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Threefolds of Non Negative Kodaira Dimension
with Sectional Genus Less than or Equal to 15.

ELVIRA LAURA LIVORNI - ANDREW JOHN SOMMESE

Let X be a smooth connected n dimensional subvariety of complex
projective space, PN. Assume that X has non negative Koidara dimension,
i.e. that some positive power of the canonical bundle Kx has a non-trivial
holomorpbic section. In this paper we use the results of [So3] to investigate
what the numerical invariants of such X are under the assumption that the
sectional genus g of X (i.e. the genus of X n pv-n+l for a generic linear
p1l-n+l ç PN) is small. This problem is studied most throughly under the
assumptions that n = 3 and g  15, but a number of partial results for
arbitrary g and n are shown.

In § 0 we recall background material and especially the results of [So3].
The latter results (see (0.8)) relate the surface S = X t1 PN-n+2 for a gen-
eral linear PN-11+2 to its minimal model S’. This lets us use the arguments
from the theory of minimal surface to prove a number of results about the
invariants of X. We also generalize a result of Griffiths and Harris [Gr-H]
by relaxing a hypothesis about a projective n fold X from « hn,O(X) # 0 »
to « X is of non negative Kodaira dimension ».

In § 1 we prove a number of general results. One example is the fol-
lowing.

(1.1) THEOREM. Let X be an n dimensional connected submanifold of PN
not contained in any hyperplane. Let d denote the degree of X in PN and
assume that K% sw Ox for some t =1= 0. If d  n(N + 1) then the order of the
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fundamental group of X is finite and bounded by:

In particular X is simply connected if

In section 2 and 3 the threefolds in P5 and P6 are dealt with the fol-

lowing tables.
Let X be a smooth connected threefold of non negative Kodaira dimen-

sion and let L be a very ample line bundle on X. The following table sum-
marizes our knowledge for such X with Kt x -- 0x for some t 0 0 and with
sectional genus g  1-5. Here S denotes a smooth S E ILl.

TABLE I

All are simply connected with Kx trival. For all 2(hl,’(X) - hl,2(X)) = e (X ), the
Euler characteristic of X. For all h"’(X) = 0 for i = 1 and 2. ’means that we
know no examples with these invariants.

The next table summarizes all the examples with g15 not already
listed and with h°(.L)  6.



539

TABLE II

All the above are simply connected and thus have hl’,O(X) = hl,o(S) =0. For more
information about the minimality of S see Table VI.
K x -K x -Kx and e(X ) are linked by relation (0.7.3a) all of whose terms but these 2
can be calculated from the information above. No examples are known with any
of the invariants above when h°(L) = 6.

We would like to call here attention to [Ho-Sc] wl1ich studies a com-
plementary question.

Finally we list those X with hO(L) &#x3E; 7 that are not in table I. For all

of them hO (1) = 7. 

TABLE III
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0. - Notation and background material.

We review our notation which agrees with that of [So2] and [So3].

(0.1) Given a sheaf 8 of abelian groups on a topological space X, we
denote the global sections of 8 over X by.P(S), or when some confusion can
result, by F(X, 8). We let hi(X, 8) or h(8) for short denote dim hi(X, 8).

(0.2) All spaces, manifolds, vector bundles and maps are complex ana-
lytic, and all dimensions are over C. We often abbreviate complex ana-
lytic to complex. Given an analytic space X, we denote its structure sheaf
by Ox, its smooth points by Xreg, and its singular points by Sing (X). We
do not distinguish between holomorphic vector bundle E on a complex
space, X, and its sheaf of germs of holomorphic sections. Thus when a

coherent analytic sheaf and a holomorphic vector bundle are tensored
together, the meaning is clear; the appropriate sheaves are being tensored
over Ox.

(0.3) We often denote complex projective space by Pc when its exact
dimension is irrelevant. A line bundle L on a complex variety, X, is very
ample if F(L) spans L and the map 9): X--* Pc associated to T(L) is an

embedding. A line bundle .L on a variety, X, is ample if Ln is very ample
for some n &#x3E; 0 ([Hal] is a good reference for ampleness).

