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On the Boundary Regularity of Proper Mappings.

FRANC FORSTNERI010D (*)

1. - Statement of the results.

There exist well-known results on smooth extensions of proper holo-

morphic maps between certain classes of smoothly bounded domains in
Cn [2, 5]. On the other hand, very little is known about proper holomorphic
maps into domains in higher dimensional spaces. Suppose that D c Cn and

(N &#x3E; n) are bounded domains and that f : D - Q is a proper holo-
morphic map. What can be said about the boundary regularity of the

image subvariety f(D) in S~ and about the boundary regularity of f in terms
of the regularity of bD and bS2?

It has been proved recently that, unlike in the equidimensional case
N= n, the map f needs not extend continuously to D even if bD and bQ
are smooth or real analytic [10]. Therefore additional hypotheses are needed.
In this paper we shall prove some results under the assumption that the
nontangential boundary values of f at bD, which exist almost everywhere
on bD with respect to the surface measure on bD, lie in a smooth submani-
fold .DI of dimension 2 n - 1 of CN contained in bQ. Our first main result

is the following.

1.1. THEOREM. Lot D c Cl and bounded domains of
class C2, let bQ be strictly pseudoconvex, and let M be ac compact connected
real submanifold of C" of class Cr (r &#x3E; 2) and o f dimension 2n - 1 that is con-
tained in the boundary of Q. If f is a proper holomorphic map of D into S2
such that for almost every point p E bD with respect to the .Lebesgue measure
on bD the nontangential limit f*(p) of f at p lies in M, then the following hold :

(*) Research supported in part by a Sloan Foundation Predoctoral Fellowship.
Pervenuto alla Redazione il 14 Febbraio 1985.
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(i) the closure V of the subvariety V= f (D) of Q is Vu M, and the
pair (V, M) is a local Cr mani f old with boundary in a neighborhood of each
point q E M. In particular, the singular variety is finite ;

(ii) the map f extends to a continuous map on D which satisfies the
.golder condition exponent 2 - 8 for every s &#x3E; 0 ;

(iii) if D is also strictly pseudoconvex, then the restriction

is a finite covering projection that is Hölder-continuous with the exponent 2

Note that if a proper map f : D -* SZ exists, then D is necessarily pseu-
doconvex. Using a local extension theorem for biholomorphic maps due to
Lempert [20, p. 467] we obtain the following corollary.

1.2. COROLLARY. Let f : D -+ Q and M c bQ be as in Theorem 1.1, and
assume that both D and Q are strictly pseudoconvex. If bD and M are of
class Cr for some r ~ 6, then f extends to a Cr-4 map on D. In particular, if
bD and M are Coo on D, and i f bD and M are real-analytic, then f extends
holomorphically to a neighborhood of D.

NOTE. In the case when bD and 1V1 are real-analytic, Corollary 1.2
above can be considered to be a generalization of the reflection prin-
ciple [21, 23, 33] to maps into higher dimensional spaces. Certain gener-
alizations for this kind of maps have been obtained earlier by Lewy [21,
p. 8] and Webster [33].

A similar result holds if .M is only an immersed submanifold of bQ,
provided that the set of its self-intersections is not too large. In the next

theorem we assume that D c Cn and Q c CN, N &#x3E; n, are bounded C2 strictly
pseudoconvex domains.

1.3. THEOREM..Let M2n-1 be a compact connected Cr manifold, r&#x3E;2,
and let i : .M’ --~ CN be an immersion of class Cr, with the image i(M) con-
tained in bS2. Denote by 8 the set of points q E i(M) at which i(M) is not a
manifold. Assume that

(a) is connected, and

(b) = 0, where Jek denotes the k-dimensional Hausdorff 

If f: D --&#x3E; Q is a proper holomorphic map with f*(p) E i(M) for almost
every point p in bD, then the f otlowing hold.
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(i) Each point q E M has a neighborhood U irc CN such that

and L w Mj is a Ck mani f old with boundary Mj for each j = 1, s - In
particular, the singular locus of the variety Y= f(D) is finite;

(ii) f extends to a Hölder continuous map on D, and its branching locus
consists of at most finitely many points of D;

(iii) i f r ~ 6, then f extends to a Cr-4 map on D.

