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A Limiting Geometry for Capillary Surfaces.

ROBERT FINN

1. - We study here a limiting configuration for capillary surfaces in
cylindrical tubes of general section, in the absence of external force (gravity)
field. The general question of the influence of boundary geometry on the
behavior of solution surfaces was apparently first addressed by Concus and
Finn [1], who showed that a surface S simply covering the (base) section
S~ and meeting the cylinder walls Z in a prescribed angle y need not exist,
even for convex analytic 27 = These authors obtained as a necessary
condition for existence of S the relation

for every curve (or family of curves) cutting a subdomain S~* from
S and arc E* from Z’ (see fig. 1). Here

Figure 1.

Pervenuto alla Redazione il 20 Luglio 1983, e in forma definitiva il 28 Dicem-
bre 1983.
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is twice the mean curvature of S ; we have used the symbols 1~’, ~’, ..., to
to denote alternatively a set or its measure. It may be assumed without

loss of generality that 0~~/2.
Two fundamental papers on the existence question were published by

E. Giusti [2, 3]. In the second of these, Giusti proved that if y = 0, then
the condition (1) suffices for existence. In the earlier paper, he showed that
a solution exists whenever there exists 8 &#x3E; 0 such that

for all 

The question was taken up further in [4, 5, 6, 7, 8, 9], also independently
from another point of view in [10]. In [8] it was shown that for a piecewise
smooth Z with isolated corners having interior angles not less than 2a, with
oc + y &#x3E; a/2, a condition of the form (3) is a consequence of (1), and thus
(1) suffices for existence. (We note that y cannot be prescribed at a corner;
however it can be shown that the values of y on the smooth part of E determine
the solution uniquely whenever it exists.)

In the present work, we consider the limiting geometry in which one or
more corners can appear, with interior angles a satisfying a + y = In

such a case (3) always fails, regardless of the validity of (1) or of the remaining
geometry. Nevertheless it can happen that a solution exists; a simple example
is obtained by choosing for Q an equilateral triangle. A lower hemisphere
whose equatorial circle circumscribes the triangle provides an explicit solution,
for which a -f - y = 

For a general configuration the answer seems much less immediate;
however we intend to show that it is affirmative under reasonable conditions.

Specifically, we shall obtain an equi-bound for the areas in a family of solution
surfaces corresponding to neighboring boundary conditions; this bound will
then be applied to obtain the existence of a solution to the original problem,
as a limiting configuration.

The interest in the result derives chiefly from the fact that if at any
corner there should hold a + y  then no solution surface can exist

(Concus and Finn [1]).

2. - For background details we refer the reader to the sources [1, 11,12,
13,14]; we mention here only that the problem consists, formally, of finding
a solution u(x) in Q to the equation
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with

such that

on Z. Here v is exterior unit normal on E. When a solution exists, it is
unique up to an additive constant and minimizes the variational expression

in the class of functions of bounded total variation in ,~. Conversely,
a minimizing for y] provides a strict solution of
(4), (5) in S~, which assumes the boundary data in a weak (variational) sense,
and which differs at most by an additive constant from a strict solution of
(4), (5), (6) whenever such a solution exists (see, e.g., [15] for details). We
shall be concerned with solutions in the two dimensional (phusical) case
x = x~).

3. - In the interpretation of (1) and (3) as originally introduced, .r is
assumed to lie entirely interior to ,5~. However, we may consider formally
arcs r that need not be simple and that coincide in whole or in part with
arcs 27* c 27, in every case for which the configuration can be realized by a
limit of interior simple arcs 1’ that converge, lower semicontinuously in
length, with ~* converging in length. If we can show that (3) is satisfied
for all 1~’ in the extended sense, then it will hold a fortiori for all .1~ in the

original sense, and thus the existence theorem will follow. We note that
in the extended sense, an arc of 27 may be counted one or more times as

part of but at most once as part of ~*. We suppose throughout that
27 is piecewise smooth, in the sense that it be of class C2 in local coordinates,
except possibly at a finite number of exceptional points (vertices) at

each of which two uniformly smooth arcs meet at an interior angle 2oc,,
with 0  a  n. Let a = min let yo = c/2 - oc.i

HYPOTHESIS a(yo). At each vertex P with interior angle a, it is possible
to place a lower hemisphere v(x; Yo) of radius R = 2H- 11 with equatorial circle)’0 , 0

Qo passing through P (as shown in fig. 2) in such a way that at each point of
27 interior to Qo and to some neighborhood JY’P of P there holds v - Tv &#x3E; cos yo .
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Figure 2.

In other words, it is required that a lower hemisphere of radius RyO that
is vertical at P should meet the vertical cylinder wall through Z in an angle
not exceeding yo near P. One sees readily that the construction is always
possible if ~ contains two straight segments through P or if .1~ has on each
side of P near P the sense of concavity indicated in the figure. More general
configurations are however also admissible.

