ is bounded away from 0, we may scale with s_m to achieve (3.4) with $s_m = -1$ for all *m*. Note that with this change of scale the ratio R_m/R_{m+1} remains uniformly bounded, i.e. there exists R > 0 such that

(3.5)
$$0 < R^{-1} \le |R_m/R_{m+1}| \le R < \infty$$
, for all m .

Now apply Lemma 2.2:

$$egin{aligned} &rac{1}{3}\int\limits_{C_{-1}}u_m^6\mathrm{d}x\mathrm{d}t+E(u_m;D(-1))\ &\leq\int\limits_{D(-1)}(u_m)_t\ x\cdot
abla u_m\ \mathrm{d}x+o(1). \end{aligned}$$

It follows that

(3.6)
$$\int_{C_{-1}} |u_m|^6 dx dt$$
$$+ \int_{D(-1)} \left\{ (1 - |x|) \left[|(u_m)_t|^2 + |\nabla u_m|^2 \right] + |x| \left| \frac{x}{|x|} (u_m)_t - \nabla u_m \right|^2 + |u_m|^6 \right\} dx \to 0,$$

as $m \to \infty$.

LEMMA 3.3. There exists a sequence $\Lambda \subset \mathbb{N}$ such that

$$\liminf_{m\to\infty,m\in\Lambda} \sup_{C_{t_m}^{-1}} |u_m| > 0.$$

PROOF. Suppose by contradiction that

$$\begin{split} \sup_{C_{t_m}^{-1}} |u_m| &= R_m^{1/2} \sup_{C_{t_0}^{-R_m}} |u| \\ &\geq R^{-1/2} \sup_{s \in [-R_{m-1} - R_m]} \left(|s|^{1/2} \sup_{C_{t_0}^{s}} |u| \right) \to 0, \text{ as } m \to \infty \end{split}$$

I.e. if we let

$$g(t) = |t|^{1/2} \sup_{C_{t_0}^t} |u|,$$

g is continuous and satisfies

$$g(t) \rightarrow 0 \quad (t \rightarrow 0).$$

Also denote

$$h(t) = \sup_{s \ge \max\{t, -1\}} g(s).$$

Then h is continuous, non-increasing, and satisfies $h(t) \equiv h(-1)$, for $t \leq -1$, and $h(t) \rightarrow 0$ $(t \rightarrow 0)$.

Now the proof proceeds as follows: first we establish that h(t) decays with a certain power of $|t|: h(t) \le c|t|^{\varepsilon}$, $(t \to 0)$.

In a second step we use this decay estimate to prove that u is uniformly bounded near 0 - which will yield the desired contradiction.

i) Suppose h(t) = g(s) for some $s \ge t \ge -1$ and that g(s) is attained at $\tilde{z} = (\tilde{x}, \tilde{t})$, where $s \ge \tilde{t} = \lambda t$, $|u(\tilde{z})| = \sup_{C_{t_0}^s} |u| = \sup_{C_{t_0}^s} |u|$. Note that

if $\lambda = \lambda(t) > 1$:

$$h(t) = g(s) = |s|^{1/2} |u(\tilde{z})| \le |t|^{1/2} |u(\tilde{z})| \le g(t) \le h(t)$$

i.e.

$$s=t;\,\,h(t)=|t|^{1/2}\,\,|u(ilde{z})|\,.$$

Similarly, for $\bar{t} \in]\tilde{t}, t]$,

$$h(ar{t}) = \sup_{ar{t} \leq s} |g(s)| = |ar{t}|^{1/2} |u(ilde{z})| = \left|rac{ar{t}}{ar{t}}
ight|^{1/2} h(ilde{t}).$$

In particular, $\lambda(\bar{t}) = \frac{\tilde{t}}{\bar{t}} > 1$. Denote

$$J = \{t \in]-1, 0[: \lambda(t) > 1\}.$$

Remark that J consists of a union of left open intervals I and, for any pair $s \leq t$ belonging to such an interval I, there holds

$$h(t) = \left|rac{t}{s}
ight|^{1/2}h(s).$$

In particular, for any $\varepsilon \in]0, \mu]$, $0 < \mu \le \frac{1}{2}$, there holds

(3.7)
$$(h(t)+|t|^{\mu}) \leq \left|\frac{t}{s}\right|^{s} (h(s)+|s|^{\mu}), \text{ for all } s \leq t \in I.$$

