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A Free Boundary Problem
for Quasi-Linear Elliptic Equations (*).

HANS WILHELM ALT - LUIS A. CAFFARELLI - AVNER FRIEDMAN

0. - Introduction.

Consider the problem of minimizing the functional

in the class of functions u satisfying u on a part S of Here D

is a domain in Rn and F(t) is a convex function of t for t &#x3E; 0, .F’(0) = 0,
F’(0) &#x3E; 0. The special case F(t) = t was studied by Alt and Caffarelli [1]
who proved Lipschitz continuity and nondegeneracy of a minimum u.

They also studied the free boundary .I’ = 8(u &#x3E; Q and proved the

analyticity of h if n = 2; further, if E rand F satisfies the « flat-

ness condition » at x°, then 1~’ is ana,lytic in a neighborhood of x°.
The results of [1] were used by Alt, Caffarelli and Friedman [2-4] in their

study of jet flows of inviscid, irrotational and incompressible fluid.
In this paper we shall extend all the results of [1] to the functional (0.1).

In particular we establish Lipschitz continuity and nondegeneracy of a

minimum, and analyticity of the free boundary (if n ~ 3, the flatness condi-
tion is assumed, as before).

The results of this paper extend with obvious changes to the more general

(*) This work is partially supported by Deutsche Forschungsgemeinschaft,
SFB 72 and by National Science Foundation Grants 7406375 A01 and MCS 791 5171.

Pervenuto alla Redazione il 29 Settembre 1982 ed in forma definitiva il 2 Mag-
gio 1983.
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functional

where &#x3E; 0, 1 E 
In a future publication we shall apply the results of this paper to the

study of jets and cavities of compressible fluids.

1. - The minimization problem; basic properties.

Let F(t) be a function in satisfying:

Let SZ be a domain in Rn , not necessarily bounded. For any Â &#x3E; 0, consider
the functional

over the class of admissible functions

where 8 is a given subset of 8Q and u° is a given function. We assume that
locally 8Q is a Lipschitz graph, that S is measurable with Hn-1(S) &#x3E; 0, 1
and that

From (1.1) we find that f(p) is convex; moreover, y

consequently

for some small constant &#x3E; 0, where
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Consider the problem: find u such that

This means that we have to deal with the differential operator

THEOREM 1.1. I f J(uO)  oo then there exists a solution to problem (1.4).

PROOF. The proof is the same as in [1], Theorem 1.3. Let be a

minimizing sequence. Then, by (1.3),

It follows that are bounded in L2(Q r1 BR) for any large .R.

Therefore there is a u E IT such that, for a subsequence,

The pointwise convergence implies

and since f is convex we have (see, for instance [6; pp. 232-3])

thus

DEFINITION 1.2. u is called a local minimum of J if, for some 0,
J(u) c J(v) for any v E K with
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LEMMA 1.3. If u is a local minimum then u is Y-subsolution, that is,

PROOF. For any e &#x3E; 0,

since by convexity

Now take 8 - 0.

LEMMA 1.4. If w is a local in B,, that is, we HI,2 (B,,) and

and if w &#x3E; u on aBR, then w ~ u in Bn. If w = u on aBn then w is uniquely
determined.

PROOF. Taking C = (u - ?,t~)+ in (1.5), (1.7) and comparing, we get, using
the convexity (1.2) of f:

hence u - w c 0. If WI is another solution of (1.7) then the above proof
gives WI- w  0. Similarly w - WI 0, so that w = wl :

LEMMA 1.5. I f u is a local minimum then 
°
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PROOF. Setting M = sup u°, we have, for small 8 &#x3E; 0,
S)

Taking 8 2013~ 0 we get

by (1.3), which yields a  M a.e. in S2.
Similarly, to prove that u&#x3E; 0 we begin with (8 positive and small)

Taking 8 -~ 0 we get

from which we deduce that u &#x3E; 0.

In § 2 it will be shown that, for any local minimum u, the set lu &#x3E; 0}
is open. Let us use this fact already in the next statements of this section.
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LEMMA 1.6. If u is a local minimum then it is !l’-solution in ~~ &#x3E; 01.
The proof is the same as that of Lemma 1.3, taking C any function in

Co (~~ &#x3E; 01) -

LEMMA 1.7. If G is an open set, u E H’2(G) and Yu - 0 i1~ G, then U E 
for any 0  lX  1.

PROOF. We can take G to be a ball. The equation dlu = 0 has the form

Applying 8~ and setting Wk == akwwe get, formally,

where

is uniformly elliptic matrix. Thus the Nash-de Giorgi estimate should give
a C" estimate on êBu for some a E ( o, 1 ) .

