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Some Asymptotic Problems in Fully Nonlinear Elliptic
Equations and Stochastic Control.

ROBERT JENSEN (*) - PIERRE LOUIS LIONS (**)

Introduction.

In this paper we consider various penalization problems (or singular
perturbation problems) where the penalty is on the dependence of solutions
in certain directions. (Our meaning will be clear after examining the ex-
amples below.) The effect of such a penalization on the limit problem is
to cause the limit solution to be independent of some of the original variables.
In this way we obtain various limit problems in reduced dimensions.

We shall consider a few examples of our results to clarify our meaning.
Let 0 be a bounded regular domain in Rn and let 0 be a bounded regular
domain in We denote (9 x 0 by 2, i.e. 9 « W X 0. In everything that
follows, x will denote a generic point in (9 and y a generic point in 13.

EX.AMPLE 1. us is a solution of:

(*) Research supported in part by N.S.F. grant MCS 80-01884.
(**) Research supported in part by contract 01-80Ra-50154 with U.S. D.O.E.

( Office of Electric Energy Systems).
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and where n denotes the unit outward normal to 81ii and Dv = ...,

We assume the coefficients y), y) and c(x, y) and the
data f {x, y) in (1) are smooth functions of (x, yl and in addition we assume
c(x, y) is nonnegative and there is a positive constant c such that

We prove that as e goes to zero u-’ converges to the unique solution, u(x),
of the Hamilton- Jacobi-Bellman equation

As a consequence of this result we may approximate problem (5) (which
is fully nonlinear in the sense that it is a second order equation in which
the nonlinearity involves the second derivatives) by a simpler problem,
namely (1)-(3), where the nonlinearity involves only the first derivatives.
In this way we build a simple approximation of the general Hamilton-Jacobi-
Bellman equation (HJB for short) ; we believe such an approximation could
have useful numerical applications.

HJB equations occur as the optimality equations in the general problem
of  optimal continuous control of stochastic differential equations and are cur-
rently used in problems of management, economy and engineering. (See
W. H. Fleming and R. Rishel [21 ] for an exposition of optimal stochastic
control and HJB equations; for the most general results concerning the
solution of (5) see L. C. Evans and P. L. Lions [19]; P. L. Lions [25], [26],
[27], [35] and [32].)

Let us also point out that the asymptotic problem (1)-(3) can itself be
interpreted in the light of optimal stochastic control and it is possible to

give a probabilistic proof of the convergence of ue to u.

EXAMPLE 2. ue is a solution of (1), (2) and

where is a smooth function independent of y which vanishes on 8W x am
and we make the same assumptions as in Example 1.
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We prove that as s goes to zero US converges to the unique solution, u, of
the obstacle problem for an HJB equation, i.e.

This result is, a priori, y a bit surprising ,since a boundary condition like
(6) becomes asymptotically the constraint condition

However in the light of optimal stochastic control this result can be easily
understood. Indeed, we can again give a probabilistic proof of this result.
((7) corresponds to a problem in stochastic control where we combine op-
timal time problems and optimal continuous control.)

We also wish to point out that it is quite easy to conjecture a false
result. Indeed, consider the following formal analysis. goes to zero

the effect of the penalization should imply us converges to a function 
Since u-,(x, y) = (x, y) E am and since n is independent of y it is

plausible to guess that = 

The above conjecture, although it appears reasonable, is false because

from (1) we deduce that

So, by letting e go to zero we conclude

This inequality is not in general satisfied if u = 1p. Therefore, in general
uE cannot converge to zp but rather becomes asymptotically as near as
possible to 1p, while taking into account the inequalities of (8). This higly
imprecise argument leads to (7).
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EXAMPLE 3 . u is the solution of:

plus boundary conditions (2) and (3) and where (9 = (0, 1). We make
the same assumptions as in Example 1 and we assume @ is a strictly incre-
asing function on R such that = 0.

We prove that as 8 goes to zero u-’ converges to the solution, u, of

If (3(t) = t this result is easily interpreted from the stochastic view-

point. Indeed, in this case (9) becomes a linear second order elliptic equa-
tion and the associated diffusion process in the y variable h a reflected
diffusion process with a drift intensity of 1 /E and directed towards y = 0.

EXAMPLE 4. 2cE is the solution of:

plus the boundary conditions (2) and (3) ; we make the same assumptions
as in Example 1.

