ADOLF MADER

The \oplus_c-topology is not completable

<http://www.numdam.org/item?id=ASNSP_1983_4_10_4_579_0>
1. Introduction.

G. D'Este [5] introduced and studied an interesting and difficult functorial topology defined on the category of abelian groups: Let \oplus_c be the class of all direct sums of cyclic p-groups. For each group A let $\mathcal{U}_A = \{U < A : A/U \in \oplus_c\}$. Then \mathcal{U}_A is a neighborhood basis at 0, a «local basis» for short, for some topology on A which makes A into a topological group. We write $A[\mathcal{U}_A] = A[\oplus_c]$ for this topological group. Every homomorphism $f : A \to B$ is then a continuous map $f : A[\oplus_c] \to B[\oplus_c]$. In the terminology of Boyer-Mader [2], \oplus_c is a discrete class and $A \to A[\oplus_c]$, $f \to f$ is the corresponding minimal functorial topology. This minimal functorial topology as well as the associated topology on an individual group is called the \oplus_c-topology. Every group $A[\oplus_c]$ has a (Hausdorff) completion \hat{A} and if the completion topology of \hat{A} is the \oplus_c-topology then A is called completable; if every A is completable then the \oplus_c-topology is completable. A crucial result in [5], Theorem 1.4, states that the \oplus_c-topology is indeed completable. In this note we disprove this claim. This is achieved by noting that separable $p^{\omega+1}$-projective p-groups are either \oplus_c-complete or not completable. We then construct such groups which are \oplus_c-incomplete as well as some which are \oplus_c-complete. Unfortunately, the error invalidates most of D'Este's results, and as it stands very little is known about the \oplus_c-topology.

In Section 2 we summarize what is known about the \oplus_c-topology. Section 3 contains our examples.

All groups in this paper are abelian. The notation is standard and follows Fuchs [6]. The background on linear functorial topologies can be found in Mader [9]. Unless indicated otherwise a topological group carries the \oplus_c-topology. \hat{A} denotes the \oplus_c-completion of A, and \hat{A} the p-adic
completion. The explicit construction of the completion of a group with linear topology can be found in [6; Vol. I, pp. 68/69] as well as the definition of the appropriate topology which is called the completion topology. Suppose T is a functorial topology so that, for every abelian group A, we obtain the topological group TA with A as the underlying group. Every subgroup of A then has two topologies: its own functorial topology and the topology induced by the topology of TA. The subgroup is called T-concordant if these two topologies coincide. Maps are written on the right.

I owe thanks to Ray Mines with whom I began studying the paper of G. D’Este and who first noted the likely errors.

3. - Properties of the \oplus_c-topology.

Most of the results in this section are due to D’Este [5]. We indicate how the results follow from the general considerations of Mader [9].

The first observation follows from the fact that the class \oplus_c is closed under arbitrary direct sums ([9; 3.21 and 4.1c]).

(2.1) $\bigoplus_c A_i \sim = \bigoplus_c \tilde{A}_i$. In particular, ([5; 2.1]) any direct sum of \oplus_c-complete groups is \oplus_c-complete. □

The following fact is true for any minimal functorial topology and follows from [9; 3.21 and 4.1c].

(2.2) ([5; Lemma 1.3]). A direct summand of a \oplus_c-complete group is \oplus_c-complete. □

The next result essentially follows from the fact that an extension of a direct sum of cyclic groups by a bounded group is a direct sum of cyclic groups ([6; 18.3]).

(2.3) ([5; Lemma 2.3]). If B is a subgroup of A such that A/B is a bounded p-group then B is a \oplus_c-concordant open and hence closed subgroup of A. Thus A is \oplus_c-complete if and only if B is \oplus_c-complete. □

It is helpful to compare the \oplus_c-topology with better understood topologies. If A/U is a bounded p-group then $A/U \in \oplus_c$. Hence the p-adic topology is weaker than the \oplus_c-topology. On the other hand it is easy to see that each subgroup U with $A/U \in \oplus_c$ is closed in the p-adic topology. Hence [9; 4.11] applies:
The natural map $\tilde{A} \to \hat{A}$, where \hat{A} denotes the p-adic completion of A, is injective. □

If A is a p-group and U is a large subgroup of A then $A/U \in \bigoplus_c$ by [6, 67.4]. Hence the large subgroup or inductive topology is weaker than the \bigoplus_c-topology. It is well-known ([3; 3.9] or [4; 2.8]) that the completion of a p-group A in the large subgroup topology is its torsion-completion \tilde{A}, i.e. the maximal torsion subgroup of \hat{A}. Also the p-adic topology is weaker than the large subgroup topology. Hence there are natural maps $\tilde{A} \to \hat{A} \to \tilde{A}$. The following fact now follows from (2.4).