In order to derive the C" estimate rigorously, we approximate u on aG
by smooth functions ùm (in the Z2 trace norm). By [6; Theorem 14.8] there
exists a unique solution um of

with um C 02+tX(G). The formal argument given above can be applied to Um.
It gives

as well as

where _K is any compact subset of G ( C is independent of m). Since um and

the minimizer of
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coincide by Lemma 1.4, it follows that for some constants C, 0

Thus, for a subsequence, y

It follows, again by Lemma 1.4, that u = u and thus u E Then

the coefficients are Holder continuous so that by elliptic estimates wi,
is of class 

DEFINITION 1.8. We define functions by

so that

THEOREM 1.9. If u is a local minimum therc

f or any 77 .Rn), where v is the outward normal.

The proof of this very weak formulation of the free boundary condition
is similar to the proof of Theorem 2.5 in [1].

2. - Regularity and nondegeneracy.

We set

Since we shall use this notation mostly when either A is a ball B,(x’)
= {h - ~°)  rl andu = Ln or A is a sphere aBr(xO) and fl = H,-’, we often
omit in the notation the measure dy.
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LEMMA 2.1. Any local minimum u is in for any 0  a  1.

PROOF. Let Br and let v be the solution of

its existence follows by minimization. Then

since v &#x3E; 0 in Br, by the maximum principle. By convexity (1.2),

Integrating this relation and using ( 2.1 ) we find, after com-
paring with (2.2), that

We can now use the method of Morrey [11; Th. 5.3.6] in order to deduce
the assertion of the lemma.

In the sequel we denote positive constants depending only on fl and qt
by C or c.

Set

By Lemma 2.1, .E+ is open and Eo is closed in S~.
Set

LEMMA 2.2. Suppose x,, d(xo) C 2 dist (xo, Then

where C is a constant depending only on fl, n.
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PROOF. We assume that

and derive an upper bound on M. By scaling i.e., by considering

we may assume that d(xo) = 1. Since -Vu = 0 in B1(xo), by Harnack’s in-

equality [6; p. 189] and (2.4) we have

Let y be a point in aB1(xo) n Eo. We define a function v by (2.1) with Br
replaced by Then v&#x3E;u in B1(y) and (cf. (2.3))

Recalling (2.5) we have

and then, by Harnack’s inequality [6; p. 189],

We take for simplicity y = 0 and introduce the function

We compute

Hence

Thus
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and, by (2.7),

Since £fv  !ew, the proof of the maximum principle gives

Recalling (2.7) we then have,

Take two disjoint balls B*(yi) (i = 1, 2) in Let $ vary on 8Bi(y)
and denote by Zi() the largest segment with endpoints , i(), going froin $
into yi, such that and u(q;(1)) - 0 (r~i(~) = 8 if u($) &#x3E; 0).
Denote by Si the union of all the segments Zi(~), and let S = S

As in [1; Lemma 1.3] we get, using (2.9),

so that

where (2.6) was used. Since S D {u = 01 r1 131(y), we deduce that M2  C£2

and the assertion of the lemma follows.

THEOREM 2.3. u E moreover, for any domain D cc S~ containing
a free boundary point the Lipschitz coefficients of u in D is estimated by C~,

where C depends on n, fl, D and Q only.

PROOF. Suppose d(x)  -1 dist (x, By Lemma 2.2 applied to

we have

By elliptic estimates (e.g. Lemma 1.7) we then get
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that is, c Thus, for any domain D cc D, is bounded in
D r1 where.N is a small neighborhood of the free boundary. Since

further u c C",’- in E+, it follows that u E 

To prove the second part of the theorem, consider any domains

D containing free boundary points. We shall prove that

for all x E D r1 E+ with C depending only on n, fl, D, D’ and Q.
Let ro = 3 dist (D’, x E D’. We argue as in [l ; Theorem 4.3]. Since

D’ is connected and not contained in E+, we find a sequence of points
x,,, ..., xk in D’ (k depending only on D’ and S~) with

such that xo = x, BrJxi) is contained in .E+ for j = 0, ..., k - 1, and such
that is not contained in E+. By Lemma 2.2,

Since u is a !e-solution in each ( j===0y...K2013l we have, by
Harnack’s inequality [6; p. 189],

Inductively we then obtain

Now let x E D rl E . If d(x) &#x3E; r1 ~ 2 dist (D, then

by the uniform estimate on u in D’. On the other hand, if d(x)  rl then

by Lemma 2.2. This completes the proof of the theorem.
As a consequence of Theorem 2.1 we shall prove:

For an y domain there exists a constant C (depending
only on n, P, D and Q) such that for any absolute (local) mircimum u and for
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any (small) ball .Br c D

PROOF. If Br contains a free boundary point then in B,, by
the proof of Theorem 2.3, with C depending on n, fl, D and SZ only. Since
vanishes at some point of Br we conclude that

which contradicts (2.11) if C in (2.11) is large enough.
We next state a nondegeneracy lemma.