THEOREM. I f (1) holds at y = Yo for all .1~ c Q, and if Hypothesis a(yo)
is satisfied, then a solution uO(x) of (4), (5), (6) exists and minimizes Yo]
in the sense described above. The solution is bounded and regular in Q and
the corresponding surface So has finite area.

The indicated bounds are, at least in principle, explicit. We remark
that our proof of boundedness differs basically from the one given previously
by Gerhardt [20], which does not apply in the present case. For the case

considered in [20] the present method yields an overlapping result that is
in some respects much more precise.

PROOF OF THE THEOREM. Choose y in the range yo  y  Then

the conditions of Lemma 2 in [8] are satisfied and we conclude from Giusti’s
theorem [2] that a solution y) = uv exists. We propose to bound the
area of the corresponding surface independent of y as y ~ yo : i To do so

we modify a procedure due to Giusti [2].

LEMMA 1. There exists &#x3E; 0 with the property that i f a component of
a set Q* cut off by T has diameter exceeding ð, then 0-*, restricted to that com-
ponent, is positive.
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Here « component » is to be understood in the extended sense indicated
above.

PROOF. Let us suppose that for each s &#x3E; 0 there exists a component S2-1
of diameter &#x3E; 6, for which A typical such component would appear
as in fig. 3. Since 27* ~ we then have the inequality T8 C ~ for the total
length of the bounding curves T8.

Figure 3.

We assert that the number of boundary components of Q8 may be taken
to be equibounded. For consider a closed curve T§ c Dg, bounding an interior
Q:. The contribution to W8 of this curve is (1- s)7~2013.H~~. By the iso-
perimetric inequality

so that if 08  4~(1- E)2.gY 2 the value of ~~ would be decreased on removal
of 7~. Thus, we may assume that at most a fixed finite number of curves

h~ appears, each of which is equibounded in length, as 8 - 0. The remainder
of the boundary of D8 is a simple closed curve consisting partly of portions
of T8 and partly of subarcs of 2*, and hence is again equibounded in length.
Letting 8 -~ 0, we obtain an equibounded numbcr of sequences of closed
curves, each of which is equibounded in length. If these curves are param-
etrized by arc length, we obtain an equibounded number of sequences of
Lipschitz functions with Lipschitz constant 1, defined on equibounded
intervals. Thus there are subsequences of the T8 that converge uniformly,
lower semicontinuously in length, to a limiting configuration T°, determining
(in a limiting sense) an Qo of diameter &#x3E; ~. The associated boundary arcs
on E* converge uniformly and also in length, and it follows that y]  0.
We assert there exists 6° &#x3E; 0, depending only on 6, such that dia 

For if dia ro  bo and 60  ð, then for sufficiently small 8 the boundary
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component El must be the largest arc on Z* cut off by and will tend to 
,

~ if dia P-+ 0; the corresponding Q8 will tend to D. Choosing e so that
(1- e) &#x3E; cosy, we have

by the isoperimetric inequality. Since for sufficiently small 6° there holds
dia  30 for all small enough e, we would y] &#x3E; 0,
contrary to the construction of I~.
We thus have, in particular, We write with

I i = n D, I2 = ro n 27. In the sense implied by the limiting procedure,

where El = lim Es.
8-~0

Suppose Letting S~° be the part of QO cut off by we set
= n 27 and find

We thus obtain from (8)

Hence there must be at least one component of Do for which the corresponding
~ c 0, contradicting the hypothesis 0[.P; y] &#x3E; 0, vrc ,5~.

If Tf = 0, then dia 61, and either DO = 0 or Q° = Q. If

£1° = 0, then and (8) yields

if then

thus completing the proof of the lemma.
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LEMMA 2. There exists B(b) &#x3E; 0 with the property that i f a component
S2* has distance exceeding 6 from every vertex P for which a + then
fb8 corresponding to that component is positive.

PROOF. In view of Lemma 1, it suffices to restrict attention to S~* of

(sufficiently) small diameter S. We suppose 5 so chosen that for any two
points PI, P2 on ~’ whose distance PIP2  23, the smaller of the two arcs
determined on 27 contains at most one vertex P.

Consider a component of S~* lying in a ball B3 of radius  and suppose
first that the corresponding Z* contains no vertex. If ~* _ 0y we set 1 = 0,
otherwise let I be the supremum of arc lengths on JC within Ba j oining inter-
section points with h (see fig. 3). This value I will be achieved at points
PI, P2 on ~. Given iE &#x3E; 0, 6 can be chosen (depending only on 9) so that
.,T’~ P1P2~ (1- E) Z ~ (1- E)~*. We choose i so that (1 - iU) &#x3E; cos V, and
then we choose 8 so that (1- E) (1- e) &#x3E; cosy. We then have &#x3E; 0,
as desired. 

