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The Arithmetic-Geometric Mean and Its Generalizations
for Noncommuting Linear Operators

ROGER D. NUSSBAUM* - JOEL E. COHEN+

Echan 9 es Annales

Introduction

The arithmetic-geometric mean (to be defined in a moment) is the limit
of an iterative process that operates recursively on pairs of positive real
numbers. For over two centuries, an enormous amount of effort by some
great mathematicians has been devoted to understanding and to generalizing
the arithmetic-geometric mean. There have been two simple reasons why all
this attention has been devoted to what is in essence a very humble idea. First,
the limit has an important meaning or use that a priori could hardly be suspected
from the definition of the iterative process. Specifically, the limit can be used to
compute elliptic integrals, which are of substantial mathematical and scientific
interest. Second, the iterative process converges to its limit with exceptional
rapidity (quadratically-also to be defined later), so that very few iterative steps
are required to approximate the limit very closely.

A large classical literature concerns generalizations of the arithmetic-
geometric mean, or what could be called means and their iterations (see [6]).
This paper concerns extensions of the arithmetic-geometric mean and of the
classical generalizations from the case that the variables are real numbers to the
case that the variables are linear operators. As in the case of positive numbers
we are interested in three questions (for each generalization): the existence of a
limit, the speed of convergence to the limit, and possible explicit formulas for
the limit (for example, in terms of elliptic integrals). Though the machinery we
have developed and the results we have obtained are substantial, as witnessed
by the length of this paper, our success in achieving all three aims is not

complete. First, we prove the existence of a limit for all the iterations we
consider formally here. But for other interesting iterations, which appear to be
plausible operator-theoretic generalizations of the arithmetic-geometric mean for
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positive numbers, we observe numerically an apparent convergence to a limit
but are unable to explain the observation mathematically. Hence we do not
believe we have the last word on the existence of limits for generalizations
of the arithmetic-geometric mean to linear operators. Second, for simplicity
we establish a quadratic rate of convergence only for the "monster algorithm"
considered in Section 3 below, although we believe a similar analysis can be
used to determine, in all the other examples we treat, whether convergence is

linear or quadratic. Third, we interpret the limiting linear operator in terms of
elliptic integrals only for a small subset of the iterations whose limits we prove
to exist. Even classically, explicit integral formulas for limits of iterated means
are known only for a few examples which are very close to the arithmetic-
geometric mean. However, in our case (see Section 4), we give a family, indexed
by real numbers A &#x3E; 1, of reasonable definitions of the arithmetic-geometric
mean of two linear operators A and B; but we only obtain an explicit integral
formula when A = 1.

On balance, the results of this paper are largely foundational: we prove
the existence of limits for a wide variety of operator-theoretic generalizations,
many apparently new, of the arithmetic-geometric mean. Though our success
in finding explicit integral formulas for the limits is limited, it is possible
that these results, and future extensions, will prove practically important for
numerical algorithms to compute functions of matrices that can be derived from
matrix elliptic integrals.

We now sketch the arithmetic-geometric mean and our results more

precisely.
If A and B are positive real numbers, define a map f by

If fk denotes the kth iterate of f, it is not hard to prove that there is a positive
number M = M (A, B) such that

The number M is called the "arithmetic-geometric mean of A and B" or the
AGM of A and B." First Landen, then Lagrange and finally Gauss observed
independently that

Lagrange and Legendre used this observation to compute elliptic integrals.
Historical references to this work and to some of Gauss’ deeper work on the
AGM can be found in [6] and [15].
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An enormous literature concerning "means and their iterations" touches on
a wide range of mathematics [6]. For examples, if A and B are positive reals,
0  a, Q  1 and [11]

or p &#x3E; 0, q &#x3E; 0 and

then

where M is a positive number depending on A and B, and or p, q. One

can also study functions f which are functions of m variables, m &#x3E; 2, and try
to prove analogues of (0.4). Borchardt [9] considered the map

for positive reals A, B, C and D and proved (this is the easy part of his work)
that .

