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Asymmetric Unbounded Liquid Bridges.

THOMAS I. VOGEL (*)

Introduction.

An unbounded liquid bridge is that surface formed when an object is
withdrawn a small distance from an infinite pool of liquid (see figure 1).

In this paper I study the surfaces formed in R" X R when the object with-
drawn is a planar figure parallel to the rest plane of the pool 01-
Let 5) satisfy an internal sphere condition of radius .R. I will show that
in the complete wetting case, if D is at a height h  hn(R), then the bridge
whose existence is shown by a certain limiting procedure is a graph over

0}. (Completely wetting means that the angle between the normal
of the free surface and the normal to the surface of the object is zero at

(*) The research for this paper was done when the author was at Stanford
University.

Pervenuto alla Redazione il 28 Maggio 1981 ed in forma definitiva 1’ 11 Mag-
gio 1982.
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contract when the object is smooth. One case of this is when the object
is glass and the liquid is water.) The fact that the bridge surface is a graph
implies that it is the graph of a smooth function. The method of proof of
the main theorem will be to use the symmetric bridge surfaces (see Vogel [10])
as barriers.

1. - Formulation of the problem and existence of a solution.

In approaching capillary problems using the theory of functions of

bounded variation, the complete wetting case is modeled by using an ob-
stacle formulation. In the case of unbounded liquid bridges, y when a solid
object D is withdrawn from a pool of liquid, I seek a set S~ with 9) 

 0 ) c S2, and

minimized over compact perturbations over the sets containing Ð U  

I is the perimeter in the sense of De Giorgi (see De Giorgi,
Colombini, Piccinini [1]), and X,, is the characteristic function of ,~. Here

the set Q-D corresponds to the liquid. The constants involved: surface

tension, wetting energy, and g, have been normalized to be 1 without

loss of generality. When D is a solid body in the existence of an

unbounded liquid bridge with obstacle 5) is the result of a more general
theorem (Vogel [11]).

However, when D is a plate, i.e. a region in Rn X h}, where h
is the height of the plate, the above approach is insuincient. The problem
is that 5) would have (Hausdorff (n + 1) dimensional) measure zero,
and hence perimeter zero. There would be nothing to hold the liquid bridge
up, so the only solution would be the trivial one Q = 0 U This

leads to the notion of a flat obstacle.

1.1 DEFINITION. Let V = Rn X [0, h], and let .Z’ be a region in Rn.
A is said to be a solution to the flat obstacle unbounded bridge problem
with obstacle F at height h if ,S~ minimizes over compact perturbations
the energy functional

over the class of sets equal to outside of V. Al-

though the existence theorem in Vogel [11] does not apply immediately, y
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the method of proof can be adapted without difficulty to show that for
any h &#x3E; 0 and for any F C Rn, there is a solution to the flat obstacle

problem. My formulation is cruder than that in Chapter 4 of De Giorgi,
Colombini, Piccinini [1]. However, I use this approach so that the results
in Vogel [11] are easily applicable.

If h is large enough, one would expect that the only set minimizing 6y
over compact perturbations would be the obstacle U 
However, the following remark shows that the theory is not vacuous by
eliminating the trivial set as a solution for small h.

1.2 REMARK. If F C Rn is a bounded set with a.F piecewise C’ then,
for sufficiently small, is not a solution to

the flat obstacle problem with obstacle .F’ at height h.

PROOF. Consider the set S = .Fx[0, 9 + oo) U {~+i0}. This is a com-

pact perturbation of For some suitably large
compact K, I have

where is the n-dimensional Lebesgue measure of F. As h goes to zero,

hflDxFI+ f goes also to zero, so 
Rri F x [O,h]

U (zn~i0)) for any sufficiently small positive h. Therefore, there exist

non-trivial solutions to the flat obstacle problem.

2. - Some results on symmetric unbounded liquid bridges.

The asymmetric unbounded liquid bridges will be studied using sym-
metric liquid bridges as barriers. Symmetric liquid bridges have only been
studied for the case n = 2 (Vogel [10]). Since I want to consider the case

n ~ 2, I will have to extend some of the results proven in 2 dimensions.
The first thing that must be shown is that symmetric unbounded liquid
bridges have smooth boundaries away from the disc that is holding them

up. This follows from more general results for n7 (see Massari [5]), but
their symmetry must be exploited to prove smoothness in higher dimen-
sions. The proof of smoothness (see Vogel [9]) is roughly the same as
Gonzalez’s proof of the smoothness of the pendent drop (Gonzalez [3]).