~

Figure 4.

Suppose next that a vertex P appears between P1 and P2, with a  ~/2y
a + y &#x3E; n/2 (fig. 4). Letting r be the angle between the angle bisector
and the segment Pi P 2 we find

for given i &#x3E; 0 if 3 is small enough. We have also ~*  (Zl + l2); thus, since
&#x26; + y &#x3E; we can choose 8 and s so that

so it suffices again

LE1BrnA 3. If Hypothesis a(yo) holds and if Yo C y  then Hypothesis
a(y) holds. The neighborhood Xp can be chosen to be uniform in y as y Yo.
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Figure 5.

Figure 6.
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PROOF. For given y in (0, ~/2)y consider a disk DY of radius By = 2H;1,and let y) be the lower hemisphere whose equatorial circle Qv = 3-D~
Let dy be a concentric disk of radius Ry cos y = Given p E Dy, there
holds v ~ Tv ~ cos y at p if and only if p E Dv",L1 v and the direction v is ortho-
gonal to a line that does not enter 4v (see fig. 5). This is most easily seen
by constructing the two tangents to 84v through p. Each of the vertical
planes through these lines meets the hemisphere y ) in the angle y, so
that for the corresponding normals v to the tangent lines at p there holds
v ~ Tv = cosy.

Suppose now that Hypothesis a(yo) holds, and let Qy° be the corresponding
circle through P. We construct a circle QY centered on the line joining P
with the center of then the corresponding subcircles adY°, and the

common tangents L, L’ to these sub circles (fig. 6). In the shaded region T
of the figure, any line that meets 4% will also enter L1Yo. It follows that at

any point p E T, the range of directions v such that includes

those for which Since T contains some JWp(yo) =1= liJ by hy-
pothesis, the lemma is proved.

4. - We return to the proof of the theorem. Consider the solution uy
as above; we normalize ’Uv so that 0, and set

Letting 8 and 6 be as in Lemma 1, we set

By Theorem 2.2 of [2] (see also [10]) te  00.

For every vertex P at which a + y = we introduce a circular arc

‘~3a about P in S~ of radius 38, as indicated in fig. 7. Here 6 is to be suffi-

ciently small that the condition of Hypothesis a is satisfied in each wedge
cut off at a vertex P by le3a* then each component of Qt that

contacts 3a or lies outside every such wedge has distance&#x3E; ð from P,
hence 0 for all such components, by Lemma 2.

Let Wa be the open component lying in some and con taining D~,
such that ~W~ contains no points and no points of components of

that contact ~3a . Wa is bounded by P, by segments T6 c E, and by a
set on which -.

We now position a lower hemisphere v(x; y) as described in Hypothesis
oe(y) (see Lemma 3) and choose Ce such that ws = y ) + on 7~?:

By the maximum principle for surfaces of prescribed mean curvature (see,
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Figure 7.

e.g. , [1 ], Theorem 6, or [14], Chapter 5) there holds in W6. In

particular, in ’W6, and we conclude that if 
then Qt r1 D6 = 0 and thus W8 &#x3E; 0 for every such set, by Lemma 2.

Writing fl = cos y, El = E n 8Qt, we have, by the above remark,

We have on the other hand, by the co-area formula
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thus

We now observe that uv minimizes y] in BV(Q). Thus, comparing
with the function u =- 0, we obtain from (9)

and hence

Let us change the normalization by adding a constant to each Ul" so
that = 0. Then (cf. Lemma 1.1 in [2])

n

We have proved :

LEMMA. 4. The surfaces are bounded in area, independent of y as
Under the normalization = 0, the functions are bounded

in L2(.~). a

We now prove :

LEMMA 5..F’or any sequence y ~ yo, the set provides a minimiznig
sequence for y,] in BV(Q).

PROOF. If not, there would exist K E BV(Q) with

The variational condition for uy yields
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hence remains uniformly bounded, as y- yo: -. Thus

since uv is minimizing for 9(u; y]. Letting we obtain a contradiction

5. - Since the sequence {uv} is bounded in a subsequence can
be extracted that converges in to a function Uo E BV(Q).

LE3tMA 6. The functions u°(x) minimizes in 

PROOF (cf. [15, 20, 2]). Since the are minimizing (Lemma 5), it

suffices to show that yo}  inf To do so, we apply the ine-
quality (1.4) of [15], for any f (x) E BV(Q):

with A6 = (z e S~:  3), 6 &#x3E; 0 arbitrary (~). Here .L is a Lipschitz
constant for ~; according to our hypotheses we may choose V1+L2  cos y
+ 8, for any s &#x3E; 0.