LEMMA 2.5. any p &#x3E; 1 and f or any 0  x  1 there exists a con-

stant c. such that for any global (local) minimum and for any (small) ball Br c Q

PROOF. Take for simplicity r = 1; otherwise we work with a scaled
function. Set

By the L°° estimate of

Consider the function

By (2.8), 2v  0 in is small enough; that is, v is a super-
solution. We choose Ci such that

Then min (u, v) is an admissible function and therefore
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which gives

or

where we have used the fact that v is a supersolution. Since also

we find that

On the other hand we can estimate the last integral by (cf. [1])

Taking sufficiently small we then obtain

that is u = 0 in Bx .

REMARK 2.6. Lemma 2.5 remains true if Br is not contained in SZ provided
u = 0 in Br n Lemma 2.4 also remains true if Br is not contained in Q
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provided Bxr = 0 on B, n 3Dy and Br n 8Q is smooth, that is any
point of can be connected with the center of Br by a tube with
thickness of order Er and length of order r). Then the statement (2.11) is

replaced by:

which implies

for any given 8 &#x3E; 0, x  1; Theorem 2.3 is also valid in Br n Q.

COROLLARY 2.7..F’or any domain D cc Q there exist positive constants c, C
such that if Br (x) is a ball in D n (u &#x3E; 01 touching &#x3E; 0~ , then

THEOREM 2.8. For any D cc Q there exists a constant c, 0  c  1, such
that for any absolute (local) minimum u and for any (small) ball Br c D with
center in the free boundary,

c depends on D, but not on A.

PROOF. By Lemma 2.5 there exists y E Br with u(y) &#x3E; Using Lip-
schitz continuity we get

if n is small enough. Hence

which implies, by Lemma 2.4, that u &#x3E; 0 in This gives the lower
estimate in (2.14).

Next, let v be as in (2.1). Then, by (2.3),

where Poincare’s inequality was used. If y E Bxr (m small) then, by Harnack’s
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inequality and Lemma 2.5,

By Lipschitz continuity of u we also have

Therefore

if x is small enough. Substituting this into the right-hand side of (2.15)
we find that

and the upper estimate in (2.14) follows.

REMARK 2.9. Theorem 2.8 implies that 0}) = 0.

3. - The measure ll = !l’u and the function q.

In Theorem 1.9 we proved that the free boundary condition

is satisfied in a very weak sense. Since P(0)=0 and (by (1.2)) ~’ ~ e &#x3E; 0
there is a unique value 1* &#x3E; 0 with

Hence the free boundary condition can be written as

or

if
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We shall prove (3.3) in the sense that

where, of course, we need the fact that the free boundary &#x3E; 0} is (n - 1 )-
dimensional. This we will show first.

By Lemma 1.2,

where 11 is a positive Radon measure supported on the free boundary

In the sequel we shall not indicate the explicit dependence of constants
upon A.

THEOREM 3.1. For any D cc Q there exist positive constants c, C such

that f or any ball Br c D with center in the free boundary

PROOF. Then

Approximating IBr from below by suitable test functions ~ we get, using the
Lipschitz continuity u, that for almost all r,

To establish the left-hand side of (3.4) we may normalize by taking r =1.
Set 

-

This is a linear selfadjoint uniformly elliptic operator. Denote its Green’s

function in Bi with pole x by Gx. By [6; p. 184], if
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then

Representing v in terms of Green’s function we deduce that (3.5) for all f
means

Now let Then ~Gx = 0 in B, and, by (3.6), Gx is bounded in
1-(B,). Hence, by elliptic estimates [6; p. 184]

and by the symmetry of Green’s function

Similarly

where C is a constant depending on 6 but not on D1, D2.
Now let ?,v be the solution of

By nondegeneracy, for any 0  x  1 there exists a point y E Bx with
u(y) &#x3E; cx. By Lipschitz continuity,

with e(m) sufficiently small; hence also dA = 0 in BcCx)(y). Since

we can write

where we have used (3.7) 
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By the maximum principle w ~ u; therefore, by nondegeneracy (for p &#x3E; 1)

Using Harnack’s inequality [6; p. 184], if p C n/(n - 2 ), we get

Also, since u vanishes at the center of B1, by Lipschitz continuity,

Choosing x small enough we get

and recalling (3.8) we obtain

The next theorem follows easily from Theorem 3.1, precisely as in [1].