We prove that as e goes to zero Uê converges to the unique solution, u, of
the HJB equation (5).

As before, this result can be interpreted in terms of optimal stochastic control
since (11) itself is a (particular) HJB equation corresponding to a control
problem where the intensity of the Brownian motion in the y variables is

controlled and can take ({ at each time and on each trajectory») any value
between 1 and 1 + 1 je. By (3) we impose Neumann boundary conditions
which means that the Brownian motion is reflected at the boundary and
so the asymptotic behavior of the solutions uê of (11) is related to some

ergodic phenomena.
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EXAMPLE 5. uE is the solution of:

plus the boundary conditions (2) and (3) ; where

for all t in R,

and (3(0) = 0. We also make the same assumptions as in Example 1.

We prove that as E goes to zero US converges to the unique solution, u, of the
following nonlinearly averaged equation (NLAE for short)

where y = (3-1

We study the general class of these nonlocal problems and we prove that
they are well posed under very general assumptions. When (3 is convex (14)
turns out to be the HJB equation and in addition any HJB equation can
be approximated by the NLAE appearing above. ivhen fl is linear (14)
reduces to a linear equation with averaged coefficients.

This kind of averaging phenomena appears to be similar to those known
in Homogenization Theory (for example A. Bensoussan, J. L. Lions and

G. Papanicolaou [3], A. Bensoussan [2] and E. de Giorgi and S. Spagno-
lo [14]). However, the nonlinear averaging we study is apparently new.
This averaging principle is not restricted to second-order elliptic problems
and has been used to obtain some new uniqueness results for Navier-Stokes
equations (see T. Oafllish and P. L. Lions [8] and C. Foias and P. L. Lions [22]).

We do not yet fully understand this problem from the stochastic point
of view and we hope to come back to this point in some future study. This

phenomena seems to be a combination of Ergodic Theory and Stochastic
Control (or Stochastic Differential Games when (3 is not convex).

we shall not present any more examples although ~Te consider many
other problems and variants in this paper. The examples we have presented
should give a good general idea of the nature of the problems we shall
consider.



134

The methods we employ are purely analytical and rely heavily on the
maximum principle. We do not give any detailed probabilistic proofs but
we frequently attempt to explain why the results should hold based on
probabilistic considerations (i.e. we sketch probabilistic proofs).

Finally w e wish to point out that the problems considered here are

vaguely reminiscent of some asymptotic problems arising in elasticity (see
P. G. Ciarlet and P. Destuynder [11] and [12], P. G. Ciarlet [10] and P. G.
Ciarlet and P. Rabier [13]) and to various singular perturbation problems
occuring in deterministic optimal control, e.g. the simplification of large-
scale systems, (see J. P. Chow and P. V. Kokotovic [9] and R. E. O’Mal-
ley [36]).

Acknowledgement. The main results of this study were obtained while
the authors were guests of the Numerical Analysis Laboratory of Pavia
and it is our pleasure to thank the laboratory for its hospitality.

A ) FIRST ORDER PENALIZATIONS

In this part of our paper we consider only penalizations of the first y
derivatives. These arc problems of the sort which include Examples ( 1 )-(3)
of the Introduction.

VVe first introduce some notation which we shall keep throughout this

paper (including Part B). As in the Introduction C and ~ will denote two
bounded regular connected domains in R" and Rm respectively. We let

a ij (x, y), bi(x, y), c(x, y) and f (x, y) for 1 be real valued functions

on .2 = U~ X i3 which satisfy

We also assume (4) from the Introduction (uniform ellipticity).

REMARK. In many of the results below we will not need all of the

regularity of (15) but for the sake of simplicity we will not consider such
generalizations here. Nor will we discuss generalizations to the case of

degenerate operators, i.e. when (4) does not hold.
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I. - Penalization of the length of the gradient in y.

1. boundary conditions.

In this section we consider the problem of Example 1 given by (1)-(3).
We first explain why (1)-(3) has a unique solution.

PROPOSITION 1.1. Under assuneptions (4) and (15) there exists ac unique
solution UeE C2~"( ~) for some a in (0,1 ) of (1)-(3).

