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Existence Results for Embedded Minimal Surfaces

of Controlled Topological Type, I.

JÜRGEN JOST (*)

Introduction.

A minimal surface ~ in a three dimensional manifold X can either be

considered as a parametric representation f : ,S ~ .X with = M, where
~S is a two dimensional domain and f is conformal and harmonic, or as a
submanifold of ~ with vanishing mean curvature.

Whereas the parametric approach furnished the first existence results, y
it was later on criticised that solutions produced from this point of view
usually are not embedded submanifolds and even immersed only by ad-
ditional considerations and under an additional hypothesis, y namely that
they are minimizing (cf. [A1 ], [A2], [Gu], [0]). Taking up this criticism,
recently methods from geometric measure theory were able to prove exist-
ence results for embedded minimal surfaces of striking generality (Hardt-
Simon [HS], Taylor [TJ], Pitts [P]), at the expense, however, of having
no control at all over the topological type of their solutions. Whereas

physical considerations make it reasonable to look for the absolute minimum
of area over all topological types (as in [A], [HS], [TJ]), from a ma-
thematical point of view it might also be desirable and useful for applica-
tions to find solutions of a problem with more specified properties.

In the present context this means to search for embedded minimal sur-
faces of a prescribed topological type. Several interesting results of this type
were already obtained.

If 1~ is a Jordan curve on the boundary of a strictly convex set in R3,
it was shown that 1-’ bounds an embedded minimal disk by Gulliver-
Spruck [GS] (under the additional hypothesis that the total curvature of .I’’

does not exceed 4n), Tomi-Tromba [TT1], Almgren-Simon [AS], and Meeks-

(*) Supported by SFB 72 at the University of Bonn.
Pervenuto alla Redazione il 7 Settembre 1984.
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Yau [MY1]. The methods of [AS] and [MY1] are both of a rather general
nature and worked for general Riemannian manifolds and admitted several
extensions, the first one to minimal surfaces of higher genus in Riemannian
manifolds ([MSY]), the other one to closed solutions of genus 0 and to a
free boundary value problem for minimal disks ([MY2]) and recently also
to surfaces of higher genus in Riemannian manifolds ([FHS]).

We also mention [SS] and [GJ2] where embedded minimal spheres
in S3 resp. disks with a free boundary on a strictly convex surface were
obtained by saddle point arguments.

It was found out that when trying to prove the existence of an embed-
ded minimal surface of given topological type for some prescribed boundary
value problem it is usually necessary to assume the existence of a suitable
barrier that is convex or at least of nonnegative mean curvature.

On the other hand, recently some interesting parametric existence results
were obtained that arose the question whether they could be improved by
showing the existence of an embedded solution. Tomi and Tromba [TT2]
provided geometric conditions on a Jordan curve h in R3 that ensure the
existence of a minimal surface of given genus g &#x3E; 0 bounded by 1~. Tolks-

dorf [Td] considered a boundary configuration consisting of a Jordan curve
R3 and a free boundary 8K with IT r1 r = 0 and showed that this con-

figuration always bounds a minimal disk in R3EK with holes, i.e. having I’
as a fixed boundary and free boundary curves on 8K the number of which
is not a priori prescribed.

In the present article, y we shall use the approach of Almgren-Simon,
namely to minimize area only among embedded surfaces, and prove various
boundary regularity results (for fixed and free boundaries) (§ 3-5) and finally,
with the help of additional approximation arguments (partially making
use of results of [MY1] and [MY3]), deduce in § 6 existence results for
embedded minimal surfaces of controlled topological type. These results

in particular imply that in the situations considered in [TT2] one can pro-
duce embedded minimal surfaces and on the other hand that for the con-

figuration of [Td] one can also construct embedded solutions, provided we
assume the existence of a suitable barrier containing 1~ as mentioned before.

We want to display some typical examples that illustrate our results.
Let rbe a Jordan curve on some catenoid C in R3, and suppose F is not con-
tractible to a point on C; let Z be a cylinder with the same axis as C, and
T r1 Z = 0. If r is contained in the interior of this cylinder, then there is
an embedded minimal surface of the topological type of the annulus, having.P
as a fixed boundary and a free boundary curve on Z. If on the other hand Z
is in the interior of the catenoid, then there is again an embedded minimal
surface with a fixed boundary 1~’ and one or more free boundary curves on Z
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and this surface is topologically a disk with holes. In this case, it is not

possible to fix the number of free boundary curves a priori. This is more

obvious when looking at the example where .1~ is a Jordan curve contained
in the unit sphere in R3 and .K = l0153l!}. Although in this case r
can bound a disk in the complement of K, it might not bound a minimal
disk in R 3IK, for example if 7" is a great circle. Even if T = x = x2, X3)
E R3: Ix = 1, x3 = -11 and consequently bounds a minimal disk in R3"’K,
there exists a minimal annulus with fixed boundary .1~ and a free boundary
curve on 8K that has less area, and this annulus will be the minimal surface

produced by our method.
An example for the situations considered in [TT2] is a solid torus T with

boundary of nonnegative mean curvature (with respect to the interior

normal) in R3, and T a Jordan curve on aT that represents twice the genera-
tor of 7I:I(T). We shall show that .1 bounds an embedded minimal Mobous
strip contained in the interior of T.

Of course, these are only very special cases, and for more general results
(in particular also for minimal surfaces in Riemannian manifolds) we
refer to § 6.

All solutions are obtained by a minimizing procedure. In a consecutive
paper, we shall combine the present methods with saddle point arguments.

1. - Minimizing among exnbedded surfaces in bodies with positive mean
curvature.

Let A be a closed subset of some threedimensional complete Rieman-
nian manifold X. A need not be compact. We assume that aA is a surface
of class C2 and has positive mean curvature with respect to its interior

normal. Let .1~ be a Jordan curve of class C2 on aA. Let .g be another

closed subset (possibly empty) of X with boundary surface 8K of class C2.
We assume that the angle between aA and 8K is always less than a/2, when
measured in A r1 (XjK) (i.e. if ’VA and v., denote the resp. outward unit normal
vectors, 0 in aA r1 8K) . Moreover, g = 0.

