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The Singular Set of the Minima
of Certain Quadratic Functionals (*).

MARIANO GIAQUINTA - ENRICO GIUSTI

Let S~ be an open set in ~n and let u) be continuous functions in

satisfying

Denote by F the functional

A function u : is a local minimum of F in D if for every 99 with

compact support in Q we have

We have proved in [2] that every local minimum a E RN) is

Holder-continuous in an open subset ,S2o Moreover, the singular set
J?== S~ - which is in general non empty (see e.g. [4]), has Hausdorff
dimension strictly less than n - 2.

The question can be raised whether the dimension of E is n - 3 or less.

(*) Work partially carried out under the auspices of the Sonderforschungs-
bereich 72 at the University of Bonn.

This paper was submitted for publication to « Analysis » in the spring of 1981,
and was accepted on July 23, 1981. Unfortunately, editorial problems have con-
siderably delayed the publication, and eventually caused the withdrawal of the paper
in January, 1983.

Pervenuto alla Redazione il 22 Gennaio 1983.
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In this paper we give a partial answer to this question. More precisely, ’
in the case in which the coefficients are of the form

we prove that the singular set E of a bounded local minim-Lim u has Haus-
dorff dimension not greater than n - 3 (theorem 2), and that in dimension
n = 3 it consists at most of isolated points (theorem 1).

We note that, although of particular type, quadratic functionals with
coefficients given by (2) are of interest in the theory of harmonic mappings
of Riemannian manifolds.

The methods used in the proof follow closely those developed in the

theory of minimal surfaces, see for example [1] [3].
Let us start with the following lemma.

LEMMA 1. Let A’’(x, z) = A ~~~v~ (x, z) be a sequence o f continuous f unc-
tions in B X RN (B is the unit ball in Rn) converging uniformly to A(x, z) and
satisfying the inequalities

where is a bounded continuous concave function with = 0. For each

v = 1, 2, ... let be a local minimum in B for the functional

and suppose that u(v)-+ v weakly in Z~ (B ; 
Then v is a local minimum in B for the functional

Moreover, if x, is a singular point for 2~~y~, and xv -~ xo, then Xo is a singular
point for v.

PROOF. We begin by recalling some results from [2]. For each ball

Br = Br(xo ) c B we have
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where

Moreover there exists a q &#x3E; 2, independent of v, such that

It follows from (6) and (7) that and that for every .R C 1

where c(R) is independent of v.

The above inequality and the weak L2 convergence of u~~’~ imply that for
every .R  1 we have

Passing possibly to a subsequence we inay suppose that 2013~ ~ a.e. in B.

We first show that

We have actually

and hence from (8)

When v -&#x3E; oo, the last term on the right-hand side tends to zero, whereas
the first is lower semi-continuous. This proves (10).
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Let now w be an arbitrary function coinciding with v outside Bn, and
let 27 (x) be a C1 function in B, with 01]11] = 0 in Bfl (p -R) and q = 1
outside The function

coincides with u(v) outside BR, and therefore

Taking (3) (8) into account we get

Letting v - oo, we get from (9) (10) and (11)

Taking e close to R the last term can be made arbitrarily small, thus proving
the first assertion of the lemma.

In order to conclude the proof, we recall that a point x is singular if
and only if 

-

(see [2], theorem 5.1) , y where Eo depends only on co and therefore is inde-

pendent of v. It follows from (6) that x is a singular point for u if and only if

Suppose now that zo is a regular point for v, and let xv -? Xo. Let e &#x3E; 0

be such c BR c B and

We have from (9)
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and therefore is regular for u(v), provided v is sufficiently large. This

concludes the proof of the lemma. q.e.d.

The next step is the proof of a monotonicity result. The reader will

recognize here a strict similarity with the theory of minimal surfaces.
We need for this lemma to restrict ourselves to the special form of the

coefficients in (2), namely:

It is easily seen that we may assume without loss of generality that

We shall suppose of course that the coefficients A satisfy (3), (4) and (5).
Moreover we assume that

LEMMA 2. Let u be a local minimum o f .F in B, with coefficients A given
by (12) and satisfying (3), (4), (5), (13), (14). Then for every ~O, .R with 0  e

 .R  1 we have

where

REMARK. This lemma is the only place in which we need the special
form (12) of the coefficients. Any extension of the lemma to a more general
class of coefficients will therefore imply an immediate extension of the

results of this paper.

PROOF. For t C 1 let xt = and 2ct(x) = u (x,). We have



50

We write now

so that the integral on the right-hand side of (17) splits naturally into two
parts: F = .F’1--E- .F’2 .