where M is a positive number depending on A, B, C and D. Many other

examples are mentioned in Section 2 below.
A first goal of this paper is to describe reasonable analogues of the AGM

and its generalizations when all the variables are positive definite, bounded, self-

adjoint linear operators on a Hilbert space. Abbreviating the phrase "positive
definite, bounded, self-adjoint linear operator" to "positive definite operator",
the first question is: what should be the analogue of (for A and B

positive reals) when A and B are positive definite More generally,
if satisfies di &#x3E; 0, 1  i  m, and 1 and Ai, 1 S i  m,

_ _
are positive reals, what is a reasonable analogue of A" 2 Am when the
variables Ai, 1  i  m, are positive definite operators? We suggest that a

m

reasonable analogue of it Aat is
;=1 ’
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If, for positive definite operators 1  j  m, and a real number r # 0 we
define ---

one can prove that

in the operator norm topology, so our suggestion dovetails nicely with certain
reasonable means.

Using (0.7), we give operator-valued analogues of maps f like those

mentioned before, and we prove convergence of f k ~ A, B ~ in the strong operator
topology. For example, a very special case of results in Section 2 is that if

0  a, fi  1, and A and B are positive definite operators, and

then there exists a positive definite operator E such that

The first two sections of this paper deal with the convergence of very

general operator-valued versions of extensions of the AGM. In Section 1, we

give results (Theorems 1.1 and 1.2) which enable one to prove convergence in
the strong operator topology of certain sequences of n-tuples of positive definite
linear operators. An example would be (Ak, Bk) -- with f as in (0.8).
The key idea in Sections 1 and 2 is to exploit the concavity of certain maps
A --+ g(A), for positive definite A, and to use the beautiful classical theory of
Loewner. In the applications in Section 2, we use only the concavity of the
maps A - log A and Ap (0  p  1) and the convexity of A --; A-1; the
full Loewner machinery is not needed.

The arguments simplify in the case of finite-dimensional matrices. Theorem
1.2, in particular, is not needed in the finite-dimensional case.

In Section 2, we use the convergence results of Section 1 to prove operator-
valued versions of convergence theorems for iterates of many classical means.
Our convergence theorems suggest that our conventions were reasonable and

provide an answer to the question raised in [6, p. 196] of how to extend
the usual means to noncommuting variables. The maps f we consider are not
usually order-preserving, so the general convergence results in Section 4 of [26]
(see [27] for a summary) are not applicable.

In Section 3, we extend the domain of M(A, B), the operator-valued AGM
of A and B, to pairs of bounded linear operators which are not necessarily
positive definite and self-adjoint, and prove that (A, B) - M(A, B) is analytic.
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The analogues of these questions are considered for a more general "monster
algorithm" introduced in [6]. We also consider the commutative case (AB = BA)
and prove an integral formula for M(A, B) analogous to that when A and B are
real. The commutative case was also treated in [32], but the discussion there
seems incomplete.

There are already numerous papers concerning operator-valued versions
of the AGM and other means. Section 4 of our paper displays the connection
between our operator-valued definition of the AGM and one introduced by Fujii
[19] and Ando and Kubo [5]. We prove that the two definitions are in general
different. However, there is a continuum of "reasonable" definitions of an AGM,
parametrized by A &#x3E; 1, such that A = 1 corresponds to that of Fujii-Ando-Kubo
and A = 00 corresponds to ours. For each A &#x3E; 1 and each pair of positive
definite operators A and B there exists in the limit a positive definite operator
Ex which is the AGM of A and B for the algorithm corresponding to A, and
generally E~ u.