Later on, by an approximation argument, we shall also treat the case
where aA has only nonnegative mean curvature in the sense of [MY2] and
the angle between aA and 8K is only assumed to be less or equal to a/2.

We denote by X(g7 k) the collection of all embedded surfaces if with
boundary of class C2 in of genus g and connectivity k with a.llT c rU 8K
and meeting 8K transversally. The variable g, will also be used to indicate
whether is orientable or not. Note that k just denotes the number of
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boundary curves of M, and one of those coincides with 1’ while the other
ones (if any) lie on K. Likewise, A(g) denotes the collection of such surfaces
of genus (and orientability) g with an arbitrary (finite) number of boundary
curves that satisfy the conditions required above.

We want to minimize area among surfaces in A(g, k) or A(g) that are
contained in A. This constraint, namely that we consider only surfaces
in A, might lead to complications which however can be avoided with the
help of the following trick.

We denote the distance function in X by ~(’~’) and define

If 6,, &#x3E; 0 is chosen small enough, then for all 6, 8A6 is still of

class C2 and has positive mean curvature. In particular, we choose ~o so
small that geodesic rays emanating from aA into the direction of the exterior
normal never intersect in Furthermore, we can also achieve that
the angle between 8K and aA is less than nl2 (in the same sense as above)
if 0~~. i

We now choose a minimizing sequence of surfaces in k) (or 
that are contained in Aao and claim that w.l.o.g. we can assume that they
are in fact all contained in A itself. Then a limit of such a sequence will

not be affected by the constraint since we can perform all sufficiently small
variations. In particular, as in [AS, § 1], we shall get a stationary varifold
in this way. In 0, « stationary » here of course means with re-
spect to variations that move aK into itself.

In order to prove the claim we shall construct out of each such surface

in A6o another surface contained in A whose area is not bigger than the
area of the original one.

Let M be such a surface. We first want to modify the situation in such
a way that if intersects aA transversally.

We first want to achieve that the surface meets aA transversally at h.
For this, we have to impose some topological restriction on our minimizing
sequence. Let nM be the normal of 1~ in M, and nA be one normal vector
of 1-’ in aA (this vector can be chosen consistently since aA as a boun-

dary is orientable). We then require that the curves in S2 that are

obtained as Gauss images of nM and n~, resp., have interesection number
zero mod 2. Under this assumption, after an arbitrary slight perturbation
of if we can assume that it meets aA transversally along T. It is

important to note that this topological condition will remain unaffected
under all replacement argument that will eventually be performed on our
minimizing sequence (cf. §§ 3 and 6).
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We choose 270 so small that the nearest point project on onto -P is of
class C2 in T and choose a function R+ -~ [0, 1] of class C2 with

We put

i.e. we move aA a bit into the interior of A, at least away from 7~.
If Eo &#x3E; 0 is sufficiently small and 0  Ie is a graph over aA and

has positive mean curvature and intersects a.K at an angle less than n/2.
Furthermore, since M already meets 1~ transversally, from Sard’s lemma

we conclude that we can also achieve that .~I intersects Ie transversally
for some 8 E (0, 8,].

Thus, by replacing A by

if necessary, we can assume w.l.o.g. that .lNl intersects aA transversally.
If we extend the exterior unit normal of aA into as being con-

stant on geodesic rays normal to aA we obtain a function v* in AsoBA with
Iv*1 = 1 and (since has nonnegative mean curvature for

Oððo). Furthermore, if VK is the outward exterior normal of K, then

in

If N now is a surface in n XEK meeting 8K transversally and in-
tersecting 2A in a collection of closed Jordan curves and arcs with endpoints
on 8K, if E c aA and P c are surfaces with

and

for some open
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then applying the divergence theorem on G, we get

where ’VG in the outward unit normal of 8G.
Hence

(Here and in the sequel, we denote by the area of the surface M.)
Thus, we can apply the replacement argument of [AS, Thms. 1 and 9]

to if to obtain a new surface contained in A with area not exceeding the
area of We may have decreased the topological type by this procedure, y
but later on we shall supply conditions that exclude this possibility and for
the moment we can restore the original topological type by adding handles
or cross-caps with arbitrarily small area.

Therefore, we can assume w.l.o.g. that our area minimizing sequence
is contained in A. After selection of a subsequence we get a varifold

if we denote the sequence by 
V is stationary in since

for any open subset T’ of .Aao and any diffeomorphism 1p’ of .X that leaves
the complement of U and a neighborhood of T fixed and maps 8K into
itself. Furthermore, by construction

2. - The principle of rescaling.

In this section, we describe a general argument how to extend Euclidean
considerations to the context of a Riemannian manifold .X of bounded

geometry, i.e. having a bound for the sectional curvature as well as a

positive lower bound for the injectivity radius. ‘
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Let be a coordinate chart for (some subset
of) X with metric tensor 

We define a new metric on via

LEMMA 2.1. Each p E X is contained in some ball B(p, r) where r &#x3E; 0

can be estimated from below in terms of a bound for the sectional curvature
of X, a lower bound for the injectivity radius, and the dimension of X only, with
the following property :

B(p, r) is contained in (the image of) the coordinate chart IT (o, 1 ) with
metric gii of class and converges to the Euclidean metric ~i~ on ZJ’(o, 1)
in the for any a E (0, 1).

PROOF. We introduce harmonic coordinates on B(p, r) which is possible
if.rro where ro &#x3E; 0 can be estimated from below in terms of the quantities
mentioned in the’ statement by [JK]. The claim then follows from the

estimates of [JK] for harmonic coordinates. q.e.d.

This rescaling process of course amounts to replacing B(p, r) by B(p, rjR)
and multiplying the metric by the factor R.

COR. 2.1. Suppose e(g) is any expression defined in 1) involving a
metric g and its first derivatives.

If
((bij) is the Euclidean metric)

then also

if R is chosen large enough.
In particular, if v is a vectorfield on U (0, 1) with positive divergence with

respect to the Euclidean metric, then also its divergence with respect to gli,B
is positive, provided R is sufficiently large.

As a consequence, all constructions performed in a fixed Euclidean ball
can be extended to the Riemannian case after suitable rescaling, provided
the corresponding Riemannian expressions involve only derivatives of the
metric of first order and we always make sure that we have strict inequalities
in our constructions.