THEOREM 3.2 (Representation theorem). Let u be ac local minimum. Then :

(1) Hn-1 (D n a{u &#x3E; 0~ )  oo for every D cc.Q.

(2) There is a Borel measure qu such that

that is, for every I

(3) For any D cc S2 there exist positive constants c, C such that for
every ball c D with x E &#x3E; 0~ ,
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From (1) it follows [5; 4.5.11] that the set A = (u &#x3E; 0) has a finite

perimenter locally in S~, that is, flu = - is a Borel measure. We de-

note by 8A the reduced boundary of A, z.e., the set of points for

which the normal v.(x) of A at x exists and Ivu(x) = 1; see [5] [7].
We shall deal with blow up sequences

Since for a subsequence,

We also have:

The proof of (3.11) follows from (3.9) and the nondegeneracy. The same
arguments show that if xm E &#x3E; 01 then X, E &#x3E; 0}.

To prove (3.12) let x E &#x3E; 01 r1 .~. Then there exists a sequence

ym E 8(um &#x3E; 01 such that y~ - x. By nondegeneracy (Lemma 2.5 with p = 2)

Hence

Since uo is clearly also in 00,1, the proof of Theorem 2.8 applies to uo.

Consequently

Combining this fact with (3.11), the assertion (3.12) follows.
By elliptic estimates

uniformly in compact subsets of (uo &#x3E; 0)
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and

Thus in order to prove (3.13) it remains to show that

In the set IUO = 01 a.a. points xo have density 1; denote the set of such
points by S. We claim that if xo c S then

Indeed, if &#x3E; yr for some y E Br(xo), y &#x3E; 0 and a sequence r -7 0, then

(by the Lipschitz continuity of uo)

for some small c &#x3E; 0. This means that ~uo &#x3E; 01 has positive density at xo,
contradicting mo E S.

From (3.16) we deduce that, for any 8 &#x3E; 0,

provided m is large enough, say r). By nondegeneracy it then fol-
lows that u,,,= 0 in Br/2(XO) and, consequently, uo= 0 in a, neighborhood
of xo . Thus the set S is open. Furthermore, the above argument shows that
= uo in any compact subset of ~’, if m is large enough. This completes

the proof of (3.15).
In order to identify the function qu in Theorem 3.2, we need the following

two important statements about the minimum.

LEMMA 3.3. I f u(xm) = 0, xo E Q, then any blow up limit uo with

respect to Bem(xm) is absolute minimum for J in any ball.

PROOF. Let

and suppose that (3.9), (3.10) hold. Then also (3.11)-(3.13) are satisfied.
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Set D = BR(O) and take any v, v - uo E Hol-,2 (D), 17 E C;’(D), 01]1. Let

Since vm = um on aD,

Since Vum - Vuo a.e.,

Similarly

Noting also that

we obtain from (3.17)

where = 22f Choosing a sequence of r’s with "(’1’])O, the as-
D

sertion follows.

Next we prove an estimate for at the free boundary from above

(see [1; Remark 6.4]), which will also be used in Section 4, where we prove
the corresponding Holder estimate.

LEMMA 3.4. Let u be a local minimum and let 2* be defined by (3.1). If
xo E {u &#x3E; 0} then

PROOF. Denote the left-hand side of (3.18) by y. Then there exists

a sequence zk such that

Denote by Yk the nearest point to zk on 01 and set Qk = IZk - Ykl.
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Consider a blow up sequence about with limit such that

Then uo is Y-subsolution in Rn and £fuo = 0 in ~uo &#x3E; 0}. By Lemma 3.3
the blow-up limit uo is an absolute minimum, hence B1( - is contained
in 0} by (3.12). Moreover = 0 and

which implies that y &#x3E; 0.

Choose a unit vector e such that

and consider the function We have (see the proof of Lemma 1.7)

where £fo is a uniformly divergence-form elliptic operator. Also

Applying the maximum principle we conclude from (3.19) that

Since u,(O) = 0 and u, &#x3E; 0 in Bl(- en), the constant c is equal to zero and
e = en. Thus

By continuation the same argument shows that

whenever