(0.4) For X a complex manifold of pure dimension, Kx denotes the
canonical bundle of X, det (T1) where T1 is the holomorphic cotangent
bundle of X. For almost everything we do this is sufficient, but in order
to state theorem (0.6) in its proper generality we need the notion of the
canonical sheaf wx for X a normal complex variety ([R] is a good refer-
ence). Over Xreg, CoXre,l is the sheaf of germs of local sections of Kx,,.,. By
definition Wx equals the direct image, i* (oxet where i: Xreg-+ X is the in-
clusion map. We let co(x) = i* cox for t &#x3E; 0. The sheaves a)(x) are torsion free
coherent sheaves. If wf is invertible for some t &#x3E; 0, then X is said to be

Q-Gorenstein. If )P(co(xt)) ¥= 0 for some t &#x3E; 0, then X is said to have non-

negative Kodaira dimension.

(0.5) LEMMA. Let X be an n dimensional, irreducible, normal projective
variety of non negative Kodaira dimension. Let f : X -+ PN be a finite to one,



541

generically one to one, holomorphic map such that f(X) is not contained in

any hyperplane. Let d equal the degree of f(X) in PN and let g equal the genus
o f 0, a smooth curve obtained by pulling back a generic linear PN-n+1 c PN
under f. Then :

with equality if and only if for some t &#x3E; 0.

PROOF. Let Note that d = degree (Lc). By the adjunc-
tion formula Thus:

To see this note that (t)(x’) has a section for some t &#x3E; 0. Since Sing (X) is

of codimension at least 2 by normality it follows that for a general PN-"+’,
C doesn’t meet Sing (X) and therefore:

degree degree

If equality happens in (0.5.1) then the section of (,o(t) cannot vanish any-
where in Xreg(x). If it did then by ampleness of L, 0 would have to meet
the divisor on Xreg where the section vanished. Therefore (,o(t) ~ 0 Xreg and by
definition of (0(,,) we conclude that co(xt) -- Ox. The converse is clear. 0

(0.6) THEOREM. Let f: X--&#x3E;- PN be finite to one, generically one to one,

holomorphic map where X is an n dimensional irreducible, norma,l, projec-
tivc variety of non negative Kodaira dimension. Assume that f{X) belongs to no
hyperplane and that d equals the degree of f (X ) in PN. Then d &#x3E; n (N - n) + 2
with equality only if (o(xt) -- Ox for some t&#x3E; 0.

PROOF. Choose C as in the last lemma.

By the last lemma

By Castelnuovo’s lemma (see [Ba], [Gr-H]):

where [x] denotes the greatest integer  x.
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Assume that

Then Thus by (**) and by

it follows that

but

hence

which implies the absurdity

Therefore

If wc have equality then (**) becomes

or

If (o(xt) 0 Ox for all t &#x3E; O then by the last lemma we have
Combining this with the last inequality we get:

This contradiction 2g  2g implies that and hence

(0.6.1) REMARK. The above result is a slight generalization of [Gr-H;
Cor. 2.23]. They require that hl,O(X) &#x3E; 0 rather than just that X has

non negative Kodaira dimension. The rest of their result where they relax
their hypothesis to hO(KxQ9 Lr) &#x3E; 0 similarly generalizes with the weaker
hypothesis that hO((KxQ9Lr)M) &#x3E; 0 for some M&#x3E; 0.
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(0.7) Let X be 3 dimensional connected projective submanifold of PN.
Let d denote the degree of X, g the sectional genus of X, and let S denote
a smooth hyperplane section of X. From [Ha2, Appendix] we have:

then :

The same reasoning as that yielding (0.7.1) applied to P yields:

where e(.X) denotes the Euler characteristic of X and e,(X) denotes the
second Chern class of X.

The next few inequalities are modeled in [So3 ; Lemma (3.1)].