On the other hand, if $\lambda \leq 1$, by (2.6)

$$(3.8) h(t) = g(s) = |s|^{1/2} |u(\tilde{z})|
\leq |s|^{1/2} |\underline{u}(\tilde{z})| + c|s|^{1/2} \int_{M_{t_0}(\tilde{z})} |\tilde{t} - \tau|^{-1} |u(y, \tau)|^5 d\sigma
\leq c|t|^{1/2} + c|\tilde{t}|^{1/2} \int_{-1}^{\tilde{t}} |\tilde{t} - \tau| \sup_{C_{t_0}} |u|^5 d\tau
= c|t|^{1/2} + c|\tilde{t}|^{1/2} \int_{-1}^{\tilde{t}} |\tilde{t} - \tau| g^5(\tau) |\tau|^{-5/2} d\tau
\leq c|t|^{1/2} + c|t|^{1/2} \int_{-1}^{\tilde{t}} \lambda^{1/2} g^5(\tau) |\tau|^{-3/2} d\tau$$

$$\leq c|t|^{1/2}+c|t|^{1/2}\int\limits_{-\lambda^{-1}}^t g^5(\lambda au) | au|^{-3/2}\mathrm{d} au$$

 $\leq c|t|^{1/2}+c|t|^{1/2}\int\limits_{-1}^t h^5(au) | au|^{-3/2}\mathrm{d} au.$

Now choose $\mu = \frac{1}{5}$, and denote $t_1 = t^{\mu} := t|t|^{\mu-1} < t$. Since h is non-increasing and bounded we obtain from (3.8):

$$\begin{split} &(h(t)+|t|^{\mu}) \\ &\leq C|t|^{1/2}+|t|^{\mu}+C|t|^{1/2}\int\limits_{t^{\mu}}^{t}h^{5}(\tau) |\tau|^{-3/2}\mathrm{d}\tau+C|t|^{1/2}\int\limits_{-1}^{t^{\mu}}h^{5}(\tau) |\tau|^{-3/2}\mathrm{d}\tau \\ &\leq C|t|^{1/2}+|t|^{\mu}+C|h^{5}(t^{\mu})+C|t|^{1/2}\sup_{\tau<0}h^{5}(\tau)\left(|t|^{-\mu/2}-1\right) \\ &\leq C|t|^{1/2}+|t|^{\mu}+C|t|^{(1-\mu)/2}+C|h^{5}(t^{\mu}) \\ &\leq C\left(|t|^{\mu}+h^{5}(t^{\mu})\right)\leq C_{4}\left(h(t_{1})+|t_{1}|^{\mu}\right)^{5}. \end{split}$$

Iteratively define $t_k = t_{k-1}^{\mu} < t_{k-1}$, $k = 1, \dots, K$. Suppose $\lambda(t_k) \leq 1$ for all $k = 1, \dots, K - 1$. Then

$$egin{aligned} h(t) &\leq (h(t)+|t|^{\mu}) \leq C_4 \left(h(t_1)+|t_1|^{\mu}
ight)^5 \ &\leq C_4^6 \left(h(t_2)+|t_2|^{\mu}
ight)^{25} \leq \cdots \leq C_4^{k=0} \int_4^{K-1} \int_0^{5^k} \left(h(t_K)+|t_K|^{\mu}
ight)^{5^K} \ &= \left[C_4^{1/4} \left(h(t_K)+|t_K|^{\mu}
ight)
ight]^{5^K-1} \cdot \left(h(t_k)+|t_K|^{\mu}
ight). \end{aligned}$$

I.e., if for some $\varepsilon > 0$:

(3.9)
$$C_4^{1/4}(h(t_K) + |t_K|^{\mu}) \le |t_K|^{\epsilon}$$

it follows that

(3.10)
$$h(t) + |t|^{\mu} \leq \left(\left| \frac{t_K^{5^K}}{t_K} \right| \right)^{\varepsilon} (h(t_K) + |t_K|^{\mu})$$
$$= \left| \frac{t}{t_K} \right|^{\varepsilon} (h(t_K) + |t_K|^{\mu}).$$

Note that, since $h(t) \to 0$ $(t \to 0)$, there exist $T \in]-1, 0[, \varepsilon \in]0, \mu[$ such that (3.9) holds whenever $t_K \in [T^{\mu}, T]$. But then also (3.10) holds for all such t, t_K , provided $\lambda(t), \lambda(t_k) \leq 1, k = 1, \ldots, K-1$.

Now choose any $\tau = \tau_0 > T$ and define a sequence $\tau_1, \tau_2, \cdots \tau_K$ as follows:

$$au_{k+1} = \left\{ egin{array}{ccc} au_k^\mu, \ ext{if} \ \lambda(au_k) \leq 1 \ & , \ k \in \mathbb{N}_0, \ ilde{ au}_k, \ ext{if} \ \lambda(au_k) > 1 \end{array}
ight.$$

where $\tilde{\tau}_k$ denotes the left end-point of the interval $I \subset J$ containing τ_k , if $\lambda(\tau_k) > 1$, and where

$$K = \sup \{k \in \mathbb{N} \mid \tau_{k-1} > T\}.$$

Note that

$$| au_{k+2}/ au_k| \ge | au_k|^{\mu-1} \ge |T|^{\mu-1} > 1,$$

if $\tau_k \ge \tau_{k+2} > T$. Hence K exists and is finite, for every $\tau < 0$. Combining (3.7) and (3.10) we see that

$$h(au) \leq (h(au)+| au|^{\mu}) \leq \left|rac{ au}{ au_K}
ight|^{arepsilon} \ (h(au_K)+| au_K|^{\mu}) \leq C| au|^{arepsilon},$$

i.e.