REMARK 1. Since the map f is bounded on D, the generalized theorem
of Fatou [29, p. 13] asserts that there exists a set E c bD whose comple-
ment bDBE has surface measure 0 such that f has a nontangential limit
/*(p) at every One of our hypotheses is that this limit lies in
~ for almost every point p e B.

REMARK 2. The regularity of the subvariety f (D) at the boundary of Q
can also be deduced from the work of Harvey and Lawson [14, Theorems
4.7, 4.8 and 10.3]. Their methods include the structure theorems for cer-

tain types of currents. Our proof of Theorem 1.1 is perhaps more elementary.
However, the hypothesis that b,S2 be strictly pseudoconvex is essential in
our proof of Theorem 1.1.

REMARK 3. In the case n = 1 our Theorem 1.1 follows from a more

general result of Cirka [4, p. 293] which states that if f : L1 --&#x3E; CN is a holo-

morphic map on the unit disk L1 c C such that all of its boundary values
on an open arc y c b4 lie in a totally real submanifold Me CN of class Cr,
r&#x3E;2, then f is of class Cr-l’a on L1 U y for all 0  ce  1. If D is a domain

of class Cr in C, then we can find for every point p E bD a simply connected
domain U c D with b U of class Cr such that U 0 bD contains an open
arc y If f : D --~ S~ is as in Theorem 1.1 above and if all

boundary values of f lie in a Cr curve if contained in then the theorem

of Cirka implies that f is of class Cr-1’" on D. If o is a strictly plurisub-
harmonic defining function for S2, then eol is a negative subharmonic func-
tion on D that vanishes on bD. The Hopf lemma implies 5~ 0 on bD.

It follows that 0 on bD, and f (D) intersects bQ transversely. From the
proof of part (i) of Theorem 1.1 we shall be able to see that the set f (D) is
in fact of class Cr near its boundary f (bD) = M.

My sincere thanks go to Professor Edgar Lee Stout.
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2. - Boundary regularity of the image variety.

In this section we shall give a self-contained proof of Theorem 1.1 in
the case when ~&#x3E;2. The first part of the proof applies also to the case
n = 1.

By an embedding theorem of Fronaess and Khenkin [9,17] we may
assume that S~ is strictly convex. The maximum modulus principle for
functions in H°°(D) implies that f(D) lies in the polynomially convex hull
112 of M. Since S2 is strictly convex, we have 0i n bQ = .M and hence

i.e., all limiting values of f at bD lie in M.
We shall first prove that f (D) is a Cr manifold with boundary in a small

neighborhood of each point p E f (D) r1 l1f at which the following condition
holds:

Here, denotes the maximal complex subspace of the tangent
space TpbfJ. By translating to the origin we may assume that p = 0.
The assumption (2.1) implies that W= is a real (2n- 2)-di-
mensional vector subspace of CN.

We claim that we can find a complex (n - 1 ) - dimensional subspace Z’
of CN such that the orthogonal projection ~’ : CN -+ Z’ maps W bijectively
onto ~’. This is equivalent to finding a complex subspace Z" of CN such
that since we may then take for E’ the orthogonal comple-
ment of E’ in CN. If W = {(x, y) X, y real}, we may take 2~= C. (1, i).
In general, if we choose coordinates correctly, we have

where each copy of R2 is embedded as the standard totally real plane
in C2, andm+l=n-1. For each copy of R2 in the above sum we take

~~’ _ ~ ~ ( 1, i ) as above. The complex subspace

has the required property and we take 2~ to be the ortho-

gonal complement of ~" in CN..
Let 27 be the complex n-dimensional subspace of CN spanned by Z’ and

by the normal vector to bQ at 0. We denote by n the orthogonal projection
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of CN onto Z. The restriction a: is one-to-one by the choice
of 27y and therefore .1~--~ ~ is a Cr embedding near 0.

We will show that c 27 is a strictly convex hypersurface near the
point 0 e 27. By a unitary change of coordinates at 0 we may assume that

and that in some neighborhood U of 0 the domain S~ is given by

where = iy~ and Q(z) is a real positive definite quadratic form in z.
Let

For all sufficiently small 8 &#x3E; 0 we have

and therefore

In particular, y n {Xl&#x3E; - e}) is a hypersurface in the ball that

is internally tangent to the sphere bBc n Z at 0, and therefore is

strictly convex near 0 as claimed.