We have

Applying (12) to the last term in (13), then using the lower semicontinuity
of the area functional [16] and the convergence of in L1, we obtain

Since 6 and c are arbitrary y the result follows from Lemma 4.

(1) A somewhat weaker estimate appears in [15], but the proof given there yields
the stated result.
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LEMMA 7. The function u’O(x) satis f ies the equations (4, 5, 6) in the (weak)
variational sense. It is the unique minimizing f unction for Yo] in BV(Q),
and is equal to the strict solution of (4, 5, 6 ) whenever such a solution exists.

The proof can be obtained as in [15].

6. - We wish to show that uO is bounded, uniformly in Q. We observe
first that the have uniformly bounded oscillation in any compact sub-
domain .~K’ of Q, see Lemma 4.4 of [2]. In view of the estimate (11), we see
that luyl is bounded in any such K, independent of y as y ~ yo. We may
thus write 1uyl  .~( ~), where 6 is distance to E.

LEMMA 8. Let be a regular boundary point (i.e., not a vertex). There

exists a ball B,51 of radius 6’ about p, and a f unction lll’ ( ~’ ), such that uv(x)
 M’ ( ~’ ) in B,,, r1 Q. The estimate is independent of y as y ~ yo .

PROOF. Delaunay [16] observed that if an ellipse of major axis (2H)-1
is rolled along a line L, the curve described by a focal point (roulade of the
ellipse) serves as generating curve le for a rotation surface ~’ with axis L,
which has constant mean curvature H. With increasing eccentricity of the
ellipse, T tends to a circular arc, however, at the part of le nearest to L
an inflection and reversal of curvature continues to occur, as shown in fig. 8a.

Figure 8. Roulades of (a) Ellipse and of (b) Hyperbola.

If we choose the plane II of the figure as coordinate plane, the part of S
below the plane can be represented by a function v(x) over the region .1-~

bounded by W and its reflection in L, which satisfies the equation
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in R and the condition

on W and its reflection W’. Given X, 0  v  1, there exist B(X) &#x3E; 0 and

h(x) &#x3E; 0 such that for all sufficiently eccentric ellipses, the following holds:
there is an interval I of height 2h starting from the segment ii’ joining the
inflection point i to its reflection in .L (see fig. 8) such that on any curve
in I with slope not exceeding in magnitude, there holds v ~ Tv &#x3E; x. We

note that by first choosing h and then increasing the eccentricity, the diameter
of I can be made arbitrarily small, for 

Figure 9. Upper comparison surface from roulade of ellipse.

Each regular point p e 27 is contained in a boundary interval satis-

fying (in some coordinate frame) the above slope condition, with X = cos y
and p the midpoint of the segment in I of height h. We position the cor-
responding surface v as indicated in fig. 9; let ~’= min (h, d(p, ~)) and
denote by T the horizontal at height 2h, as indicated. We may assume the
entire configuration sufficiently small that the figure Q1J bounded by Zp,
~, ~’, and T lies interior to Q, and that T has positive distance 6 from Z.
If we now choose 2H = Hv, and add a constant to v so that v &#x3E; M(6) on
T, we will have v &#x3E; uv on T, v - Tv &#x3E; v - Tuv on the remaining part of 
and div Tv = div Tuy in Q1J. To see that h can be chosen to depend only
on x (for sufficiently large eccentricity) we need only observe that in the
limit the interval I determines a segment of height h of a sphere, which
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in the given orientation has the required property. The general maximum
principle (e.g., [1], Theorem 6) now yields uy  v in Since B., n Q c Q1)
and since as the lemma follows.

LEMMA 9. Let p e Z be a regular boundary point. There exists a ball B,,.
of radius ~’ about p, and a function m’ ( ~’ ) such that uv(x) &#x3E; m’ ( ~’ ) in B,,. f1 Q.
The estimate is independent of y as 

PROOF. We proceed as with Lemma 8, however, we replace the roulade
of an ellipse by the roulade of a hyperbola (fig. 8b). Again for increasing
eccentricity the roulade tends to a circular arc except in a small region near
L, where its particular properties yield the comparison surface S. In this

case it is the part of S that lies above II (rather than below H as before)
for which the representing function v(x) satisfies (15) with H &#x3E; 0, and thus
(16) must be replaced by the condition

on W, W’. In place of the segment zi’ we now use a segment ss’ joining the
points closest to L. Given x &#x3E; 0, we construct an interval IA containing
W such that on all curves in I,, of sufficiently small slope, there holds

For a fixed configuration, that is easily done, since v - Tv == 0
on ss’ ; thus we may choose for I a strip of height 2h, symmetrically dis-
posed about ss’ (fig. 10). In this case, h cannot be chosen a priori inde-

Figure 10. Lower comparison surface from roulade of hyperbola.