$$\sup_{C_{t_0}^{\mathbf{t}}} \ |u| = g(t) \ |t|^{-1/2} \leq h(t) \ |t|^{-1/2} \leq C |t|^{\varepsilon - rac{1}{2}}.$$

ii) Denote

$$\overline{\gamma} = \inf \left\{ \gamma > 0 : |t|^{\gamma} \sup_{C_{t_0}^t} |u| \le C < \infty \text{ uniformly in } t
ight\}.$$

By part i) $\overline{\gamma} < \frac{1}{2}$ and we may choose $\gamma > \overline{\gamma}$ such that $\mu := 5\gamma - 2 < \overline{\gamma}, \ \mu \neq 0$. Define

$$f(t) = |t|^{\gamma} \sup_{C_{t_0}^t} |u|.$$

Note that f(t) is uniformly bounded, continuous and satisfies $f(t) \to 0$ as $t \to 0$. By (2.6), for all $z = (x, t) \in C_{t_0} \setminus \{0\}$:

$$\begin{aligned} |u(z)| &\leq |\underline{u}(z)| + \frac{1}{4\pi} \int_{M_{t_0}(z)} |t - \tau|^{-1} |u(\xi, \tau)|^5 \, \mathrm{d}o(\xi, \tau) \\ &\leq C + C \int_{t_0}^t |t - \tau| \, f^5(\tau) \, |\tau|^{-5\gamma} \mathrm{d}\tau \\ &\leq C + C \, \sup_{\tau < 0} \, f^5(\tau) \int_{t_0}^t |\tau|^{1 - 5\gamma} \mathrm{d}\tau \leq C + C |t|^{2 - 5\gamma}. \end{aligned}$$

First suppose $\mu > 0$. Then from (3.11) we obtain

$$|t|^{\mu}|u(x,t)| \leq C|t|^{\mu} + C \leq C,$$

uniformly for all $z = (x, t) \in C_{t_0} \setminus \{0\}$, which contradicts the definition of $\overline{\gamma}$.

Thus $\mu \leq 0$. But then by (3.11) u is uniformly bounded in $C_{t_0} \setminus \{0\}$, contrary to hypothesis.

ged

To proceed with the proof of Theorem 1.1, let $z_m = (x_m, s_m) \in C_{t_m}^{-1}$, $m \in \Lambda$, satisfy

$$(3.12) |u_m(z_m)| = \sup_{C_{t_m}^{s_m}} |u_m| = \min\{1, \sup_{C_{t_m}^{-1}} |u_m|\} = R_m^{1/2} u(R_m x_m, R_m s_m).$$

Note that by Lemma 3.3

(3.13)
$$\liminf_{m\to\infty,m\in\Lambda} |u_m(z_m)| = 2 \ c_5 > 0;$$

in particular, by (3.12)

$$(3.14) R_m s_m \to 0, \ s_m \leq -1.$$

Now by (2.9), (2.13), (2.14), if $E(u_m; D(z_m, s)) < \varepsilon_0$ for some $s < s_m$:

$$egin{aligned} &c_5 \leq |u_m(z_m)| \leq 2 \;\; ig(R_m^{1/2} \underline{u}(R_m z_m) + c|s-s_m|^{-1/2}ig) \ &\leq o(1) + 2 \;\; c|s-s_m|^{-1/2} \leq o(1) + rac{1}{2} \;\; c_5, \end{aligned}$$

provided $s \leq s_m - c_6$ for some $c_6 > 0$.

Since $c_5 > 0$, this is impossible for large *m*, and it follows that

$$E\left(u_{oldsymbol{m}};D(z_{oldsymbol{m}},s)
ight)\geqarepsilon_{0},$$

for $s \in [t_m, s_m - c_6]$, $m \ge m_0$. By radial symmetry

$$(3.15) E(u_m; D(z, s)) \ge \varepsilon_0$$

for such $s, m \ge m_0$, for all $z = (x, s_m)$ with $|x| = |x_m|$.

LEMMA 3.4. For any c > 0, any family $\{x^k\}_{1 \le k \le K}$ in \mathbb{R}^3 , with $|x^k| = r \ge 0$, $|x^j - x^k| \ge c^{-1}r$, $j \ne k$, there exists $\sigma_m \in [t_m, s_m - c_6]$ such that

(3.16)
$$E\left(u_m; \bigcup_{j\neq k} D(z^j, \sigma_m) \cap D(z^k, \sigma_m)\right) \to 0$$

as $m \to \infty$, $m \in \Lambda$, where $z^i = (x^i, s_m)$.