Let G be the domain in .E bounded by n(M) r1 {Xl&#x3E; - s} and by
{Z, = - 8}. For each sufficiently small c &#x3E; 0 we have

/m

where a(M) is the polynomially convex hull of The maximum maxi-

mum modulus principle for H°° implies

It follows that

By the maximum principle for varieties [22, p. 54] we have
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The variety is closed in and the restriction

n/v: V -* G maps V properly and holomorphically into G. Hence the pair
(I] is an analytic cover [13, p. 101] of multiplicity I for some integer 2.

we claim that 2 = 1. The following is the crucial observation about V :

If c V is a sequence for which converges to a point

then converges to the unique point q E M which q.

Intuitively this says that all sheets of the analytic cover 
are glued together along M, and will show that as a consequence there is
only one sheet.

After a unitary change of coordinates ..., ZN we can assume that

for some Z E G there are £ distinct points wi&#x3E;(z), ... , in n-1(z) r1 V
with distinct N-th coordinates ..., w~,~~(z). The same is then true

for every point z outside a proper subvariety L c G, and each is locally
a holomorphic function of z. However, these function need not be well-
defined globally.

Consider the polynomial P(t, z) E in the variable t defined by

The coefficients are elementary symmetric polynomials in the 
and hence they are well-defined bounded holomorphic functions on GBL
that extend to bounded holomorphic functions on G. The same is then

true for the discriminant of P. By the generalized theorem of Fatou
[29, p. 13] there is a set E contained in n {Xl&#x3E; - ~~ == S, E being
of full measure in S, such that all coefficients a~ (z) and 4(z) have non-
tangential limits at all points of E. Since d is not identically zero on G
by the construction of P, the boundary uniqueness theorem [27] implies
that 4(e) # 0 for some e E E (in fact d 0 0 almost everywhere on .E).
Hence the polynomial P(t, e) has A distinct complex roots t,, ... , t~ . 11

In order to reach a contradiction we assume that A &#x3E; 1, and let t, 5~ t2
be two distinct roots of P(t, e). Since the roots of a polynomial depend
continuously on its coefficients, we can find a sequence of points in G

converging nontangentially to e, and we can find roots tl(zv), t2(z,) of P(t, zv)
such that

and
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By the definition of P(t, z) there exist points and ?,~1v2~ in V r1 
with the N-th coordinates equal to ti(zr) and respectively. Clearly
the sequences and ~wv2~~ cannot both converge to the same point
e = This contradicts the observation about TT that we have

made above.

Therefore ~, = 1 as claimed. Hence the V - G is one-to-one

and therefore it is a biholomorphism of V onto G. Its inverse is of the

form

where : G - CN-" is a holomorphic map on G. Our observation about V

implies that a extends continuous to where S = n(M) r1 {Xl&#x3E; - 81,
and the map z - (z, (z) ), z E S, is the inverse on S. Since n I,,, is
a C’ diffeomorphism onto S, als is of class C’ by the inverse mapping the-
orem. The regularity theorem [14, Theorem 5.6] implies that a is of class
Cr on GUS.

This proves that f (D) is a C’’ manifold with boundary near every
point at which the condition (2.1) holds. In particular, M
is maximally complex near every such point p, and a neighborhood of p
in M is contained in f (D ) . It remains to show that (2.1) holds for every
point p E t(D) r1 M. In the we refer to the theorem of Cirka [4].
(See Remark 3 in Section 1 ) . We shall give a self-contained proof in the
case n ~ 2.

Define the subsets C and E of if by

We have seen above that .EBC is an open subset of and lYl is maxi-

mally complex at each point of Since E is closed, .EBC is also

closed in MBC and therefore it is a union of connected components of JfEC.
We want to show that C = 0 and hence .E = M.