Therefore, we shall carry out most constructions only in the Euclidean
case and make sure that these conditions are always satisfied.
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3. - Regularity in the interior and at the fixed boundary.

In this section, we want to show that the varifold limit V of § 1 is rep-
resented by an embedded minimal surface M with aM = r, at least in 
We shall prove the regularity of if at the free boundary 8K in § 5. Also,
by construction M c A .

We make the following assumption that will be justified later on by
additional hypotheses

(A) There exist r &#x3E; 0 and a C oo with the property that if any ME
intersects an open set U, diffeomorphic to the unit ball, with diameter c r and
d( U, transversally, then for each component y of n a Z7 there
is an embedded disk N c MK with aN = Y.

With this assumption, y we can prove the interior regularity of V as
in [AS] (with the modifications of [MSY, § 4] since we treat the general
Riemannian case). Furthermore, by [JK], is of class for any

oc c- (0, 1) (M = spt 11 VII). Thus we are only concerned with boundary
regularity.

We assume TC C2.

Let We can normalize the situation so that and

the tangent plane of aA at zo is the x2xa-plane and the interior normal

points into the direction of the positive xl-axis.
As in [AS, § 6], we let Y’ = V L X ~(3, 2) and see that

We let .L be the tangent of h at 0, and C+ be any varifold tangent of V’
at 0, C+ = /-lr V’ with rk -? 00 as k-+ 00.Ie

Then (cf. [AS, § 7])

We put = and construct a

sequence (Nk) of embedded disks out of (Mk) with the following properties
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Finally,

where HI,".’ are half-planes with common boundary L, contained in

We flatten ZT+ away from U Hi a bit so that we obtain a convex set
U+ with

for some

By Sard’s lemma we can assume w.l.o.g. (after performing a suitable
homothetic expansion with dilation factor arbitrarily close to 1) that Nk
intersects transversally in a collection P2’ ..., 7 rtzk k of Jor-

dan curves.

Furthermore, given 8 &#x3E; 0, we can find a sufficiently large k so that by
-using the coarea formula and possibly again performing a homothetic dila-
tion of Nk with factor E (3/4, 1], say, we can assume

for j

Then, after renumeration, 7~ consists of and a Jordan arc in

for some are curves in

that approach some of the semicircles while

enclose an area A~ in with

for some fixed c.

As in [AS, ~ 7], we see that the curves 1-’p +1 ..., can be discarded

"without changing the varifold limit. 
’

For each curve ... , .hnk we have two possibilities :

a) It is a boundary curve of a component of which is

disjoint to L.

b ) It is a boundary curve of the component containing
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To any sequence of components of case a) we can apply the interior
regularity arguments of [AS, § 5f.] and conclude that in the limit we get
an embedded minimal surface M. The tangent plane of M at 0 has to
coincide with the i.e. the tangent plane of aA.

Moreover, M is contained in A. This contradicts the maximum principle,
however, since aA has positive mean curvature. Hence case a) cannot
occur for sufficiently large k. 

’

The curves of case b) can be deleted with the help of the replacement
argument of [AS], using assumption (A ) again.

Thus, only is left. By (3.10), it divides aU+(o, 1 ) into two compo-
nents one of which has area less than ) (31 - a).

From (3.7) and (3.8) we can therefore infer that

Hence by (3.4)

Since this density has to be odd on the othcr hand (see [AS, § 7] again),

and we conclude from Allard’s boundary regularity theorem ([AW2]) and
the arguments of [AS] that

where .M is an embedded minimal surface contained in A. By the maximum
principle again, the interior of M is contained in the interior of A ; also
am = r.

Altogether, we have proved

THEOREM 3.1. Suppose (A) holds, FC C2, and (Mk) is an area minimizing-
sequenee in or A(g, k) and

exists in the varifold sense.

Then

where M is an embedded minimal surface of class Cl~~‘, with Fe M may
be disconnected, but the component of M containing r has multiplicity precisely 1.

rl ~.K is of class C~ ~", for any a E (0, 1).
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4. - Area comparison and replacement arguments at free boundaries.

We first want to derive an area comparison lemma. Two points are
essential. First of all, according to the rescaling principle of section 2, we
want to perform comparisons only between areas contained in some fixed
bounded set. Moreover, if we minimize in the presence of a free boundary 8K
among surfaces in A(g) we don’t have (a priori) any control over the number
of boundary curves on 8K. Thus, our comparison arguments have to in-
clude not only disks but also disks with holes on aK. Our comparison
results will be similar to Lemma 3 of [MSY] (the statements as well as the
proofs).

If U c X is open, we define

for

and

for

The following considerations will of course always contain .K = # as
a special case, and hence are suited for regularity in the interior or at the
fixed boundary as well as at the free boundary.

LEMMA 4.1 (Area comparison). Suppose U c X is open, bounded, of class
C2 and U and a U r1 are simply connected, and that the following
assumptions 

a) If y: [0, T] --~ X is a geodesic arc parametrized by arelength with

and

where vo is the exterior unit normal of a TJ’

then

if

in

(this is for example the case if a U(t) has positive mean curvature for 



26

c) The following isoperimetric inequality holds: If R(t) := (y(t) : y as
in a)l and 2 is a system of Jordan curves in R(t) dividing R(t) into two com-
ponents E1, .E2 (not necessarily connected), then

for and all t E [0, T].
(The existence of such a fl is readily checked in applications, for example

if U is a geodesic ball)

Then, i f .M is a C2-surface (with boundary) in intersecting a U’ trans-

versally and satisfying

and i f A is a component of with

then there exists ac (not necessarily connected) surface F c a tT n X~k with.
and

PROOF. We put

and recall

We note that

and that by applying the divergence theorem to grad due on U’ (t)B U

(4.7) JR(t) I is monotonically increasing for O C t c T

W.l.o.g. we replace ll by a connected component of ~1. r1 U’(T), and we.
can assume

because otherwise the claim is trivial.
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If

and if A intersects transversally (which is the case for almost all t by
Sard’s lemma) then is divides into two (not necessarily connected)
sets F2(t). We label these sets with the index i E {1, 2} in such a way
that they depend continuously on t.