PROOF. Let be two solutions of (1)-(3) and set w = u - v. Then w

satisfies the boundary conditions (2) and (3); furthermore

..

where is defined by We see that

uniqueness is, therefore, an easy consequence of standard uniqueness results
for linear second order elliptic equations.

To prove the existence of toE we start by considering the solution, u, in
G2( 9) of

plus boundary conditions (2) and (3).
Next we consider the solution, y u, of the HJB equation (5) (see P. L.

Lions [25] and L. C. Evans and P. L. Lions [19] for existence results). The
function u obviously satisfies the boundary conditions (2) and (3) when

thought of as a function of both x and y. Thus u is a supersolution and u
is a subsolution of ( ~ ) . Then by the same argument used to prove uni-

queness we see that

i) for all (x, y) in ~;

ii)  u-,(x, y)  ~W(x, y) for all (x, y) in 9.

The existence result is completed by applying a result due to H. Amann
and M. G. Crandall [1]. C1
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REMARK 1.1. Since we have proved c uE(x, y) y) this provides
an L° bound on us independent of E. However, an examination of the

proofs in P. L. Lions [25] and L. C. Evans and P. L. Lions [19] shows
that we have in fact

We now state the main result of this section.

THEOREM 1.1. Under assumptions (4) acnd (15), as 8 goes to zero uE con-
verges to the solution, u, o f the HSB equact2on (5) in .L~( ~ ) acny p  o0

and a.e.

Before proceeding to the proof we make several remarks.

REMARK 1.2. The proof we give uses the existence of u, the solution
of (5). It is actually possible to prove Theorem 1.1 in such a way that we
also construct the solution, it, of (5). In this way one avoids introducing
the penalized system used by L. C. Evans and A. Friedman [18]. The key
step in this process still remains the derivation of a priori estimates as
in [19] and [~5J and this is independent of the chosen approximation scheme.

PROOF oF THEOREM 1.1. We first note that ~’ then uE is a sub-

solution of (1) for e’. By the proof of Proposition 1.1 we conclude

Thus decreases monotonically to some function y). By Remark I.1
since are bounded independently of y and e for we deduce

from the equation

and

Therefore, there is a function E with v = 0 on 8W and such

that

Furthermore,

in the weak star topology on 

From our first inequality we conclude in 0. On the other hand

from (1) we deduce that
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for any y in ~. This implies (since v E TF~°°(~)) that

By applying the general results of [27] (see also [26], [5] or the proof of
uniqueness of solutions of the HJB equation given in [25]) we conclude
that in e. This completes the proof of Theorem 1.1. 0

REMARK [.3. We give a formal proof of Theorem I.1 which we believe
clarifies our result. Suppose converges to in C2(j). Ob-

viously v is independent of y so v(x, y) = (because otherwise the

penalization term in (1) would become unbounded). We claim that

If the equation above is true then clearly v = lim uE also satisfies this equa-B-0

tion, y i, e. v is the solution of (5).
In order to prove our claim fix xo in (9 and let yo = y(xo) be a maximum

point of us(x, y). If then Dyus(xo, yo) = 0 while if yoE a e then D’lJus(xo,
Yo) = 0 because of (3). We have therefore proved our claim and completed
our formal proof.

Let us now consider a probabilistic interpretation of Theorem I.1. We
must first describe the stochastic control problem associated with (5).

An admissible system A consists of:

i) a complete probability space (Q, P) with a normalized

n-dimensional Brownian motion Wt;

ii) an adapted process y(t, co) taking values in 0 (sometimes called
the control);

iii) a family of solutions, ~x(t) for x E U, of the stochastic differential
equations:

where is the positive definite symmetric square root of 
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We set

where is the first exit time of the process ~~(t) from (9 (or C~). One then
verifies that solution of (5) (see [26], [35] or [27]).