We will first show that the set EEC is not empty. Suppose on the con-
trary that E c C, i. e. , 7 the transversality condition ( 2.1 ) does not hold at
any point of E. Extending S~ to a strictly convex domain in C~ for a
N’ ~ N we may assume that 

The strictly pseudoconvex hypersurface bQ is a contact manifold with
the contact form 77 = I(8 - a) e whose kernel is kerq = where e is
a defining function for S~ [31]. (For the general theory of contact manifolds
see [3].) Let t : bQ be the inclusion of if into bQ. We have = 0
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on the set C. By an argument of Duchamp [7] every point p E M has an
open neighborhood U c M and a Cl embedding i : U ---~ bQ such thal V = c
on the set C n U, and = 0 on U. Then i : is an interpolation
manifold [31], y and by a theorem of Rudin [26] each compact subset of 
is a peak-interpolation set for the algebra ~.(~3). It follows that .E is a local

peak-interpolation set and hence a peak-interpolation set [30, Chapter 4].
If h E A(Q) is a peak function on E, then ho f is a nonconstant bounded

holomorphic function on D whose boundary values equal 1 almost every-
where on bD. This is a contradiction which implies that 0.

The following lemma implies that the set C is empty, thereby con-

cluding the proof of part (i) of Theorem 1.1.

2.1. strictly pseudoconvex hypersurface of class C2
in CN and let .M be a C2 submanifold of S of dimension 2m --~-- 1 for some

If M is maximally complex at every point of an open subset U c M,
then have for every p E U

Assume the validity of Lemma 2.1 for a moment. Let S = bQ and
U = BBC. If C ~ 0, then there exists a point p E C r1 U. By Lemma 2.1
the condition (2.4) holds at p which is a contradiction with the definition

(2.2) of the set C. Hence C = 0 and Theorem 1.1 is proved provided that
Lemma 2.1 holds.

PROOF oF LEMMA 2.1. Let 77 be a contact form on S with kernel TcS.
If .X is a Cl vector field on S that is tangent to TCS, then the vector field
JX is also tangent to TCS. (Here J denotes the almost complex structure
on By virtue fo the strict pseudoconvexity of S we have

at every point p where 0. By the Cartan formula (2.5) is equal to

Hence the continuous vector field Y = satisfies if 

This shows that (2.4) holds at each point p E TJ. We need to prove that
(2.4) also holds on the boundary of U.

Fix a point po e and choose real functid’as r1, ... , rs of class C2
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on CN such that near po the manifold .M is defined by the equations

Let Oj = 18r; for 1 c ~ c s. Each Oj is a complex 1-form of class Cl which
is real-valued on TM. Moreover, we have 

’

for every p near po. Since ~VI is odd dimensional, and hence

one of the forms, y say 0,,, does not vanish on Hence the restriction

of 
o 
to TM defines a C, distribution of codimension 1 on TM near po.

Since ~ is assumed to be maximally complex at every point of U, it fol-
lows that

for each p E U near po.
Choose a Cl vector field X’ on ~VI near 0, such that

Since q = 0 on we have

for

We claim that there is a Cl vector field X on a neighborhood of po in S
such that

for and

The problem is local near po . Choose local coordinates such that po = 0,
if == R2m+1, 7 S = R2N-l, U is an open subset of 111 with 0 E U,

and for

One of the coefficients a, is nonzero at 0, say ai(0) ~ 0. We have
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for Rewrite this as

fer x near 0 in ZI. We extend the functions b2, .... b 2N-l smoothly to a
neighborhood of 0 in R2N-1, and we let b1(x) be defined by (2.7). This gives

us a vector field . on R2N-1 with the required prop-
erties.

The Co vector field Y = [.X, JX] defined on 8 near po = 0 is tangent
to M on the set U. By the continuity it follows that Y° E Moreover,
the strict pseudoconvexity of 8 implies that (q, Y)o # 0 (see (2.5) and

(2.6)). Together these imply that and Lemma 2.1 is proved.

3. - Continuous extension to the boundary.

In this section we shall conclude the proof of Theorem 1.1. Following
an idea of Khenkin [16] we first prove that the map f in Theorem 1.1
extends continuously to D.

3.1. LEMMA. Let f: D 2013D be as in Theoroon 1.1. Denote by the

Euclidean distance fo a point z E D to bD, and similarly for dn. Then there

exist constants c1, C2 &#x3E; 0 and 0  s  1 such that the inequality

holds for all z E D. I f D is also strictly pseudoconvex, we may take 8 = 1
in (3.1).