We claim, that there exists to E [T /2, T] and i E {1, 2} with

Otherwise, for each t E [T/2, T] we obtain from the isoperimetric inequal-
ity (4.5) and (4.7)

On the other hand, putting

the coarea formula yields for almost all t

(4.11) and (4.12) give (w.l.o.g. (4.12) holds for t = T)

On the other hand, JAI, and (4.8) and (4.13) imply

contradicting the choice of T.

This proves ( 4.10 ) .
We choose i as in (4.10) and then drop the index i, i.e. write F(t) instead

of 

By (4.4) we can apply the divergence theorem to the vector field grad du
to obtain for 0 c tl T
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where v is the unit normal vector field of A (Note that grad du is tangen-
tial to a Zl’’ (t)B(.R(t) u R(0)) so that these boundary components don’t give
a contribution) (4.14) implies that if E(t2) =A E(ti)

and in general at least

If = 0 for some [T/2, T], (4.15) and (4.8) (note c give

which proves the lemma, putting .I’ = .F’ (o ) .
In general, we have at least from (4.15) and (4.16)

Since (4.16), (4.8), and (4.10) (choosing t2 = to) imply

for (using (4.7) for the last inequality).
Hence the isoperimetric inequality (4.5) gives

for almost all G[C,T/2].
(4.9) and (4.19) imply

for almost all t E [0, T/2], and after integration, since - I is

monotonically decreasing

if
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In this case again (from (4.21))

contradicting the choice of T. Therefore, (4.22) cannot hold, and

(otherwise the argument after (4.16) applies)

and since the lemma is proved with F == F(O). q.e.d.

If we want to use Lemma 4.1 in a replacement argument, the following
difficulty might arise: We cannot immediately replace A by .I’ because the
fixed boundary aM r1 XEK is (trapped)&#x3E; between 1l. and F. We have to
consider only the case where at the same time

and

because otherwise we can replace .F’ by its complement in a U r1 
Since we assume that A intersects 8 U transversally, A and .I’ yield a

surface N which (after smoothing out the coners) can be assumed to be of
class C 2, with aN c 8K and

In all applications, we may assume w.l.o.g. that I a U is arbitrarily
small. Hence we can use the following lemma of [MSY]

LEMlBIÅ 4.2. There exist ro &#x3E; 0 and 6 E (0, 1 ) (depending only on X and K)
with the property that if N is a C2-surface in with aN c a_K and

for each

then there exists a unique compact C(N) c .X~..K which is «bounded by N
modulo

o

z.e. and

for each

as well as

where co again depends (only) on X and K.
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PROOF. The proof of Lemma 1 of [MSY], given for .R’ _ ~6, easily covers
the case of Lemma 4.2 as well. q.e.d.

If we apply Lemma 4.2 to the surface N constructed before (4.25), than
either

or

In the latter case, we consider C’(N) = instead. It is then bounded

by A and the complement F’ of .F’ in a U 0 We want to show that

in this case also satisfies the conclusion of Lemma 4.1.

LEMMA 4.3 (Area comparison). Suppose that in addition to the assumptions
o f Lemma 4.1

6 E (0, 1) and ro &#x3E; 0 are given from Lemma 4.2.
Suppose that (in addition to d) of Lemma 4.1) also

(co again f rom Lemma 4.2).
If A as in Lemma 4.1 saatis f ies

(which we can assume w.l.o.g. for replacement arguments), then there exist
F’ c a U r~ ~.K and a compact set C’ c ~J U) with

PROOF. Take .~ as in Lemma 4.1. If (4.24) does not hold, take F’ as the
complement of .F in a U n ~.K and aply Lemma 4.2 to get C with (4.33)
and take C’ = If (4.24) holds, then F and A bound a set C with
(4.33) by Lemma 4.2.



31

If C r1 U = 0, we take F’= .F’ and C’ = C.
Otherwise, we choose F’ as the complement of .~’ in and

C’ = C’ then also satisfies (4.33).
In the proof of Lemma 4.1 we choose the sets X2(t) (defined after

(4.9)) such that

By the coarea formula

(by (4.33)). Therefore by the assumption on T, there exists
with

Then the proof proceeds as the one of Lemma 4.1, using (4.35) instead
of (4.10). q.e.d.

With the help of Lemma 4.3, it is now straightforward to extend the
replacement arguments of Thms. 1 and 9 of [AS] (cf. also [MSY; p. 638])
and to obtain

LEMMA 4.4 (Replacement lemma). Suppose that U satisfies the assump-
tions of the Lemmata 4.1 and 4.3, and

Let M E k) intersect a Zl transversally.
Suppose that a.M r1 is not contained in any set C’, where C’ c X
0

B(I U U) satisfies (4.32) and (4.33) and A is a component of M.
Then there exists ~VI E k’) with g’ ~ g, k’ c k, satisfying the following

properties:

with

1Vl intersects a U transversally
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If for each component a of M r1 a U r1 ~.K there is A c .M with all. r’1 a U

r1 = a which is topologically a disk with holes on aK, i.e. A E then

with -

If in addition

for every with then ther e are

with and

tor any with
I 

and Pj having at most
as many boundary components on aI~ as Nj.

If (4.41) holds for then Pi in (4.42) may have arbitrarily many
boundary components on a.K.

LEmmA 4.5 (Boundary filigree). is an increasing family
of convex sets, where each YB satisfies the assumptions of the set U in Lem-
mata 4.1 and 4.3 and T independant of s).

Assume furthermore that Y, is given as

where is of class on 0~

Suppose ME 1~) and that a.lVl r1 ~.K is not contained in any set

satisfying (4.32) and (4.33) with Ys instead of U (for any s).
Finally, we assume that for some 8&#x3E; 0

for all with

and

Then
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if

PROOF. The proof which is basically on easy modification of the proof
of Lemma 3 of [AS] can be bound in [GJ2]. Of course, we have to perform
the modifications mentioned in [MSY; p. 639]. q.e.d.

5. - Regularity at the free boundary.