(2.5) ([5; Lemma 1.2]). For a p-group A the \bigoplus_c-completion \tilde{A} is naturally imbedded in the torsion-completion \hat{A}. In particular, \tilde{A} is again p-primary. □

If \tilde{A} is purely imbedded in \hat{A} then \tilde{A} is also the torsion completion of \tilde{A} and by (2.5) we have $(\tilde{A})^\vee$ imbedded in \tilde{A}. Thus, if \tilde{A} were always purely imbedded in \hat{A} then $(\tilde{A})^\vee$ and all transfinitely iterated \bigoplus_c-completions would be contained in \tilde{A} and hence the chain of iterated completions would have to become stationary. It will be shown below that for minimal functorial topologies in general, the chain of iterated completions of a group A becomes stationary if and only if it is constant, i.e. A is completable.

This is D'Este's idea. It fails because \tilde{A} need not be pure in \hat{A}, and the error is made in the middle of page 244 by equating two distinct imbeddings in \tilde{A}.

(2.6) ITERATED COMPLETIONS. Let T be a minimal functorial topology on the category of abelian groups. Let $L^0A = A$, $L^1A = LA$, $\varepsilon_{01}: L^0A \to L^1A$: $\varepsilon_{01} = \varepsilon_A$ and let $\varepsilon_{ii}: L^iA \to L^{i-1}A$: $\varepsilon_{ii} = 1$. Suppose $L^\alpha A$ and maps $\varepsilon_{\alpha\beta}: L^\alpha A \to L^\beta A$ have been defined for $\alpha < \beta < \lambda$ satisfying $\varepsilon_{\alpha\beta} \varepsilon_{\beta\gamma} = \varepsilon_{\alpha\gamma}$ for $\alpha < \beta < \gamma < \lambda$. If $\lambda - 1$ exists let $L\lambda A = L(L^{\lambda-1}A)$ and $\varepsilon_{\lambda\alpha} = \varepsilon_{\alpha\lambda-1} \varepsilon_{\lambda-1\alpha}$; if λ is a limit ordinal let $L\lambda A = \lim L^\alpha A$; $\alpha < \lambda$ and $\varepsilon_{\alpha\lambda} = \lim \varepsilon_{\alpha\beta}$; $\alpha < \beta < \lambda$. In any case let $\varepsilon_{\lambda\lambda} = 1$. Then, clearly, each $\varepsilon_{\alpha\beta}$ is injective and $\varepsilon_{\alpha\beta} \varepsilon_{\beta\gamma} = \varepsilon_{\alpha\gamma}$ for $\alpha < \beta < \gamma$. Furthermore, if some $\varepsilon_{\alpha\beta}$ with $\alpha < \beta$ is bijective then \tilde{A} is completable, and if so the whole chain of iterated completions is constant.

PROOF. Suppose $\varepsilon_{\alpha\beta}$ is bijective for $\lambda < \beta$. Then $\varepsilon_{\lambda\lambda+1}: L^\lambda A \to L(L^\lambda A)$ is bijective, i.e. $TL^\lambda A$ is complete. We identify all $L^\alpha A$, $\alpha < \lambda$, with their images in $L^\lambda A$. By [9; 5.7] $L^\alpha A = LA \oplus K_\alpha$. Suppose that K_α, $\alpha < \mu < \lambda$, has been found such that $L^\alpha A = LA \oplus K_\alpha$ and $K_\alpha < K_\beta$ for $\alpha < \beta < \mu$. If
If $\mu - 1$ exists then $L^\mu A = L(L^{\mu - 1}A) = L^\mu A \oplus LK_\alpha = LA \oplus (K_1 \oplus LK_\alpha)$ and we let $K_\mu = K_1 \oplus LK_\alpha$. If μ is a limit ordinal then $L^\mu A = \bigcup_{\alpha < \mu} L^\alpha A = LA \oplus \bigcup_{\alpha < \mu} K_\alpha$ and we let $K_\mu = \bigcup_{\alpha < \mu} K_\alpha$. Hence, by induction, $L^\alpha A = LA \oplus K_\alpha$ and $T^\alpha LA$ is complete as a direct summand of a complete group.

Megibben [10] called a p-group A thick if $A/U \in \oplus_c$ implies that U contains a large subgroup of A.

(2.7) ([5; 1.1]). A p-group A is thick if and only if the \oplus_c-topology on A coincides with the large subgroup topology. The completion of a thick group A is its torsion-completion \bar{A} and every thick group is \oplus_c-completable.

Proof. It has been mentioned earlier that \bar{A} is the completion of A in the large subgroup topology. Since \bar{A}/A is divisible, it is \oplus_c-indiscrete and it follows from the completability criterion of Mines-Oxford (see [9; 5.10 (6)]) that A is completable.

The next result follows immediately from (2.7) and (2.1).