PROOF. Let rD and rn be C2 defining functions for D resp. 4li. Since 2

is strictly pseudoconvex, we may take rD to be plurisubharmonic on S.
Hence rnol is plurisubharmonic on D, it is negative and tends to 0 as we
approach bD. By the Hopf lemma [15] there is a constant cl &#x3E; 0 such that

Since the function - rD is proportional to dD on D and similarly - rn is

proportional to dn on Q, the above is equivalent to the left estimate in (3.1 ),
To prove the right estimate in (3.1) we choose by [6] an s in (0, 1)
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uch that the function

is plurisubharmonic on D. If D is strictly pseudoconvex, we may assume
that rD is plurisubharmonic and hence 8 = 1 would do. There is a proper

subvariety V’ of V = f(D) such that YBY’ is regular and the restriction

is a finite unbranched covering projection. We define a function 99 on V by

and

Locally on VBV’ the function T is the maximum of a finite number of

plurisubharmonic functions and hence it is itself plurisubharmonic. Since

~ is clearly continuous on V, it is plurisubharmonic on all of V according
to [12, Satz 3]. Moreover, 99 is negative on V’ and tends to 0 as we ap-

proach b V = M. Since V is transversal to bQ by the proof of part (i) of

Theorem 1.1, we have

The Hopf lemma implies

for some constant C2 &#x3E; 0. Taking the absolute values we have

f or z E D. By the definition of r’ we have and hence

This is equivalent to the right estimate in (3.1) and Lemma 3.1 is proved.
Using Lemma 3.1 and the properties of the infinitesimal Kobayashi

metric we can prove that f extends to a Holder continuous map with the
exponent 8/2 on D, where e is as in (3.1). The idea of this proof is due to
Khenkin [16].

If N is an arbitrary complex manifold, z c N and X c is a com-
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plex tangent vector to N at z, the Kobayashi metric K(z, X) is given by

there is a holomorphic with

and

there is a holomorphic with

and

(Here denotes the disk of radius r centered at 0 in C.) For further details.
concerning the Kobayashi metric see [18].

If D c Cn is a bounded domain, then

where IXI is the Euclidean length of X. If D is strictly pseudoconvex,.
then

for some constant c &#x3E; 0 [11]. Finally, if f : D - Q is a holomorphic map,,
then

where These properties together imply

If x 0 0, Lemma 3.1 implies

From this it follows by a simple integration argument that f is Holder-

continuous of the exponent E/2 on D, and hence it extends continuously
to D.

Once we know that f is continuous on D, we can improve our result
by using the local plurisubharmonic exhaustion functions on D constructed
in [6, Theorem 3]. In particular it follows that Lemma 3.1 above holds for

eVEry 0  8  1, and hence f is Hölder continuous on D of the exponent (X

for every 0  oc 2 . If D is strictly pseudoconvex, we may take a = 2 ~.
This proves part (ii) of Theorem 1.1.
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We shall use the idea of Pin~uk [24] to show that the map f is un-

branched in a neighborhood of each point p E bD at which bD is strictly
pseudoconvex. We need the following local version of the result of Pincuk:

3.2. THEOREM..Let Di ( j = 1, 2) be bounded strictly pseudoconvex do-
-mains in Cm with C2 boundaries and let Suppose that Ui is an

-open subset of Di such that for some small 8 &#x3E; 0 we have

where BE(p) is the ball of radius 8 centered at p. Let f : U1 -7 U2 be a proper

holomorphie map that extends continuously to 1]1 and f(p1) = p 2. the

branching locus of f avoids a neighborhood of pl in D1.

NOTE. The difference between Theorem 3.2 and [24] is that in our case
the map f is only defined, on an open subset of DJ.

PROOF. We recall the proof of Pincuk given in [24]. Assume that there
is a sequence of points c Ul converging to pl such that each Pk is a
branch point of f. Pincuk constructed a sequence of domains Dk ( k = ly 2, ... )
such that Dk is biholomorphically equivalent to D~ for each the

point P1c E D1 (resp. corresponds to the point (0, ..., 0, -1) 
(resp. (0, ...~ 0, -1 ) and as k - 00 the sequence of domains Dk con-
verges uniformly on compact subsets of Cm to the domain

for j = 1, 2. The domain B is biholomorphically equivalent to the unit
ball Bm [25, p. 31], y and the map f gives rise to a proper holomorphic map
F: B --&#x3E;- B such that .F ( o, ... , -1 ) _ ( o, ... , 0, -1 ) , and F is branched at

the point (0, ..., 0, - 1). A theorem of Alexander [1, 2 ~, p. 316 ] implies
that .F is an automorphism of B. This contradicts the fact that ..F is

branched at and hence the original map f is un-

branched in a neighborhood of the point pl.
To prove the local version of the theorem as stated above we perform