1. - Convergence criteria for sequences of linear operators
We recall some standard notation and results. If X and Y are complex

Banach spaces, we denote by the set of bounded complex linear

operators from X to Y; X* = will denote the continuous complex
linear maps from X to C, the complex numbers. If X = Y, we shall write

L (X) instead of C (X, X). £(X, Y) is a Banach space in the standard norm,

IIAII = X and llxll  1}. If A G ~(X,X), a(A) will denote the
spectrum of A, so

is not one-one and onto}.

If D is an open neighborhood of a(A) and f : D - C is analytic, we define
f (A) in terms of Cauchy’s integral formula:

where r is a finite union of simple, closed rectifiable curves in D which
contains a (A) in its interior. An exposition of the basic results about this
functional calculus can be found in [17], [33] or [36].

Recall that if ~4 denotes the algebra of functions which are analytic on
an open neighborhood of a (A), then the map f -+ f ( A) defined by ( 1.1 ) is
an algebra homomorphism and a (f (A)) = /(cr(~4)). If g is analytic on an open
neighborhood of Q(B), where B = f (A), then g(B) = (g o f) (A).

If X and Y are real Banach spaces, ,~ ( ~, Y ) denotes the bounded, real
linear maps from X to Y. If A e C (X) and X denotes the complexification of X,
then A can be extended uniquely to a complex linear map A : fi - X, and we
define a (A), the spectrum of A, to be a (A). If f is analytic on a neighborhood
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of a(A) and = f (z) (where w denotes the complex conjugate of w), then
f ( A) ( ~) ~ X, so we define f ( A) = in this case.

Aside from the norm topology on C (X, X), there are also locally convex
topologies called the "strong operator topology" and the "weak operator
topology" (see [17], Chapter 6). If (Ak ) is a sequence of bounded linear

operators in and ,~ (~, X ) , then (A k) approaches A in the strong
operator topology as k - oc if, for X,

and Ak approaches A in the weak operator topology if, for X and

- -

If is a sequence of bounded linear operators which approaches a
bounded linear operator A in the weak operator topology, we shall write

Similarly, if (Ak) converges to A in the strong operator topology we shall write

and if we shall write

In this paper we shall also deal with sequences ( A ~ k ~ ) of ordered m-tuples of
bounded linear operators, so

where A i (k) c £(X, Y) for 1 - j :!~ m. We shall say the A (k) converges in

the strong operator topology to the m-tuple A = (Ai, A2, ... , Am) and write
A{k~ - A if

Similarly, we shall write A~ k ~ ~ A if - A; for 1  j  m and All ~ .~1
if A~k ~ ~ A for 1  j  rra. 

" 

If ~ is a complex Hilbert space with inner product  x, y &#x3E; and

.~ (H), then A is self-adjoint if  Ax, y &#x3E;= x, Ay &#x3E; for all x, y e H.
If A is self-adjoint and f : C is a continuous map, one can define

f (A). This definition agrees with that in (1.1) when f is analytic on an open
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neighborhood of A. If A E Z (H) is self-adjoint, we shall say that A is "positive
semidefinite" (sometimes called nonnegative definite) if

for all x E H

and A is "positive definite" if there exists e &#x3E; 0 such that

for all x E .~I with

We abbreviate "positive semidefinite" as "p.s.d.", "nonnegative definite" as

"n.n.d." and "positive definite" as "p.d.". Positive semidefiniteness induces a

partial ordering on the set of self-adjoint operators A E ~(~): if A and B are
bounded, self-adjoint operators, we write A  B if B- A is positive semidefinite.

Henceforth, whenever we say that A E C (H) is positive definite or positive
semidefinite, it will be assumed that A is self-adjoint.