THEOREM 5.1. Let (Nk) be an area minimizing sequenee in fl(0 ) , and suppose

exists in the varifold sense. Then for each point x,, E spt II W 11 r) oK there are
n &#x3E; 0 (both depending on xo) and a minimal surface M meeting aK
orthogonally with

PROOF. The first part of the proof is a modification of [AS ; § 5 f.]. As
in [AS, p. 463], we see using the boundary filigree lemma 4.3, that W is
stationary, rectifiable and there is some c &#x3E; 0 with

for all x E spt II WII.
Also W is integral.
Let xo E spt n 8K.
We assume for a moment that W has a varifold tangent C at xo with

spt 11 CII ~~ contained in a half plane H.
Since Tf is also stationary w.r.t. to variations of its boundary on 8K,

C has to contain the interior normal of 8K at xo .

W.l.o.g. xo = 0 and (0, 0, 1) is the exterior normal of 8K (using a suitable
coordinate chart.).

Let

By rescaling, tilting the De X (J) and the « bottom J) sligh-
tly agains and smoothing out the corners aD, X (J) and we
obtain a set satisfying the assumptions of Lemma 4.4. Let yi(o, 0’),
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Î’2(e, a) be curves on that are close (e.g. obtained by nearest point
projection) to the corners 8De X and 8De X ~- J) n 
resp. These curves or) and y2( o, a), then divide a.g’e,6 n into a

cylinder (C n (corresponding to aDe X (- a, or) r1 and a

union of two half disks (corresponding to D. al).

by definition of C .

for some sequence (rk) --j- oo as k 2013&#x3E;- oo.

Let (/0 E (o,1 ) be given.
(5.1) implies that we can find r E (rk) with

W.l.o.g. also

where

By assumption

for all N E .~ with

Since v(p,(Nk)) --~ ~ur T~’, (5.3) and the coarea formula yield for almost
and k -~ o0

Thus for sufficiently large k, we can find and with

From now on, we shall write E instead of etc.
Furthermore, by Sard’s Lemma, we can assume that intersects

E and Zk transversally. Moreover !tr(Nk) intersects Cr transversally by
assumption.

We now want to apply Lemma 4.4 for and U= gk :
We find integers 0  and discs (with holes).

with
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and are homotopically nontrivial in Bk , y while
bound discs in Bk :

Moreover,

with

and

and using (5.4) and 2.6 (2) (d)],

Then, first of all, ..., Pfl can be discarded as in [AS], p. 465 f., without
changing the varifold limit in (5.8).

We now want to delete pkk+1, ... , pkk .
Let Llk,z be the intersection of the disc bounded by pk Bk with Zk

Clearly

Choosing P = Llk,z in (5.7) and k sufficiently large, hence

Choosing (/0 sufficiently small and using the boundary filigree lemma 4.5

for the family of cylinders (again after tilting top and bottom slightly)

for

we get

and thus also these can be discarded without changing the varifold
limit in (5.8).

Thus
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For we have

where 3(r) -* 0 as r -&#x3E;- oo, since .K E C2.

Furthermore, y comparing Pk with either of the parts into which 8P§
divides and using (5.7)

We now choose k so large that E,  (Note that the (/0 employed here
can be chosen independantly from the one leading to the deletion of Pk
for

Thus

(5.10) and (5.11) imply that 7~ is bounded independantly of k.
After selection of a subsequence, we find a positive integer n and

and for

converges to a varifold W,

with (using (5.11), (5.12), (5.3))

Since (5.13) and (5.15) imply
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Since yields

Since we can make cro and 3(r) as small as we want by choosing r sufficiently
large (satisfying (~.3) ~, we obtain, using the monotonicity at the free bound-
ary of 

We now apply the first part of the proof to instead of (N,)
(I = 1, ..., n). This, together with interior regularity, implies that each Tfi
is a stationary integral varifold with density 1 IIW,11-almost everywhere.
Taking ao in (5.18) sufficiently small, the free boundary regularity of [GJ1]
implies

where Mi is a minimal surface which can be represented as a graph over

By (5.19) (remembering xo = 0) and (5.16),

Since m E 11, ..., n} either or by construction of TV,,
and since we can apply the strong maximum principle to the difference of
two solutions of the minimal surface equation also at the free boundary
points, ul 

Hence

In order to finish the proof, we have to show that at each x,, E 8K
r1 spt there is a varifold tangent C of V of the form nv (M) with .M
a half plane and n E N.

W.l.o.g. again.
Let

for some sequence
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We choose a sequence (Mk) in with

with

Therefore, C is stationary. By the reflection principle of [GJ1; 4.11],
we can reflect C across to obtain a stationary 4. We then apply
the interior arguments of .[AS ; § 6] to C and deduce that it is contained in
a plane. Hence C either is a halfplane containing the normal of 8K at Xo,
or it is the tangent plane The first case was already treated above.

Therefore, we only have to exclude that

We put (for any given smar q &#x3E; 0)

Recalling the normalization that xo = (0, 0, 0) and (0, 0, 1) is the exterior

normal of 8K at xo, we see that after suitable rescaling, Dk satisfies the
assumptions of Lemma 4.4 Therefore, we can assume that Mk intersects Dk
in a collection of disks with holes. Also, Dk intersects C (assuming that
(5.23) holds) in a unit disk.

Moreover, given 8 &#x3E; 0, we can find a sufficiently large k (using (5.21)
and the coarea formula and possibly suitably rescaling with a controlled

say) with

Hence with the help of the ioperimetric inequality we see that there is an
annalus Ak c with

and

where c is a fixed constant.
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Choosing N= .Ak in (5.22) we see that

and hence from (5.21)

Thus, (5.23) is excluded, and the proof is complete, since Var Tan

(W, xo) 0 ø. q.e.d.

THEOREM 5.2. Suppose that a.g has positive mean curvacture with respect
to the exterior normal of K.

Let (Nk) be an area minimizing sequence in h) and suppose that

exists in the varifold sense.
Then the conclusion of Thm. 5.1 holds.

PROOF. The proof is the same as the one of Thm. 5.1, except that we
have to exclude (5.23) this time in a different way since (5.22) only holds
for comparison surfaces N efl(0, h) (The other replacement arguments
based on Lemma 4.4 never increased the number of holes, and in case it
was decreased the original number can always be restored by adding arbi-
trarily thin tubes with holes that will then disappear in the limit).

We choose Dk as in (5.24). Applying Lemma 4.4 again, we can assume
that Mk intersects 2~ in a number of disks with holes. Each component
that has a free boundary inside Dk can be replaced by a region on aDk with
arbitrarily small area and is hence excluded as in the proof of Thm. 5.1.