-the same construction of domains (See Lemma 1 in [24]. ) Let Uk c Di
be the subset that corresponds to Uj c Dj under the given biholomorphism
-of Dj onto It follows from the construction in [24] that the sequence
Uk converges to B as k - oo and the map F: B - B can still be con-

,structed, thus yielding a contradiction exactly as above. For the details

we refer the reader to [24].
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To apply Theorem 3.2 we choose a point p~ 1 E bD and let p2 = E M.
Let 27 be a complex it-plane through p 2 such that the corresponding
orthogonal projection yr: CN a neighborhood of p2 in V biholo-
morphically onto a strictly pseudoconvex domain D2 c 27 with C2 boundary.
Let U2 = D2 and Ul = c D = D’. By Theorem 3.2 the map

is not branched near pi and hence f is not branched near pi.
This proves that the branching locus of f stays away from the strictly

pseudoconvex boundary points of D. In particular, if D is strictly pseudo-
convex, then the branching locus of f is compactly contained in D and
hence it is finite.

It remains to prove the part (iii) of Theorem 1.1. The restriction

is a proper holomorphic map of n-dimensional complex manifolds, and
hence its branching locus is either empty or else it is a subvariety of

D""’t-l(Vsing) of pure dimension n - 1. Since the second case is excluded

by what we have just said above, the map (3.4) is unbranched.

Consider now the extended map

We fix a point q c ~f == VBY and choose a simply connected subset,

Vo c with C2 strictly pseudoconvex boundary such that for some
8 &#x3E; 0 we have

Since (3.4) is a covering projection, the inverse image is a disjoint
union of k connected open subsets D1, D2, ..., Dk of D such that the restric-
tion of f to jD~ is a biholomorphism of D~ onto Vo for each j = 1, ..., k.
Let Do be any of the sets D;, and denote by g : Vo -* Do the inverse of’

f : Do - Vo. If Vo is chosen sufficiently small, then Yo is very close to its.

projection onto the complex plane TqY, and hence property (3.2) of the

Kobayashi metric gives an estimate

for X E Since V is transversal to b,~ at q, we have
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for each sufficiently close to q. The estimates (3.7) and (3.8) to-

gether imply

for each w E Yo close to q and Hence

From this and Lemma 3.1 we obtain an estimate

on the norm of the derivative dg = g* at the points WE Vo close to q. This

implies that g is Holder-continuous with the exponent -1 on Vo near q
[8, p. 74] and hence it extends to a Holder-continuous map on Tlo near q.

This is true for each local inverse gj: By shrinking Vo if

necessary we may assume that gj: Vo - D~ is a Holder continuous map
that is the inverse of f : Vo .

Let V1= where s is as in (3.6). we claim that

To prove this, suppose that f (z) lies in V1 for some z c D. Pick a sequence
c D such that lim z - z. By the continuity of f we have lim f(z)" 

- f (z) . There is a vo such that f (vo) E Yo for each Since

it follows that

for some j = j (v) E 11, ..., k}. One j has to appear infinitely many times
as v - oo. Passing to a subsequence we may assume that (3.11) holds for
all v, with j fixed. Hence
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which implies This proves (3.10). Since q was an arbitrary point
of M, it follows that (3.5) is a topological covering projection. This com-

pletes the proof of Theorem 1.1.

4. - Smooth extension to the boundary.

In this section we shall prove Corollary 1.2 and Theorem 1.3. We will
use a local extension theorem for biholomorphic mappings due to Lem-
pert [20, p. 467] :

THEOREM. Let Qi and Q2 de f : S~2 be a biholo-

morphic map, and let pj be a point in bQ; for j = 1, 2. Assume that

and

If the boundaries (j = 1, 2 ) are of class Cr and strictly pseudoconvex in
some neighborh!god of the points p, resp. P2 and if r&#x3E; 6, then the map f
extends to a Cr-4 map on a neighborhood of p, in S~1.