(0.7.3) THEOREM. Let X be as above. Then:

with equality if

e) [So3, Lemma (3.1)] if X has nonnegative Kodaira dimension then

PROOF. Since Ji(X, L) the first holomorphic jet bundle of L in X, is
spanned by N -f- 1 sections we have a holomorphic map:

where

Letting $ denote the tautological line bundle on P(J,(X, L)) such that
$ = Ø*OpN(l) we conclude that the degree $ - $ - - - - is &#x3E; 0 and equal
to 0 if N c 5 (since then dim O(P(J,,(X, L)))  dim P(J,(X, L))). Letting
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and using the tautological relation:

we conclude that which computed out gives
a) above.

Since J1(X, Lj is spanned by global sections we conclude (e.g. from [F],
page 216) that

which give b), c), and d) above. 0

(0.7.4) COROLLARY. I f in (0.7) we assume that K% sw Ox for some t # 0
then :

with equality in

PROOF. (0.7.3a) yields a) above, and (0.7.3c) and (0.7.3d) yield respec-
tively b), and c) above. Finally (0.7.1) yields d). 0

(0.7.5) COROLLARY. Assume that X is a smooth projective threefold such
that K’ x -- Ox for some t &#x3E; 0. I f L is a very ample line bundle on X and
h°(.L)  6, then either:

a) h°(L) = 5 and X is a degree 5 hypersurface in P4, or

b) hO(L) = 6, d = 8, and X is the transverse intersection of a degree 2
and a degree 4 hypersurface in P5, or

c) h°(L) = 6, d = 9, and X is the transverse intersection of 2 degree
3 hypersurfaces of P5.

PROOF. a) is obvious. Therefore we can assume that hO(L) = 6, with
X imbedded in P5. By the Barth-Larsen theorem [Ba], [Sol], it can be

assumed that X is simply connected. Thus Kx sw Ox. From this and the
Kodaira vanishing theorem it follows that

and
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Using this and:

we conclude that z(0s) = 6 and by (0.7.4 d) that d 2 -17d + 84 = 0 or
tha,t d = 8 or 9.

We will proceed to finish the proof only for d = 8 since the proof for
d = 9 is identical.

Choose two general sections 8, t) of L and denote the generic smooth
curve of common zeros by C. We have an exact sequence:

gotten from the Koszul complex associated to the section 8 EB t of L EB L
by tensoring with L( and by noting that L§= Kc. Using the Kodaira van-
ishing theorem, Kxsw Ox, hO(L) = 6 and the hypercohomology spectral
sequence associated to the above exact sequence for I = 0, 1, and 2 we
conclude that:

Note that:

and

and

We see from considering the restriction map

and using (*) and (**) that there is at least one quadric 4 D X. From the
fact that restriction gives r( Op5(1))  r(X, L) we conclude that 4 is irre-
ducible.

From (*) and (**) we similarly conclude that there is a vector space
Vc r(Op5(4)) of sections of Opa(4) vanishing on X with dim V&#x3E;22. Since

hO( Op5(4) (8) [Lt]-l) = hO( Op5(2)) = 21 we conclude that there is at least one
quadric H D X which is not of the form d + 4’. Thus .H r1 d is of co-

dimension 2 and since it has degree 8 and contains X which is also of
degree 8 and codimension 2 it follows that H n d = X ideal theoretically.
In particular H and d must be smooth in a neighborhood of X and the
intersection is transverse. D

(0.7.5.1) REMARK. If hO(L) = 7, d = 12, Ktx = Ox then it can be shown
that X is the transversal intersection of two quadratic and a cubic

hypersurface of P5.
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We will need the following result of Castelnuovo-Beauville [Ba-P-V]

(0.7.6) LEMMA. Let S be a minimal model of general type. If T(Ks)
gives a bi1’ational map of S then

The following is the main theorem of [So3].