PROOF. Since $|s_m| \ge 1$, by uniform convexity of balls in \mathbb{R}^3 , there exists $\varepsilon > 0$ such that

$$D(z^j,s)\cap D(z^k,s)\subset \{x\in D(s)\ :\ |x|<(1-arepsilon)|s|\}=:D^{arepsilon}(s)$$

for all $j \neq k$, $s \in [R(s_m - c_6), s_m - c_6] =: I_m$. (Note that

$$|Rs_{m}| \leq \frac{R}{R_{m}} |R_{m}s_{m}| \leq c|t_{m}| |R_{m}s_{m}| = o(|t_{m}|),$$

by (3.14). Hence $R(s_m - c_6) \ge t_m$, for $m \ge m_0$). Now by (3.5), there exists k(m) such that

$$\sigma_m := -rac{R_{k(m)}}{R_m} \in I_m.$$

Observe that by (3.14) again:

$$R_{k(m)} = -\sigma_m R_m \le c |s_m| R_m \to 0,$$

hence $k(m) \to \infty$, $(m \to \infty, m \in \Lambda)$. But then by (3.6)

$$egin{aligned} E\left(u_m; D^{arepsilon}(\sigma_m)
ight) &= E\left(u_{k(m)}; D^{arepsilon}(-1)
ight) \ &\leq c \cdot arepsilon^{-1} \int\limits_{D(-1)} \left\{ (1-|x|) \ \left(|(u_{k(m)})_t|^2 + |
abla u_{k(m)}|^2
ight) \ &+ |x| \ \left|rac{x}{|x|}(u_{k(m)})_t -
abla u_{k(m)}
ight|^2 + |u_{k(m)}|^6
ight\} \,\mathrm{d}x o 0 \end{aligned}$$

as $m \to \infty$, $m \in \Lambda$.

This proves the claim.

qed

We can now complete the proof of Theorem 1.1.

Given $K \in \mathbb{N}$, we can find c > 0 such that, for any $m \in \mathbb{N}$, there are K points x_m^j , $1 \le j \le K$ such that $|x_m^j| = |x_m|$, $|x_m^j - x_m^k| \ge c^{-1} |x_m|$ for all $1 \le j \ne k \le K$. Denote $z_m^j = (x_m^j, s_m)$.

Let $\sigma_m \in [t_m, s_m]$ denote the number determined in Lemma 3.4 for the family $\{x_m^j\}$.

By (3.15-16) and (3.1)

$$egin{aligned} &Karepsilon_0 &\leq \sum_{j=1}^K E(u_m; D(z_m^j, \sigma_m)) \ &\leq E(u_m; igcup_{j=1}^K D(z_m^j, \sigma_m)) \ &+ \sum_{j
eq k} E(u_m; D(z_m^j, \sigma_m) \cap D(z_m^k, \sigma_m)) \ &\leq E(u_m; D(\sigma_m)) + o(1) \leq E_0 + o(1), \end{aligned}$$

where $o(1) \to 0$ as $m \to \infty$, $m \in \Lambda$.

For K sufficiently large we obtain a contradiction, and the proof is complete.

qed

4. - A Remark on the non-symmetric case

Estimate (3.6) suggests that, also in the non-symmetric case, singularities tend to build up in a rotationally symmetric pattern. Using this observation, it is possible to extend our results to arbitrary initial data $u \in C^3$, $u_1 \in C^2$, provided the modulus of continuity of the blow-up functions u_m , restricted to $C_{t_m}^{s_m}$ (where u_m is uniformly bounded by 1), can be uniformly bounded.

Added in proof

Generalizations of (1.1-2) to higher dimensions were studied for intance by Brenner and von Wahl [4] or Pecher [5], where results analogous to those found by Jörgens in dimension 3 were obtained. See [4] for further references.

REFERENCES

- [1] K. JÖRGENS, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Math. Z. 77 (1961), pp. 295-308.
- [2] S.I. POHOŽAEV, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$. Doklady, 165 (1965), pp. 1408-1411.

- J. RAUCH, The u⁵ Klein-Gordon equation, in Nonlinear PDE's and applications, Ed. Brezis, Lions; Pitman Research Notes in Math. 53 (1981), pp. 335-364.
- P. BRENNER W. VON WAHL, Global classical solutions of nonlinear wave equations, Math. Z. 176 (1981), pp. 87-121.
- [5] H. PECHER, Ein nichtlinear Interpolationsatz und seine Anwendung auf nichtlineare Wellengleichungen, Math. Z. 161 (1978), pp. 9-40.

Mathematik, ETH-Zentrum, CH-8092 Zürich Switzerland