Next we consider the stochastic representation of uE(x, y). In addition to

the Brownian motion W let Wt be a normalized m-dimensional Brownian
motion independent of Wt. For each (x, ~) in 1 we consider the stochastic
differential equations with reflections

where At is some increasing adapted continuous process with A, - 0 and

q(t) is any adapted process having values in (The last
term in the second equation in (17’) corresponds to the reflection i.e. the

Neumann condition given by (3).)
If we now let .Ç!/’ be the admissible system generated by (17’) and the

other appropriate corrections -"-e can show that

where zx,, is the first exit time of the process from C~. Indeed, (18’)
is just an application of Ito’s formula (since we know there is a smooth

solution of (1)-(3)) and related results may be found in [21].
It is now possible to understand (at least intuitively) the principle

underlying Theorem 1.1. As c goes to zero the class of admissible q(t)’s
becomes larger and larger. Eventually it becomes « dense» in some sense
in the space of all possible bounded adapted processes from Since w e

can approximate any adapted continuous process y(t) by some process
and since adapted continuous processes are enough for (18) we conclude

(Since this proves by Dini’s lemma that the convergence is ac-

tually uniform in 9.)
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REMARK 1.4. Theorem 1.1 is totally independent of the boundary condi-
tions in x, i.e. condition (2). Analogous results hold, for example, if (2)
is replaced by a Neumann condition or even nonhomogeneous boundary
conditions.

REMARK T. ~. It would be very interesting to have an estimate on the
rate of convergence of US to u (for example in C ( ~ ) ) . We have been able
to prove the following such estimate for the special case when u is very
smooth and the supremum in (5) is obtained at a unique point, y, which

depends smoothly on x. The estimate is

We hope to come back to this point in some future study.

2. Dirichlet boundary conditions.

In this section we shall consider the problem given in Example 2. Thus
for each e &#x3E; 0 we let U8 be the solution of (1), (2) and (6). We assume some
additional regularity on the function, V, appearing in (6), namely,

By arguments similar to those used in the previous section it is possible
to prove the existence of a unique solution, uE, of (1), (2) and (6). In addi-
tion we also establish the estimate (just as in the previous section)

where 4t’ and it are the respective solutions of (7) (see [35] for a solution
of this problem) and

We now have the main result of this section.

THEOREM 1.2. Under assumptions (4) and (15) on the coefficients and
under assumption (19) ue converges to the solution, ii, of the obstacle problem



140

(7) for the HJB equation in f or any p  oo and a.e.

PROOF OF THEOREM 1.2. The first part of the proof of Theorem 1.1
remains valid in this context. Thus we have

If we prove that v(x)  then by use of the maximum principle we
can establish v(x) c ic(x) in 0. Thus just as before v(x) = ic(x).

In order to show v(x)  1p(x) we use the next lemma.

LEMMA Let 11 be a u.s.c. function and = v(x) a.e. in f2
where l’ E c( a) then

PROOF OF LEMMA I.J. Let x E 19 and let y E We only need to prove
that v(x) y). Indeed, v and u agree on a dense subset of -Q and so
there are sequences x i x and !ji such that v(xi) == However
v is continuous and u is u.s.c. so we conclude

This lemma in turn completes the proof of Theorem I. J . 0

REMARK 1.6. Recall the false heuristic argument given in the introduc-
tion. If y) then one would expect n to satisfy = y on t9 x am
and thus u = y. Obviously, this is not true since as we pointed out in
the Introduction V does not in general satisfy (7). This shows that there

are boundary layers near 

Again let us consider a probabilistic interpretation o f our results. We

keep the same notations as in the previous section and consider ( ~~, y, 
solutions of
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where q(t) is any adapted process taking values in * It is well known

(see [21] for example) that 2cE is given by

where and are respectively the first exit times from a and
;ZT

from ø and is the characteristic function of the non-negative
half line.

It can be shown that it is possible to approximate any process y(t) with
values in 6 by a process of the form with larger and larger drift

controls q(t) (at least if 813 for in this case l/ae,y(t) will exit from 0
instantaneously). In addition, if © is any stopping time we can use q(t)
to insure that approximates 0.

The combination of these two facts shows that if (x, y) is and y 0 a a
then In particular, from Dini’s lemma this implies that the
convergence is uniform on compact subsets X 0.

REMARK 1.7. If we replace (6) by

where 1fJ is a function on which is assumed to be of class C2~" for
some a &#x3E; 0 and y) = 0 on then Theorem 1.2 (and its proof)
is valid with replaced by inf y) in (7).

3. Variants and related problems.

Periodic boundary conditions on y. Let ~=(0~i)x...X(0,
for positive constants Z1, ..., Zm. Consider the solution, UE, of (1), (2)

plus periodicity in y. That is, we replace (3) in Example 1 by

We can again show the existence of a unique 11,e and can prove that u8 converges
to the solution, n, of (5) a. e.