This process is not possible for a component Pk with Pk r1 Dk
n 3~(-ZB~) = 0, since then such a replacement would increase the number
of free boundary curves.

In this case, we argue as follows.

We define

If 0  and eo is sufficiently small, the C-norm of Us becomes ar-
bitrarily small. We let J’tk: -* be the nearest point
projection and define
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Since has positive mean curvature with respect to the interior
normal, we can find 0 so that for 0  880 and fixed k of course

depends on k) Xk,s likewise (is of class C2 and) has positive mean curvature
with respect to the interior normal of 

As in § 1, by projection and replacement we then construct a minimiz-
ing sequence M k in Xk,s (of course, it creates no difficulties if there are several
Pk’s, since ~Te can move their projections onto Xk,s a bit apart so that we
still have an embedded sequence.

By interior regularity, Mk converges to an embedded minimal sur-

face in X k,s .
On the other hand, also n Dk) converges in the interior to an

embedded minimal surface. By construction, these surfaces have to coincide
in Xk,2S. Hence, by unique continuat they have to coincide everywhere.
This implies that Xo, since not contained in does not lie in the support
of W, because spt II W ~~ has no isolated points.

Therefore, (5.23) again is excluded, and the proof is complete. q.e.d.

REMARK. The considerations of Thms. 5.1 and 5.2 also apply if we mini-
mize in or A(g, k), resp. provided the following hypothesis (which will
be justified later on in § 6) is satisfied

(B) There exists r &#x3E; 0 with the property that i f any Nk (where (Nk) is
a minimizing sequence in A(g) or A(g, k)) intersects an open set U, diffeo-
morphic to the unit ball, with diameter not exceeding r, transversally, then for
each component y of Nk r1 a IJ’ there is a disk N with holes on aK, N c Nk,
with aN = y.

6. - Existence theorems.

We make the following assumptions about the geometric setting:

i) X is a threedimensional mani f otd of bounded geometry, i.e. the sec-

tional curvature is bounded and the injectivity radius is bounded from below
by a positive constant.

ii) aA has nonnegative mean curvature in the sense of Meeks-Yau

([MY2]), namely is consists of a f inite number o f C2-sur f aces HI, ..., .H’m with

a) Hi Z has nonnegative mean curvature with respect to the interior

normal

b) Hi is a compact subset of a smooth surface Ha i in X with
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iii) K c X is a closed subsets. a.g consists of a f inite number of twodimen-
sional pieces with bounded C2-norm. (K may be empty.)

iv) r is a Jordan curve on aA, P n K = 0.

v) If vA and vA denote the resp. unit normal vectors

At points where two or more pieces of aA or a.K come together, (6.1 ) is required
to hold for the normal vectors of all these pieces.

THEOREM 6.1. Suppose ~(O) -=/:= 0. There exists an embedded minimal

surface M in XBK which is continuous up to the boundary, having r as a
fixed boundary curve and possibly free boundary curves on a.g’. At all points
of M r1 a.K where a unique exterior normal vector of a.K exists, is met

orthogonally by M. M is of class C2~ x in the interior and as regular at the
boundary as T and a1~ permit.
M topologically is a disk with holes corresponding to the free boundaries

on a8’, E A(O). Furthermore, M minimizes area in this In par-

ticular, it is stable.

PROOF. We first assume that aA and a-K are of class C2, aA has positive
mean curvature with respect to the interior normal, and r E 02.

We minimize the area in Using Lemma 4.4, we can satisfy (A)
of § 3. By the results of § 3 and § 5, after selection of a subsequence, a
minimizing sequence converges to a varifold V whose support is represented
by an embedded minimal surface. We take M as that component of this
minimal surface that contains T. Using (3.12) and the constancy theorem,
we infer that the multiplicity of this component of spt II Y 11 is one at in-

terior points.
From the arguments of [MSY: ~ 3, in particular Remark (3.27)], we

deduce that M topologically is a disk with holes (in particular, M is orien-
table, because otherwise it would have multiplicity 2 at interior points).
M is bounded, because otherwise, using there would be infinitely

many disjoint convex balls B(x, ~) with x E ..M, where 6 &#x3E; 0 Pan be chosen

uniformly because X is of bounded geometry, and hence the area of M would
be infinite by the monotonicity formula.

Moreover, the number of boundary curves on 8K is finite (it may be

zero, of course). Namely, otherwise, there would exist distinct boundary
curves yi, i = 1, 2, ..., and points xi c yi with xi - Xo as i - oo.

Since aK E C2, we can find a ball B(xo, ~) with b &#x3E; 0 which satisfies the

assumptions of Thm. 4.13 of [GJI]. W.1.o.g. xi e B(xo, ,6/2) for all i. Let M

be the component of M r1 B(xo, ~) containing xo(xo EM, since M is closed).
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For small enough 3

(e as in [GJ1; 4.13]) and the result of [GJ1; 4.13] applies which implies in
particular

for all

On the other hand, also ( .M r1 B (xo , ~ ) )B.~o = : M’ represents a non-

trivial stationary varifold V’. The support of this varifold is closed, hence

Althogether, the multiplicity of if at xo has to be with n &#x3E; 2. This

is not possible, y however, y since is a minimal surface of multiplicity 1.
We now treat the general case by approximation, making use of argu-

ments of [MYl] and [MY3]. First, we pass from aA E C2 with positive mean
curvature to aA satisfying only ii). Since we have already supplied an ar-
gument yielding an a-priori bound for d(x, F) where x E M and if is an
area minimizing surface with Tc 8M, we can assume w.l.o.g. that A is

compact. In [MY3 ; § 1] it is proved that A can be approximated by a
sequence of compact manifolds Ak with boundary aAk of positive mean
curvature with respect to the interior normal that converge to A in the
sense that the metrics and their derivatives and the boundaries aAk converge
to the corresponding objects of A uniformly. Also, T is approximated by
smooth curves 1’k c aAk . Ak and aAk can be chosen as smooth as desired.