(2.8) ([5; 2.2]). Direct sums of torsion-complete p-groups are \oplus_c-complete.

A little more can be asserted.

(2.9) If A is the direct sum of thick groups A_i then $\bar{A} = \oplus_i \bar{A}_i$ and A is completable although usually not thick.

Proof. $\bar{A} = \oplus_i \bar{A}_i$ and $\bar{A}_i = \bar{A}_i$ since A_i is thick. Completablity follows since $\bar{A}/A \cong \oplus \bar{A}_i/A_i$ is divisible. If $A = \oplus_i A_i$ and if A is thick then $\bar{A} = \oplus_i \bar{A}_i$. By [6; 71.3] there is m such that $p^m \bar{A}_i = 0$ for almost all i. Hence A is usually not thick.

(2.10) **Remark.** We just showed: If $A = \oplus_i A_i$ is thick then, for some positive integer m, $p^m A_i = 0$ for almost all i.

There is also a large class of groups for which the \oplus_c-topology coincides with the p-adic topology. This is trivially the case for torsion-free groups of finite p-rank ($= \dim A/pA$).

(2.11) The \oplus_c-completion of a direct sum of torsion-free groups of finite rank is the free p-adic module with the same p-rank. Such a group is \oplus_c-completable.

More interesting examples are provided by the theory of Howard [7]. If a group A is of second category in its p-adic topology then every reduced p-primary epimorphic image of A is bounded hence the p-adic topology and the \oplus_c-topology on A coincide. Examples of second category groups are the p-adically complete groups, but ([7; 4.3]) there are others as well, a situation very much reminiscent of thick groups. In [8; 4.6] it was shown that every reduced p-primary epimorphic image of a group K is bounded if and only if K is not the union of an ascending sequence of p-adically nowhere dense subgroups. Thus such groups are \oplus_c-completable and their completions are just the p-adic completions.

3. – Groups which are not completable.

It appears to be rather difficult to determine the \oplus_c-completions in general. As far as completability is concerned p^{a+1}-projective p-groups are particularly simple since they are either complete or not completable as we will show first. Recall that a p^{a+1}-projective group is an extension of an elementary p-group by a direct sum of cyclic p-groups (*). Thus a p^{a+1}-projective group contains an open subgroup which is elementary. This fact is exploited in the first lemma.

(3.1) Lemma. Let A be a separable p-group having a subsocle T with $A/T \in \oplus_c$. Then $\bar{A}/A \cong T'/T$ where T' is both the topological closure of T in \bar{A} and the completion of T when T has the topology induced by the \oplus_c-topology of A. Hence \bar{A}/A is p-bounded and A is completable if and only if A is complete.

Proof. We have ([9; 4.5]) the following commutative diagram with exact rows:

$$
\begin{array}{ccc}
E: 0 \rightarrow T \rightarrow A \rightarrow A/T \rightarrow 0 \\
\eta\downarrow \quad \downarrow \quad \quad \\
\eta E: 0 \rightarrow T' \rightarrow \bar{A} \rightarrow A/T \rightarrow 0
\end{array}
$$

A diagram chase yields $\bar{A}/A \cong T'/T$. Thus \bar{A}/A is p-elementary. By the Completability Criterion [9; 5.10 (6)] A is completable if and only if \bar{A}/A is p-divisible, i.e. if and only if $\bar{A} = A$.

The problem is now reduced to deciding whether or not T is complete with the induced topology. In general it is neither clear what this induced topology might look like nor what the completion is. Fortunately, a method due to Benabdallah-Irwin [1] permits to construct a group A such that the induced topology on T is the topology induced by the p-adic topology on A, and this case can be handled.

We first need a special case of a theorem by Benabdallah-Irwin [1; Theorem 2.2].

(3.2) **Lemma.** If G is a p-group and K a pure subgroup of G such that $G/K[p] \in \bigoplus_e$ then K is a direct summand of G.

Starting with any p-group G the method of Benabdallah-Irwin [1; pp. 326-327] yields a p^{ω_1}-projective group A whose properties are related to those of G.

(3.3) **Construction.** Let G be a given p-group. Let $\bar{G} = \bigoplus \langle \bar{g} \rangle : g \in G \rangle$ where $\langle \bar{g} \rangle \cong \langle g \rangle$, and let $\varepsilon : \bar{G} \to G : \bar{g} = g$. It is well-known that $K = \text{Ker } \varepsilon$ is pure in \bar{G}. Put $A = \bar{G}/K[p]$. Then $T = \bar{G}/[p]/K[p]$ is a subsocle of A with $T \cong \bar{G}/[p]$ and ω_1. Hence A is p^{ω_1}-projective. Furthermore by 3.2, $A \in \bigoplus_e$ if and only if $G \in \bigoplus_e$.

In the following we always refer to this situation placing stronger and stronger conditions on G.