(0.8) THEOREM. Let X be 3 dimensional projective manifold o f non nega-
tive Kodaira dimension. Let L be acn ample line bundle on X. Every smooth
S E )L) I is of general type and satisfies Ks.Ks&#x3E;d = 8.S.8. T’urther there

exists an ample line bundle L’ on an algebraio manifold X’ such that:

a) X is the blow-up n : X---&#x3E; X’ of X’ at a finite set F of points,

b) every smooth 8 E ILl is the proper transform of a smooth S’ E IL’1
with S"2 F and n,,: S -+ 8’ the map of S onto its minimal model,

c) for S’ and 8 as in b) :

The equality Ks, - .Ls, - Ls, - Ls, is equivalent to Ks - Ks = d and this is equi-
valent to Ki, being the trivial bundle for some to 0. If X is the transversal

intersection o f n - 3 divisors Di&#x3E;  ICI where E is an ample line bundle on
an n fold of non negative Kodaira dimension and Cx == L then it is also shown
[So3 ; (1.9.4)] that :

The following lemma is used throughout [So3].

(0.8.1) LEMMA . If S, E and X are as in (0.8) and if

then smooth S E ILl are minimal models.
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PROOF. If S is not minimal by the above theorem L[, . L§, &#x3E; Ls. Ls = d,
Ks’. Ks’ &#x3E; Ks. Ks and Ks. Ls &#x3E; .gs, L[, . Thus by the Hodge index theorem
we get

contradicting the hypothesis of the lemma. 0

We adopt the notation d= I’, - L’ from here on.

(0.8.2) LEMMA. Let X, L and S be as in Theorem (0.8). Then

PROOF. If then By the inequality

and the fact that the parities of d’ and Ks, - Ls, are the same one so that
d’= Ks, -Is,. But this implies by (0.8) that d = Ks - Ks. E3

(0.8.3) THEOREM. Let X, L, and S be as above. Assume further that L
is very ample. Then Ks. Ks = d + 3 implies that h3,O(X) = 0, h2(Ls,) = 0,
hO(L)"&#x3E; 7, hl,O(X):;6 0, and Ks’. Ls, = d’ + 2. If Ks. Ks = d + 5 then Ks’. Es,
= d’ + 4 and h3,O(X)  1.

PROOF. If Ks.Ks=d+3 then Ks,.Ks,=d’+3 and Ks, - -Ls, = d’+ 2
by the same reasoning as (0.8.2). If h3,’(X) =1= 0 we can choose a D E IKx’l 
and a smooth S’ ElL’ I such that S’o D is a curve C. Note that

Since T(L§) gives an embedding on a dense open set of C one conclude that
either C is a smooth rational curve or a union of 2 smooth rational curves
E + F. Since the intersection of C with itself on S’ is:

we see that either C is an exceptional curve of S’ contradicting the mini-
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mality asserted in (0.8) or

This would imply that either B - B &#x3E; 0 or F - F &#x3E; 0. If say B - B &#x3E; 0 then since
degree (NE) = B - B we conclude that hO(N..) 0 0 and hl(NB) = 0. By defor-
mation theory this implies that contains a pencil of rational curves. This

contradicts the fact that S’ is of general type. Note that if h2(LS,) =A 0
then hO(Ks, O.Lls-") =A 0. Thus hO(Kx’,s’) =1= 0 and the same argument as above
gives a contradiction.

By (0.7.3 e) z(0x) 0. Since h3,O(X) = 0 we see that hi,°(X) &#x3E; 0. Fur-

ther since threefolds in P5 are simply connected by the Barth-Larsen the-
orem [Ba], [S01] we see that hO(L»7.