We minimize the area in Ak among surfaces from with fixed bound-

ary As shown above, we obtain an embedded minimal surface I

minimizing area in its class. We want to show that (Mk) converges (after
selection of a subsequence) to an embedded minimal surface if in A that
satisfies the conclusions of the theorem. In order to achieve this, we have
to get uniform estimates for (if~). Mk is conformally equivalent to a

domain ~S’k, the unit disc in the plane with interior disks removed,
cf. [Jl ; § 3]. Therefore, we can consider this minimal surface as an injec-
tive conformal map

mapping the outer boundary monotonically onto 

Furthermore, f k can be normalized by a three-point condition on the outer
boundary. Of course, f k also satisfies the minimal surface equation for the
metric of J.jb.
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Since the metrics converge it does not matter whether we measure area

with respect to the metric of A or of In particular, the area of Mk and
hence the Dirichlet integral of f k can be assumed to be uniformly bounded,

say .

Given d &#x3E; 0 and by the Courant-Lebesgue Lemma, y we can
always find with

for all X., x2 E aB(xo, r) (cf. e.g. [Jl; Lemma 3.1]). 0 is chosen

small enough, is therefore contained in a set U

satisfying the assumptions of Lemma 4.4 (for the metric of A,,; 6 can be
chosen uniformly in k, however, since also the derivatives of the metrics
converge, see [MY3; p. 154]; cf. also §2).

First assume /xo/ -)- 1l3  1.

Let ak be a curve in 8 U that is homotopic to ’yk in Mk r1 U. It bounds
a disk with holes on (or ~S’k). By Lemmata 4.3 and 4.4 this disk also is
contained in U, since Mk is minimizing. Because of the three-point condi-
tion on the outer boundary of Sk, a similar argument applies at 1~. Therefore,
( fk) is equicontinuous.

It is then standard to derive uniform Ol,IX-estimates for (fk) at least away
from the free boundary. Therefore, (fk) converges uniformly to some

S -~ A, at least after selection of a subsequence. Here, is
the limiting domain of (Sk). So far, it may be degenerate in the sense that
some of the interior boundary circles of Sk have shrunk to a point or become
tangent to each other in the limit. Since (fe) equicontinuous, however, and
.r n K = 0, no interior boundary circle can approach the outer boundary
circle in the limit. Moreover, f is of class Cl,l and a weak solution of the
minimal surface equation in interior subdomains of S. Hence it is also a

strong solution and of class 02,IX in the interior (for a proof, that i) is suf -

ficient for f E C2 ", cf. [JK]).
Moreover, it is regular in a neighborhood of r. It is also monotonic on

the outer boundary by the argument of [HH].
On the othðr hand, after slight modifications near jT, is also a mini-

mizing sequence for the area (computed with respect to the metric of A)
among disks with holes on 8K and fixed boundary .1~. Therefore, by the

arguments of [AS] and § 5, it converges to an embedded minimal surface M
in A, possibly with free boundaries on 2g, at least away from.P. But near 1,
we know regularity already.
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3f is topologically a disk with holes by the same argument as above.
Therefore, we have produced the desired minimal surface. How to pass

from a smooth Jordan curve on aA to a general Jordan curve J on aA is
demonstrated in [MY1; p. 426] (Note that it is important that a lies on
some surface; this implies in particular that J bounds a surface with

finite area).
Likewise, if 8K is as in iii), we take an approximation .Ki with agi E C2.

In order to get the equicontinuity of the corresponding sequence also

at the edges of a.g’, we only have to note that we can still find sets C" that

satisfy the assumptions of Lemma 4.4, for example by taking the inter-
section of with suitable balls having their center in the interior of K.

Finally, it is trivial how to pass from strict to weak inequality in (6.1)
via approximation.

For higher regularity at the boundary, we refer to [HH] and [GHN].
That M meets 8K orthogonally follows because lVl is stationary with

respect to variations of its trace on 8K, q.e.d.

REMARKS. i) Similar results can be obtained when 1~’ is empty. We
need an hypothesis to guarantee that the limit of a minimizing sequence
cannot disappear at infinity. We could assume that is compact, or
that we have again a barrier aA of nonnegative mean curvature, where A
is compact. Also, in general one cannot exclude anymore that the limit
of a minimizing sequence is a nonorientable surface with multiplicity 2,
cf. [MSY; Remark (3.27)].

ii) As mentioned in the introduction, if we drop the requirement of
embeddedness and look for a parametric solution, then Thm. 5.1 is contained
in the result of Tolksdorf [Td]. Since he is not looking for embedded solu-
tions, he does not need a barrier like aA. However, in his approach branch
points are not excluded.

THEOREM 6.2. Assume in addition that K has nonnegative mean curvature
with respect to the exterior normal.

Let h &#x3E; 0 be the smallest integer with the property that there exists an embed-
ded surface N of genus 0 with T c aN and c 8K.

Then there exists an embedded minimal surface in h) satisfying the
conclusion of Thm. 5.1.

PROOF. Again, we first treat the case aA E C2, Te C2 and aA and 8K
having positive mean curvature (with respect to the interior resp. exterior
normal). Then we get an embedded minimal surface in h) as before,
using Thm. 5.2 instead of Thm. 5.1. The general case again follows by
approximation.
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REMARKS, i) A similar result should be accessible to the methods of
Meeks-Yau ( [MYl ] and [MY2]).

ii) We can also prove a corresponding result if h is not topologically
least possible, provided the following Douglas condition holds

We shall be concerned with a Douglas type criterion in more detail in
the next theorem.

In order to avoid additional technical complications we shall assume for
the rest of this section that K is empty.

THEOREM 6.3. Let X, A.,1-’ be as before, in particular assume that aA
has nonnegative mean curvature

A(g) : = M c A compact oriented embedded surfaces of

genus g with .1~} ,

If = 0, uJe put o0

If

then there is an embedded minimal surface M c A of genus g with 8~1 = rand

For the proof of Thm. 6.3, we need the following result of Almgren-Simon
(cf. [AS; Lemma 5]).

LEMMA 6.1. 

tT is a convex open set of class C2 with 
’

If a.ll1 r1 U = 0 and X intersects a U transversally, then for each compo-
nent a of M r1 a U there exists an embedded disk N c .M with aN= a.

(Actually, in the Riemannian context, we might have to rescale in

order that the above restriction on ~O is sufficient; cf. § 2).