If .~ denotes the set of bounded, self-adjoint p.s.d. linear maps in.£ (H),
then K is an example of a cone (with vertex at 0) in a Banach space Y = £(H);
and K°, the interior of I~, is the set of self-adjoint, p.d. operators in ,~ ~ ~) .
In general, if C is a subset of a Banach space Z, we say that C is a cone

(with vertex at 0) if C is a closed, convex subset of Z and (a) if x E C, then
C for all real numbers t &#x3E; 0 and (b) if x E C - then -x ¢ C. A cone

C induces a partial ordering on Z by x  y if and only if y - x E C. If D
is a subset of a Banach space Zi , Cl is a cone in Zl and C2 is a cone in a
Banach space Z2 and f : .D ---; Z2 is a map, we say that f is order-preserving
(with respect to the partial orderings induced in Zj by C~ ) if for all x and y in
D such that x  y (in the partial ordering induced by G1) one has f { x)  f ( y)
(in the partial ordering induced by C2). Usually we shall have Z1 - Z2 and
01 = C2. If D is convex, we say that f : D - Z2 is "convex" (with respect to
the partial ordering induced by C’2 ) if for all x and y in D and all real numbers
t with 0  t  1, one has

We shall say that f is strictly convex if f is convex and for all x =1= y in D

for

We shall say that f is concave (strictly concave) if - f is convex (strictly
convex).

Our first lemma is well-known for real-valued functions. The proof in our
generality is essentially the same and we omit it.

LEMMA 1.1. Let D be a convex subset of a Banach space Zi, O2 a cone
itz a Banach space Z2 and f : D - Z2 a map which is continuous on line

segnlents in D (so the map t - f ~ ~ 1 - + ty), 0 ~ t  1, is continuous for
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all x and y in D). If, with respect to the partial ordering induced by C2, one
has

for all x and y in D, then f is convex. If f : D -+ Z2 is convex and for all x
and y in D with y one has

then f is strictly convex. If 1  j  n, are nonnegative real numbers such

that and 1  j :!~, n, are any points in D and f is convex, then

If f is strictly convex and Sj &#x3E; 0 for 1  j  n, then equality holds in (1.6) if
and only if all the points xj are equal for 1  j  n.

We shall eventually need some continuity results for the strong operator
topology.

LEMMA 1.2. Suppose that (Lk) is a sequence of bounded linear maps of
a complex Banach space X to itself and that (Lk) converges to a bounded
linear operator L in the strong operator topology. Assume that a(Lk) C Band
a (L) C B, where B is a compact subset of the complex numbers, that D is a
bounded open neighborhood of B such that r = a D consists of a finite number
of simple, closed rectifiable curves and that f is a complex-valued function
which is defined and analytic on an open neighborhood of D. If there exists a
constant M such that

for all

then j(Lk) --~ j(L). If is an entire function, then f (Lk) --~ f(L). If
X is a Hilbert space and all the operators Lk are normal (or self-adjoint),
f (Lk) ~ f ~L)~

PROOF. For A E r and a fixed x E X one has

Applying the estimate in (1.7) yields

The uniform boundedness principle implies that there is a constant Mi such
that L ~~ ~ M, for all k &#x3E; 1. (A - is continuous in the
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operator norm, (1.8) implies that there is a constant independent of A e F,
such that 

~

for all

Inequality (1.8) and the fact that Lk ) --; L imply that

A version of the Lebesgue dominated convergence theorem now implies that

so f (Lk) - f ~L~.
If .X is a Hilbert space, A E r and Lk is normal, it follows that A - Lk

and (A - are normal, so (see [36])

Because o(Lk) g B and r are disjoint compact sets, (1.10) implies that (1.7)
is satisfied, so f (Lk) 2013~ f (L) by the first part of the lemma.

Finally, suppose X is a complex Banach space and f is entire. If
R = &#x3E; 11, we can take D =  2RI and for A E we

have 
-

so

Thus the first part of the lemma implies that f (Lk) --; f (L) in this case also. 0 .