If Ks Ks = d + 5 then Ks, - .gS, = d’ + 5. By the same argument as
above K -L’, = d+ 2 or d’+ 4. The former is impossible by the Hodge
index theorem:

Thus d’+4=Ks,.Ls’. By (0.7.3 e) X(Ox) 0. If h3,O(X»2 then for a

generic SElL I, hO(K x’ ,s’ ) &#x3E; 2. Since Kx’ ,s’ . K x’ ,s’ = - I this is impossible
unless the generic member of IKx’,s,1 is reducible. Thus the moving part
of IKx’,s’I has degree  Kx,,s, - Es, = Ks, - Es, - d’= 4. This implies that the
moving part is elliptic or rational. This is impossible since we can’t have
a pencil of elliptic or rational curves on a general type surface. 0

(0.8.4) LEMMA. Set L, X and S be as in (0.8). Assume further that L
is very ample. I f 4 + d = Ks - Ks and 2 + d’= Ks’ . Ls, then h3,°(X) --- 0,
hl,O(X) &#x3E; 0 and h°( L) &#x3E; 7.

PROOF. By (0.7.3 e) we conclude that X(Ox)  0. If we show that }¿3,O(X) = 0
then we will be done by the reasoning of (0.8.3). If h3,O(X) &#x3E; 0 then we

can choose a curve C E IK X’,s’ for a generic smooth S’ ElL’ such that:

and on

The former as before implies that C is either a smooth rational curve or a
union of two smooth rational curves E + F with B - F  1-. In either case

we get a smooth:rational curve on S’ with non negative intersection on S’.
As in (0.8.3) this implies by deformation theory that there is a pencil of
rational curves in Sf. D
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(0.8.5) LEMMA. Let X, L, and S be as in (0.8). Assume further that
L is very ample. Then hS,O(X):;6 0 and hi,°(X) = 0 implies that X(Os)
&#x3E; (hO (Ls) + 1) In particular if Ks.Ksd + 7 and h°(L) = 6 then x(é)s) &#x3E;6.

Then by the first Lefschetz theorem and therefore

PROOF. If then choose a smooth such that

since

We now use (0.8) to classify the possible numerical invariants of three-
folds X of nonnegative Kodaira dimension with a very ample line bundle L
.such that hO(L) = 6 and d = g - 2 or d = g - 3. These results which
extend are summarized in table V below and will be used in section 2.

Since d + K,, - Es = 2g - 2 we conclude that K, - L, = g = d + 2 and
therefore by the Hodge index theorem

Since d&#x3E;8 we see that Ks - Ks  d + 4. Note by (0.8.1) that Ks.Ls = d + 2
implies that smooth S E ILI are minimal models. By (0.8.2), (0.8.3), (0.8.4)
and (0.8.5) we conclude:

and

The relation (0.7.1) becomes

By Castelnuovo inequality we can assume d&#x3E;9.
Checking this relation systematically for Ks. Ks = d and d + 2 and

using X(Ox»6 we see that d = 10, Ks - -Ls = 12, g = 12, Ks.Ks = 12,
z(Os) = 7 and S is minimal. Also hl,’(X) = h2,0(X) = 0 and hS,O(X) = 1.



550

Now assume that d = g - 3. By the Hodge index theorem as above.
we see that

We know that Ks.Xs=l= d + 1 or d + 3 by (0.8.1) and (0.8.3). The

relation (0.7.1) becomes:

We now run systematically using this relation from K, - K, = d to d + 9.
Note also that X(0s) &#x3E; 6 if E, - K,  d + 7 by (0.8.5). We find that this cuts
the possible invariants down to the list:

TABLE IV

Using (0.8) and the reasoning of (0.8.1) we see that for the second line
a smooth S E ILl will be a minimal model S’ with one point blown up.
Thus Ks, - Ks, = 12 which contradicts (0.7.6).

Line 4 doesn’t exist. Using (0.8) and the reasoning of (0.8.1) we see
that on the minimal model S’ of a smooth S E ILl,

contradicting (0.8.3).
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The final table is as follows.

TABLE V

Possible invariants of smooth threefolds X of non negative Kodaira dimension with
a very ample line bundle L such that hO(L) = 6 and d = g - 3 or d = g - 2. No.

examples with the above invariants are known.

1. - Some general results.

We start with sonie general results about n folds with trivial canonical
class.