PROOF of Thm 6.3. We first assume again that aA is C2 with positive
mean curvature. Then the result follows as in [AS ; § 10], using Thm. 3.1
for boundary regularity. (Of course, Lemma 6.1 implies that (A) is satisfied).
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Again, cf. [MSY; Remark (3.27)] the produced minimal surface has

multiplicity 1 and is hence in particular orientable and of genus at most g.
Lower genus than g of course is ruled out by (6.6).

For the general case, we let be as in the proof of Thm. 6.1 and
E A(g) be the corresponding embedded minimal surfaces in with

--

We shall now use some of the arguments presented in [J2].
Again, we can consider the parametric representation fk: Sk--?-Ak,
= Sk is a surface of genus g and a metric of constant curvature.

aSk is geodesic, f k conformal and harmonic (for the metric of Ak, since 
is a minimal surface), cf. [J2; Thm. 1].

W.l.o.g. we consider the case g&#x3E;2, where has a hyperbolic metric,
because this is the most difficult one. We want to apply Mumford’s compact-
ness theorem [Mu] to (~’k). We have to exclude that the lengths of closed
geodesics can tend to zero, as k -+ oo. In that case, however, we can use
the arguments of [J2 ; § 2] to find homotopically nontrivial curves yk iW’k
for which the image curve fk(yk) become arbitrarily short as k -+ o.

On the other hand, since the metrics converge also the area of Xk with
respect to the metric of A approaches ag . Hence, w.l.o.g.

for all

and we see that the conclusion we have derived from the existence of ar-

bitrarily short closed geodesics on 8, (with respect to the hyperbolic metric)
is not compatible with the assertion of Lemma 6.1.

Therefore, by Mumford’s theorem, converges to a hyperbolic sur-
faced of genus g. for all k.

/,,: 8 -*A then satisfies uniform C’,’-estimates as in the proof of

Thm. 6.1 and hence (after selection of a subsequence) converges to a

map f : ~S’ -+ A which is weakly harmonic and therefore of class 02,lX.
It is also conformal and hence a parametric minimal surface. fl3S again
is monotonic by [HH].

M := f (S) on the other hand also is the varifold limit of (Me) and hence
is embedded in the interior by the arguments of [AS], since (Mk) is an area
minimizing sequence in A(g) (after making slight modifications near r again).

Thus, hl is an embedded minimal surface of multiplicity 1 and oriented
and of genus at most g as before (cf. [MSY; ~ 3]). On the other hand
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by lower semicontinuity. By (6.6), M then is precisely of genus g and
(6.7) holds.

That we need no regularity assumptions for T follows again from
[MY1]. q.e.d.

REMARKS. i) For the case where aA is strictly convex and .1-’ E C2, this
result is already proved in [AS].

ii) A not necessarily embedded minimal surface of genus g was

produced in [J2], provided a Douglas condition like (6.6) is satisfied. Of

course, if one does not require that the solution is embedded, a barrier like
aA is not needed.

COROLLARY 6.1. Let X, A, .1~ be as before, Let aA bound an embed-

ded oriented surface N c A of genus g.
Assume that the induced macp on the fundamental groups

is injective.
Then T bounds an embedded oriented minimal sur f aee M of genus g in A

which minimizes the area among all such surfaces.

PROOF. Here, (6.8) guarantees that the genus of the limit of a minimizing
sequence cannot drop and that (A ) in 9 3 is satisfied. The rest follows as

before. q.e.d.

REMARK. If we do not require that the minimal surface is embedded
then this result is due to Tomi and Tromba [TT2] (at least for .X = R3).
Topological arguments to show the embeddedness of an area minimizing
surface were indicated by Freedman-Hass-Scott ( [FHS, ~ 7]), generalizing
the work of Meeks-Yau ([MYl], [MY2]) on the genus 0 case. In the case

where .1~ = 0, a minimal surface of genus g was produced by Schoen-Yau [SY]
and shown to be embedded in [FHS], in case this is topologically possible.

Furthermore, Tomi and Tromba also treated the following important
special case, again without showing that their solution is embedded.

COROLLARY 6.2. Suppose A is a compact solid body in R 3 with boundary
aA of nonnegative mean Suppose a.9. is an oriented surface of
genus 2g. Then is generated by 2g generators A¡, ..., 2g.

Suppose Z is in n¡(A) homotopic to

Then r bounds an embedded minimal surface of genus g.
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PROOF. Tomi and Tromba observed, based on a result of Zieschang,
that .1~ bounds a surface of genus g for which the induced map

is injective. Hence Cor. 6.1 applies. q.e.d.

The following result is again based on the work of Tomi and Tromba.

’ 

COROLLARY 6.3. Suppose A c is a solid torus and aA again has non-
negative mean curvature, and re aA, a Jordan curve, is homotopic in A to

2a where a is the generator of n¡(A). Then r bounds an embedded minimal
M6bius strip in A.

PROOF. If we minimize the area among embedded Mobius strips then
we get an embedded minimal surface 1Vl c A with 31f = .1~ as before.

T’cannot bound a disk in A because otherwise a would be homotopically
trivial in A.

On the other hand, as in [AS, § 10], for each 6 &#x3E; 0, we can find an
embedded Mobius strip Na in a ð-neighborhood of rlVl. In particular, we
can choose 6 so small that the projection {x: dist (x, .M) c ~~ -* M is
continuous. If y is any curve on ify we can lift it to No and denote the
lifted curve by y’. Then 2y’ is homotopic to zero in Na. Hence also n(2y’)
is homotopic to zero in lVl. Thus, the first Betti number of ~11 vanishes, y
and M has to be a Mobius strip. q.e.d.

7. - Concluding remarks.

Of course, one can think of more general situations than the ones con-
sidered in § 6, for example nonorientable surfaces of higher genus, surfaces
of higher genus in the presence of free boundaries, several fixed boundary
curves, etc.

We tried to present the technical arguments of § 1 and § 3-§ 5 in as
much generality as possible so that they can also cover such more general
situations. On the other hand, since it seems possible to invent situations
of arbitrary complexity, we did not strive to achieve utmost generality in
the final results presented in § 6, but rather restricted ourselves to some
particularly interesting cases.
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