REMARK &#x3E; . &#x3E;. The obvious analogue of Lemma 1.2 for the weak operator
topology is false. Let H be 12 and let 1 } be the standard orthonormal
basis for 1~ . For n &#x3E; 1, define a self-adjoint operator An : H - H by

for

for

One can easily prove that (An &#x3E; - 0, but (A 2) - I, the identity.
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Before stating our first theorem we recall some basic facts about matrices
with nonnegative entries. If M is an n x n matrix all of whose entries are

nonnegative, M is called "irreducible" if, for each ordered pair ~i, j ) with

1 S i, i  n, there exists an integer p &#x3E; 1 (possibly dependent on ~i, j ) ) such
that the entry in row I and column j of MP is strictly positive. The matrix M
is called "primitive" if there exists an integer p &#x3E; 1 such that all entries of MP

are strictly positive. If ~VI is an irreducible matrix with nonnegative entries and
r denotes the spectral radius of M, then r &#x3E; 0 and there exists a unique (within
scalar multiples) column vector u such that all entries of u are positive and

If M is primitive and if one defines Ml = (where r is the spectral radius
of M), then for any nonzero vector x, all of whose components are nonnegative,
one has

where u is the eigenvector in (1.11) and a is a positive number depending on
x.

If M = is a matrix with nonnegative entries, M is called "column-
stochastic" if 

n

for

and M is "row-stochastic" if

for

It is an elementary exercise in the theory of nonnegative matrices that the

spectral radius of any column-stochastic (or row-stochastic) matrix equals one.
Furthermore, a trivial argument shows that the product of column-stochastic (or
row-stochastic) matrices is column-stochastic (or row-stochastic).

Now suppose that M is a column-stochastic, primitive matrix with

nonnegative entries and let u be a column vector, all of whose entries are

positive, such that

If we normalize u by demanding

we know that u is unique. Define Mco to be the n x n matrix all of whose

columns equal u. If 1 ~ j  n, denotes the standard orthonormal basis
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of 5i. n, we know that is the jth column of Mk, and because ~~ is

column-stochastic, ( 1.12) implies that

We conclude from the previous equation that, if M is column-stochastic and

primitive, then

If .~ is a cone in a Banach space X, let ~’ denote the cone which is the
n-fold Cartesian product of K. Let Y denote the n-fold Cartesian product of
X with any of the standard norms. If M is an n x n matrix with nonnegative
entries, M induces a bounded linear map W of Y to Y by

where

It is easy to check that W(C) C C, that W(C - { 0 } j ç C - { 0 } if no row of
.~ is identically zero, and that (if KO is nonempty) Co if no column
of ~I is identically zero.

We are in a position to state our first theorem. For simplicity, we restrict
ourselves to the cone of p.s.d. bounded linear operators on a Hilbert space, but
versions of the following theorem can be given for more general cones.

THEOREM 1.1. Let K denote the cone of positive semidefinite, self-adjoint
bounded linear operators on a Hilbert space H. Let C denote the n-fold
Cartesian product of K, C = K x K x ... x K. Let Y denote the n-fold
Cartesian product of X = £(H, B) with itself, Y == X x X x... x X. Suppose
that f : CO --; CO is a continuous map and c~ : K° -; X is a continuous map
and Y by

Assume that for every A E CO there exist B E CO and positive reals a 
such that

and



250

for 0, where the partial ordering in (1.14) and (1.15) is induced by C
and f ~ is the j th iterate of f. Assume that there exists an n x n, primitive,
column-stochastic matrix M such that, for every A E Co,

Let u denote the unique column vector such that all components of ui
of u are positive and

and

and let 1ri denote the projection onto its ith coordinate. If, for A E Co,
we define 

. ,~, B ,., ’.. - ,

so ~~~~ _ 1ri f k (A)), there exists E E KO such that

Furthermore, for 1  i  n, one has

PROOF. If u is the eigenvector in the statement of the theorem, define, for
A = a function : by the formula

Inequality ( 1.16) implies, if A = (A,, A2, - - ., that

If we define Ek - ~ ( f k ~ .~ ) ~ , Ek - is an increasing sequence of bounded,
self-adjoint operators, and ( 1.14) and ( 1.15) imply that Ek - El is bounded