(1.1) THEOREM..Let X be an n dimensional connected projective sub-

manifold of PN not contained in any hyperplane. Let d denote the degree
of X in PN and assume that Bg . 0x for some t =;6 0. If d  n (N + 1 )
then the order of the fundamental group of X is f inite and bounded by :
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In particular X is simply connected if,

PROOF. Let be a 3 sheeted unramified cover where Y is

smooth and connected. Let where

From this we see that the number of sections of the pullback of L is greater
than the number of sections of L if 6 &#x3E; 0. We get a diagram:

where Z is the normalization of the image of the map associated to h(Lp)
.and a is the lift of the given map. From this diagram and dp = dflod«
we easily conclude that Z is smooth and a, fl are both unramified covers.
Assume that a is a sheeted and fl is b sheeted. If a is not a biholomorphism
then a*F(fl*L) = F(Ey) which implies bh°(Z) = 3h°(L) which contradicts

ZHO(L) = a.bhO(L) with a &#x3E; 1.

Thus the map associated to r(Ly) is finite and generically one to one.
Thus by (0.6)

"which if implies that

’This of course deals with the algebraic fundamental group but we get our
conclusion about the fundamental group by using the basic structure the-
orem for Kahler manifolds with Klx = 0x for some t &#x3E; 0. This theorem

([Be] is a good reference) asserts that a finite cover of such an .X is a pro-
duct of a torus and a simply connected manifold. E3

(1.1.1) REMARK. The above result is sharp. Let S be a smooth quartic
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surface in P3 and let E be a smooth cubic curve in P2. EmbedX=SxE
in P11 by the Veronese embedding. The degree, d, of X is 36. Thus

(1.1.2) COROLLARY. I f in the above theorem dim X = 3 the% Kx = Ox
if d  3N + 2 and X is simply conncctcd if d  3N - 3.

PROOF. If Bg ,. Ox for t 0 0 and dim X = 3 then by the Hirzebruch-
Rieniann-Roch formula, Z(Ox) = 0. Since d  3N + 2 implies that X has
finite fundamental group it follows that hl(Ox) = 0 and therefore h3(Ox) =A 0..
Thus Kx has a non-trivial section and we can conclude that Kx -- Ox.
The rest of the corollary is an immediate consequence of Theorem (1.1),

(1.1.3) COROLLARY. Let X ç pN be as in Theorem (1.1). If X is not
simply connected then

In particular if dim X = 3 then d &#x3E; 16.

PROOF. If N  2n then X is simply connected by the Barth-Larsen
theorem (see [Ba], [Sol]). The above inequality follows from N&#x3E;2n and
the inequality of Theorem (1.1).

(1.1.4) REMARK. Theorem (1.1) can be generalized in a number of direc-
tions.

First X doesn’t have to be embedded. We can assume instead that

there is a finite to one, generically one to one holomorphic map f : X -+ Py
with f (X ) contained in no hyperplane.

Second if we use the algebraic fundamental group and the notion of
« algebraically simply connected » then the same theorem holds with the
condition that K% = Ox for some t &#x3E; 0 replaced by the condition that

is numerically effective and satisfies
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By the Kawamata-Viehweg vanishing theorem ([K], [V]) this condition im-
plies that for any unramified cover

which is the key fact used in the proof.
Third we can allow singularities that are mild enough not to falsify the

Kodaira vanishing theorem in the form discussed in the preceding para-
graph. For example we could assume that X is normal and Gorenstein,
i.e. (Ox is invertible and X is Cohen Macaulay, and that except at a finite
set of points X has rational singularities. The derivation of the needed

vanishing theorem from the Kawamata-Viehweg vanishing theorem is easy
(see [Sh-So]).