Assuming this theorem we shall now prove Corollary 1.2. Suppose that
the map f : D ~ Q is as in Theorem 1.1. Recall that f extends continuously
to D by the part (ii) of Theorem 1.1. Choose a point PI E bD and let

P2 = f (pl) E M. Since M is of class Cr and f (D) U .l~ is a Cr manifold with
bounda~ry near P2, we can find a simply connected domain Q2 c f (D) with
C" boundary such that

for some small B &#x3E; 0. We may choose SZ2 so small that the orthogonal
projection of CN onto the complex n-plane maps Q2 onto a Cr
strictly pseudoconvex domain.

We have seen in Section 3 above that the map f has a local inverse g
on S~2 that is continuous on Q2 and sends p, to pl . If we let g(Q2) c D,
then the continuity of f on D implies that

for some small 6 &#x3E; 0. In particular, a part of near p, coincides with

bD, and hence bill is of class Cr and strictly pseudoconvex near p,. The
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theorem of Lempert implies that f is of class Cr-4 on D near the point pi .
Since jpi E bD was chosen arbitrarily, f is of class Cr-4 on D.

NOTE. The same conclusion applies to each local inverse of f near M,
and hence the map

is a Cr-4 covering projection (here Y = f(D)).

PROOF oF THEOREM 1.3. Recall that S c i(M) is the set of non-smooth
points of i(M). Let V’ = f(D). We have seen in the proof of Theorem 1.1
that TT c V’ l~ i(M). We claim that V cannot be contained in V u S. Since

0, the assumption would imply that V is a complex
subvariety of CN according to a theorem of Shiffman [28, p. 11]. Since V
is compact, this is a contradiction. Hence the set is not

empty, y and the proof of part (i) of Theorem 1.1 shows that Y V is

a local Cr manifold with boundary near each point p E Moreover,
the set Y r1 i(M)BS is open and closed in Since is

assumed to be connected, it follows that c V, and the immersion i
is maximally complex at each point x E M for which Further, y
because of Je2n-I(S) = 0 the set S is nowhere dense in i(M), hence by
Lemma 2.1 the immersion i is maximally complex on all of .M- and we have
v = v u Z(.~). 

_

It remains to consider the structure of V at the points of S. Fix a point
and choose local coordinates in CN near p such that p = 0, bS~ is

strictly convex near 0, Tobo = (ri = 0} and Q c (zi  0}. If we choose a

sufficiently small s &#x3E; 0 and let TI = ~x1 &#x3E; - 81, y then

where each .M~ is a closed connected submanifold of U. Since bQ is strictly
convex and each If~ is a maximally complex submanifold of we can

choose 8 so small that each M~ bounds a closed irreducible complex sub-

variety TT~ of and Yj U Mj is a Cr manifold with boundary if,.
At every point q E the manifold also bounds the variety V.

It follows that Vj is an irreducible component of Y r1 U, and hence

We claim that
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Suppose that there is another irreducible component TTo of U. If Tlo r1 U
contains a point q E for some j = 1, ..., s, then we have V,, = Vj
which is a contradiction. Hence Vo m U is contained in To U S. The the-

orem of Shiffman [28, p. Ill] implies that is a closed complex sub-
variety of U. Since ~7={Ti&#x3E;2013e}~ the plurisubharmonic function x,
assumes its maximum on T~o which is a contradiction to the maximum

principle [12]. This proves (4.2) and hence part (i) of Theorem 1.3.

The proof that we have given in Section 3 above shows that f extends
to a Holder continuous map on D. Fix a point p E bD. We will show that
f is not branched in a neighborhood of p in D. Let q = f(p) E M. Choose

a neighborhood U of q in CN such that (4.1) and (4.2) hold. The preimage
c D has exactly one connected component Dl such that Ba ( p ) r1 D c Dl

for some 6 &#x3E; 0. The restriction f : U r’1 Q is a proper map and

hence (4.2) implies that = Th for some j. If we apply Theorem 3.2
to the proper map

we conclude that f is not branched near the point p. This proves the part (ii)
of Theorem 1.3.

If we choose the set U in (4.2) sufficiently small, then the map (4.3) is
a biholomorphism, and we can see the same way as in Section 3 above
that the local inverse

extends to a Holder continuous map on near q. If r ~ 6, the theorem of

Lempert implies that the map (4.3) is of class Cr-4 on a neighborhood of p
in D. Since the point p E bD was arbitrary, f is of class Cr-4 on D and
Theorem 1.3 is proved.
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