The first integral can be easily transformed by observing that for every f
we have

We get therefore

Taking into account the special form (12) of the coefficients and inequality (4),
we conclude that

where and in conclusion

In a similar way we estimate the second term

From the minimality of u we have Bt) and therefore
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If we set

we have

From (19) we get

and hence

Integrating (20) we easily obtain

On the other hand

from which the conclusion follows at once integrating on aB and taking (21)
into account, q.e.d.

We are now ready to prove our first result, dealing with the three-
dimensional case.

THEOREM 1. let u be a bounded local minimum of the functional F in B
and let the conclusion o f lemma 2 hold. If n = 3, u may have at most isolated
singular points.

PROOF. We first observe that the function 0(t) defined by (16) is increas-
ing, and therefore tends to a finite limit when t - 0. Suppose now that
has a sequence of singular points, xv, converging to xo = 0, and let R,
= 2bJ  1. The function
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is a local minimum in B for the functional

with

Moreover, each has a singular point yv with ly,l = 2 1. Since the are

uniformly bounded, we can suppose (passing to a subsequence) that u(v)

converge weakly in L2(B) to some function v and that The coef-

ficients u) are bounded and uniformly continuous in B X BL (L being
a bound for IuD and hence we may apply lemma 1 and conclude that v is
a local minimum for

Also from lemma 1 it follows that v has a singular point at Yo. Let now

0  A  1, and let us apply inequality (15) to o = and .R = 

We have

If we let v 2013~ oo the right-hand side converges to zero and hence for almost
every value of A and p we have

so that v is homogeneous of degree zero.
We may therefore conclude that the whole segment joining 0 with yo

is made of singular points for v. This contradicts theorem 5.1 of [2] and in

particular the conclusion that the set of singular points has dimension
strictly less than 3 - 2 = 1. q.e.d.

We pass now to the general case of arbitrary dimension. The techniques
involved follow very closely those introduced for minimal surfaces, see

in particular [1].
If oo and 0  !  + oo we define
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were I

The quantity

is the k-dimensional Hausdorff measure of A..

Although Hk and H7; may be extremely different, it is easily seen that
.H~k(A) = 0 if and only if H7;(.A.) = 0. This fact and the results below make He;
more convenient for our purposes. A first property of Hk’ is that for every
set 27 c Rn we have

for Hk-almost all x E E, see [1].
Moreover, if Q, Q, (v = 1, 2,...) are compact sets and if every open set

A D Q contains Q, for v sufficiently large, then

see [1] again.
The next result is the analogous of theorem 1 when n &#x3E; 3.

THEOREM be a bounded local minimum F in B and suppose
that the conclusion of lemma 2 holds. Then the dimension of the singula; set 
of u cannot exceed n - 3.

PROOF. Suppose that for some k &#x3E; 0 we have &#x3E; 0. Then &#x3E; 0

and there exists a point xo, which we may take as the origin, such that (22)
holds. Let Rv be an infinitesimal sequence such that

and let u(v)(x) = Arguing as in the proof of theorem 1, we conclude
that a subsequence of converges to a function v homogeneous of degree
zero and minimizing locally the functional

We note that the coefficients are now independent of ~.
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If we call E(v) the singular set of we have from (24)

By (23) and lemma 1 the same inequality holds for the singular set
of v. Since k &#x3E; 0, there exists a point for which (22) holds, 1: now
denoting the singular set of v. We may suppose that xo = (0, 0,..., a). We
blow up now near so by taking

Arguing as above and recalling that the coefficients in Fo do not depend
on x, we arrive to a function w independent of Xn, minimizing Fo locally in R-,
and whose singular set has positive k-dimensional measure.

The restriction of w to the plane xo = 0, which we denote again by w,
minimizes Fo locally in Rn-1; moreover its singular set Z satisfies Hk-l(l:) &#x3E; 0.

By repeating the procedure we construct for each s  k a local minimum
of in Rn-s whose singularities have positive (k - s)-dimensional measure.

Suppose now that k &#x3E; n - 3. Taking s = n - 3 we obtain a local mi-
nimum in R 3 whose singular set has positive This con-

tradicts theorem 1 and therefore proves the assertion. q.e.d.

REMARK. The results of theorem 1 and 2 apply to harmonic mappings
of Riemannian manifolds u : MN, provided that every point of Mn

has a neighborhood which is mapped into a bounded co-ordinate chart
of MN. In fact, in that case, if u minimize the energy

a representative of u in local coordinates minimizes locally the functional

where gii and are the metric tensors of MN and Mn respectively. We
note that no assumption on MN, involving for example its sectional curva-

ture, is needed.

Added, June 1982. The regularity result for harmonic mappings has been proved
independently by R. Schoen and K. Uhlenbeek [5], without the assumption that
the image of u is locally contained in a bounded coordinate chart.
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