(1.2) THEOREM. Let X be an n dimensional connected submanifold of PN.
Assume that X is of non negative Kodaira dimension. Then let S denote a

smooth surface (necessarily of general type) gotten by intersecting X with a
general linear pN-n+2 ç PN. Let S’ denote the minimal model of S. Then :

In particular

PROOF. By (0.7.3 e),

liminf

Using the notation of (0.8) and (0.7.3 e)

and

we get the above theorem. Ll

We now restrict to dimension 3. Table I summarizes our knowledge
of the smooth 3 folds X with K% = Ox for some t =;6 0 and with sectional

genus g15. The notation is as in (0.7)
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’2. - Xç P5.

Throughout this section it is assumed that X is a 3 dimensional con-

nected projective manifold of non negative Kodaira dimension and that L
is a very ample line bundle with hO(L) = 6. We further assume that g15
where g is the genus of the transversal interscctioll of two smooth S E ILl.

A priori

Since we have already classified all (X, L) with d&#x3E;g - 3 and h°(L) = 6
in tables I and V, we can assume that d  g - 4. Using Castelnuovo’s ine-

quality it is easily checked that the only possible g and d left are:

If d = 10 and g = 14 then we have Ks.L = 16 and by the Hodge
index theorem Ks.Ks25. By the relation (0.7.1) we have:

Thus Ks.Ks = 14 or 20 with z(0x) = 9 and 10 respectively. In the former
case we conclude by the reasoning of (0.8.1) that on the minimal model S’
of S, Ls,.Ls,=15 or 16. This contradicts (0.7.6). If Ks.Ks=20 then
by (0.8.1) S is minimal.

If d = 10 and g = 15 then by (0.7.1)

Using this and the Hodge index theorem as above we see that Ks.Ks
= 15, 21, 27, and X(Os) = 10, 11, 12 respectively. Let S’ be the mini-

mal model of S. If Ks - Ks = I- 5 then Ks,.Ks’  19 by ( 0. 8 ) and by (0.7.6)
we get a contradiction. If Ks.Ks = 21 then by the reasoning of (0.8.1)
Ks’. Ks’ 22 contradicting (0.7.6).

If d = 1 and g = 15 then reasoning as above we get that Ks.Ks
= 11, 17, 23, with X(Ox) = 8, 9, 10, respectively. Note that for Ks.Ks
= 11 = d it follows that Ks,.Ks’ = 14 = d’ and h°(L’ ) = x(L’ ) = X(Os’) = 8.
Thus h°(L§,) &#x3E; 6 for the intersection of two generic S’ ElL’ I. The genus of

0’ is 15 but Castelnuovo’s inequality gives the absurdity g 12.
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Table VI summarizes the above.

TABLE VI

Possible invariants of smooth threefolds X of non negative Kodaira dimension with
a very ample line bundle such L that hO(L)  6, g 15 and which are not in Table II.
All of the above are simply connected and thus have hl,O(X) = hl,,O(S) = 0. No

examples with the above invariants are known.

3. - The remaining cases.

Throughout this section X’ is a threefold of non negative Kodaira dimen-
sion with a very ample line bundle L such that hO(L) &#x3E; 7 and g15. By
Castelnuovo’s lemma we quickly check that h°(L) = 7. By (0.6) and

table I we only must consider:
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We can only say a little about these. We will carry out the calculation for
d = 12, g = 14; all proceeds in the same way.

If d = 12, g = 14 then Ks.Ls = 14. Thus by the Hodge index theorem

By the lemma’s in (0.8) only Ks.J(s = 12, 14, 15 and 16 are possible. If

-.Ks’..Ks = 12 = d then by (0.8) K%, = Ox’ and S is the minimal model S’
with one point blown-up. Thus Ks’. Ks’ = 13 and therefore by (0.7.6) 3X(Os)
- 1013 or x(Os) 7. If Ks.Ks = 14 then by (0.8.4) h3,°(X) = o and
hl,o(S) = hl,O(X) &#x3E; 0 and S is minimal. Thus 14&#x3E;3h2,O(S) -7&#x3E;3X(Os)-7
or X(Os) : 7. If Ks.Ks = 15 then use (0.8.3). The results are summarized

in table III.
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