(3.4) **Let G be separable.** Then A is separable.

Proof. G separable implies that K is p-adically closed in \bar{G}. So is $\bar{G}[p]$, and hence $K[p] = K \cap \bar{G}[p]$. Thus $A = \bar{G}/K[p]$ is separable. □

(3.5) **Let G be pure-complete.** Then for any subsocle S with $K[p] < S < \bar{G}[p]$ there exists a pure subgroup L of \bar{G} containing K with $L[p] = S$.

Proof. Since $S \in \bigoplus_e G[p]$ and G is pure-complete there is a pure subgroup M of G with $M[p] = S$. Let $L = M^{-1}$. Then L is pure in \bar{G} and contains K. It is easily checked that $L[p] = S$. □

(3.6) **Let G be quasi-complete.** If $K[p] < S < \bar{G}[p]$ and $\bar{G}/S \in \bigoplus_e$ then $\bar{G} = L \oplus M$ with $L[p] = S$ and M bounded.

Proof. By [6; 74.2] G is pure-complete. Hence, by (3.5) and (3.2), there exist groups L and M such that $\bar{G} = L \oplus M$, $K \subset L$ and $L[p] = S$, and
Now \(G \cong (L/K) \oplus M \) and \(M \in \oplus_e \). If \(G \) is torsion-complete then so is \(M \) and hence \(M \) is bounded. If \(G \) is not torsion-complete then by [6; 74.6] either \(L/K \) or \(M \) is bounded. But \(M \in \oplus_e \) cannot be unbounded in view of [6; 74.6]. □

(3.7) Let \(G \) be quasi-complete. The topology induced on \(T = \bar{G}[p]/K[p] \) by the \(\oplus_e \)-topology of \(A = \bar{G}/K[p] \) has the local basis \(\{(p^n\bar{G}[p] + K[p])/K[p]: n \in \omega \} \). Thus the \(\oplus_e \)-topology and the \(p \)-adic topology on \(A \) induce the same topology on \(T \).

Proof. It is clear that each \((p^n\bar{G}[p] + K[p])/K[p] \) is open in \(T \). Suppose \(U \) is an open subgroup of \(A[\oplus_e] \). Then so is \(U \cap T \) and hence there exists a subgroup \(S \) of \(\bar{G} \) such that \(S/K[p] < U \cap T \) and \(\bar{G}/S \in \oplus_e \). By (3.6) there exists \(n \) such that \((p^n\bar{G}[p]) < S \) hence

\[
(p^n\bar{G}[p] + K[p])/K[p] < U \cap T. \quad □
\]

We now relate the topological group \(T \) to the socle of \(G \).

(3.8) For any group \(G \), the groups \(G[p] \) and \(T = \bar{G}[p]/K[p] \) are isomorphic as topological groups with topologies induced by the \(p \)-adic topologies on \(G \) and \(\bar{G} \) respectively.

Proof. Clearly \(\varepsilon: \bar{G} \to G \) induces an isomorphism \(\varepsilon: T \to G[p] \) with

\[
((p^n\bar{G}[p] + K[p])/K[p]) \varepsilon = p^nG[p]. \quad □
\]

(3.9) **Theorem.** Let \(G \) be quasi-complete, \(0 \to K \to \bar{G} \to G \to 0 \) the standard pure-projective resolution of \(G \) and \(A = \bar{G}/K[p] \). Then \(A \) is a separable \(p^{\omega+1} \)-projective group and \(A[\oplus_e] \) is complete if and only if \(G \) is torsion-complete.

Proof. By the construction (3.3) we have that \(A \) is \(p^{\omega+1} \)-projective, and \(A \) is separable by (3.4). Since \(G \) is quasi-complete the \(p \)-adic and the \(\oplus_e \)-topologies on \(A \) induce the same topology on \(T = \bar{G}[p]/K[p] \) by (3.7). By (3.1), \(A \) is complete if and only if \(T \) is complete. But \(T \) and \(G[p] \) are isomorphic topological groups by (3.8) where \(\bar{G}[p] \) has the topology induced by the \(p \)-adic topology on \(G \). By [6; 70.6] \(G[p] \) is complete if and only if \(G \) is torsion-complete. Thus \(A \) is complete if and only if \(G \) is torsion-complete. □

(3.10) **Corollary.** The \(\oplus_e \)-topology is not completable.
PROOF. There exist quasi-complete groups which are not torsion-complete ([6], Vol. II, p. 48). Results (3.9) and (3.1) complete the proof. □

Thus a \(p^{\omega+1} \)-projective group may or may not be complete. The class of \(\oplus_c \)-complete group is smaller than it appeared in [5], and many of the theorems of [5] now became open questions, e.g. are \(\oplus_c \)-complete \(p \)-groups determined by their valued socles?

REFERENCES