Hölder continuity and thin obstacle problems for vector valued functions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 13 (1986) no. 2, p. 281-297
@article{ASNSP_1986_4_13_2_281_0,
     author = {Karlsson, Thomas},
     title = {H\"older continuity and thin obstacle problems for vector valued functions},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 13},
     number = {2},
     year = {1986},
     pages = {281-297},
     mrnumber = {876126},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1986_4_13_2_281_0}
}
Karlsson, Thomas. Hölder continuity and thin obstacle problems for vector valued functions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 13 (1986) no. 2, pp. 281-297. http://www.numdam.org/item/ASNSP_1986_4_13_2_281_0/

[1] H. Beirão Da Veiga - F. Conti, Equazioni ellittiche non lineari con ostacoli sottili, Ann. Scuola Norm. Super. Pisa, Cl. Sci. III, 26 (1972), pp. 533-562. | Numdam | MR 364862 | Zbl 0259.35034

[2] L. Caffarelli, Further regularity for the Signorini problem, Comm. Pure Appl. Math., 4 (1979), pp. 1067-1075. | MR 542512 | Zbl 0427.35019

[3] J. Frehse, On Signorini's problem and variational problems with thin obstacles, Ann. Scuola Norm. Super. Pisa Cl. Sci., 4 (1977), pp. 343-362. | Numdam | MR 509085 | Zbl 0353.49020

[4] J. Frehse - U. Mosco, Sur la continuité ponctuelle des solutions locales f aibles du problème d'obstacte, C. R. Acad. Sci. Paris, 295 (1982), pp. 571-574. | MR 685027 | Zbl 0506.49004

[5] M. Giaquinta - G. Modica, Regolarità Lipschitziana per la soluzione di alcuni problemi di minimo con vincolo, Ann. Mat. Pura Appl., 106 (1975), pp. 95-117. | MR 454852 | Zbl 0325.49009

[6] S. Hildebrandt - K.-O. Widman, Variational inequalities for vector valued functions, J. Reine Angew. Math., 309 (1979), pp. 191-220. | MR 542048 | Zbl 0408.49012

[7] T. Karlsson, Regularity results for solutions of some obstacle problems, Dissertation No. 92, Dept. Math., Linköping University (1983).

[8] T. Karlsson, Wiener's criterion and obstacle problems for vector valued functions, Arkiv för Mat., 23 (1985), pp. 315-325. | MR 827348 | Zbl 0602.49007

[9] D. Kinderlehrer, Variational inequalities with lower dimensional obstacles, Israel J. Math., 10 (1971), pp. 339-348. | MR 304999 | Zbl 0263.49008

[10] D. Kinderlehrer, The smoothness of the solution of the boundary obstacle problem, J. Math. Pures Appl., 60 (1981), pp. 193-212. | MR 620584 | Zbl 0459.35092

[11] D. Kinderlehrer, Remarks about Signorini's problem in linear elasticity, Ann. Scuola Norm. Super. Pisa Cl. Sci., 4 (1981), pp. 605-645. | Numdam | MR 656002 | Zbl 0482.73017

[12] H. Lewy, On a refinement of Evans' law in potential theory, Atti Accad. Naz. Lincei (1970), pp. 1-9. | MR 274786 | Zbl 0217.39002

[13] J Nečas, On regularity of solutions to nonlinear variational inequalities for second-order elliptic systems, Rend. Mat., 8 (1975), pp. 481-498. | MR 382827 | Zbl 0321.35029

[14] K.-O. Widman, The singularity of the Green function for nonuniformly elliptic partial differential equations with discontinuous coefficients, Uppsala University Report (1970).

[15] K.-O. Widman, Inequalities for the Green function of second order elliptic operators, Report 8-1972, Dept. Math., Linköping University (1972).