Since the boundaries of symmetric liquid bridges are smooth, they must

satisfy the condition that the mean curvature of the surface is proportional
to the height above the base plane, which follows from the pertinent Euler-
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Lagrange equations. For symmetric liquid bridges, this can be expressed
as follows. Let ,S2 be a symmetric liquid bridge in R"xRy and let be
the radius of the sphere u}. Then satisfies:

with boundary conditions lim = + oo and rn(h) = R, if is assumed
u-0

to be lifted by a disc of radius at height h. From (2.1), it is clear that
rn(u) &#x3E; 0 since r~(h) &#x3E; 0, so that &#x3E; 0. If I define the inclination

angle 1p to be arccot (r~(u)), then d1pjdu  0, so that I can invert and ex-
press un as a function of the independent variable y. Then, of course,

= In place of (2.1 ), there holds the pair of equations:

a generalization of the equations obtained for n = 2 (Vogel [10]).
Siegel [7] has shown that given a radius o~, there is a unique profile

curve satisfying (2.1) with lim = + oo, and being vertical at the givenu-0

radius u. Let In(u) be the height of the vertical point of the profile curve
which is vertical at radius ~. From a comparison theorem of Siegel, it

follows that In(J) is strictly increasing. The appropriate initial conditions
for (2.2) and (2.3) are then:

where f1 serves to parametrize the family of profile curves. Let Fa denote
the curve ~(rn(~ ; (1), un(1fJ; 0’)),0  ~ c ~z~.

Turkington [8] has characterized Tn(a) asymptotically as :

as a tends to zero.
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2.1 THEOREM. 2Tn(d) for all 1jJ, d, and n.

PROOF. The proof is entirely analogous to the case n = 2 (see Vogel [10]),
using the fact that

on each of the two parts of the profile curves considered as functions of r.
Theorem 2.1 may be used to estimate rn(0 ; 6).

2.2 THEOREM. lim or) = 0.
0-0

PROOF. Integrating (2.7) from r n(n/2; a) to a), there hold.s

where un(r) refers to the upper part of the profile curve. Thus, since

0’) = a,

Now, using the fact that a~) = and G) c 2T~(~), this
becomes:

From this inequality, y there follows immediately:

This, along with Turkington’s asymptotic estimates on Tn(J) as d appro-
aches zero, yields the desired result.

3. - Conditions for the bridge surface to be a graph.

I first need the following definition:

3.1 DEFINITION. Given a measurable set B 9 let ..., 
=
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Define the set Ep to be {x E Rn X R;
0   f(XI, ..., xn ) ~. From now on, I will call the first n coordinates x.

3.2 LEMMA. Let E be a Caccioppoli set bounded in the positive x.+l direc-
Rn be a bounded open set in the base space. Then

PROOF. This is a consequence of Theorem 2.2 of Miranda [6]. Let

f = U (the and let Ep = {x E
where f is the function from Definition 3.1.

Miranda’s theorem shows that

But this implies

I will be using the symmetric surfaces as barriers, so I must find under
what conditions they are graphs.

3.3 LEMMA. Given a disc of radius there is a height h(R) 80 that if
h ~ then graph over the base plane. Here Q", is the symmetric
bridge formed for the obstacle problem.

PROOF. From inequality (2.9), if is a profile curve which is horizontal
at radius then G is bounded away from zero. Let GR be this bound, so
that implies I claim that any profile curve which
crosses the line r = .R at a height less than hn(.R) == has an inclination

angle greater than x/2 at that crossing.
To see this, let Fa pass through the point (R, h) with h C and

suppose that it has an inclination less than n/2 there. It follows then that

But since the angle at (R, h) is less than n/2, it

also follows that By the monotonicity of T(o’)~ there would hold
a contradiction. Hence the inclination of Fa is greater than or

equal to n/2 at (.R, h), from which one can conclude that for 0  7~
is a function of r, so is a graph over the base plane.

3.4 THEOREM. Let F ç Rn be a region satisfying an internal sphere con-
dition of radius S~h be a set solving the flat obstacle problem with ob-
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stacle F at height h (always assuming that the capillary constant x is 1 ). If
h  hn(-R), then F X (0, h) 9 ilk.

PROOF. Let B be a disc of radius .R contained in F. Let A be the sym-
metric set which minimizes gv over compact perturbations with flat ob-
stacle B at height h. (Since aA must be a graph, there can be only one
such A from Theorem 1 of Siegel [7].) I claim that A C.Qh.

To see this, let = 1, 2,..., be a sequence of concentric discs of
radius i in the base plane = 0} with centers directly below that of B.
Let Ai be a set which minimizes ty over the family of sets equal to B X

&#x3E;C [h, + oo) U S2 X (- oo, 0] outside of V = Rn X (0, h). From Vogel [11],
is also an energy minimum. is symmetric, since symmet-

rization reduces perimeter (Gonzalez [4]).
Now consider A = U ilh,). A is contained in flk, and since each

i= ’

is symmetric about a common axis, A is symmetric. From Vo-
gel [11 ], A is a solution of the flat obstacle problem with obstacle B at
height h. From Lemma 3.3, A contains B X (o, h), therefore does also.

But B was an arbitrary ball of radius R in F, so it follows that Qh, contains
,

3.5 REMARK. Even if 1~ does not satisfy an internal sphere condition,
I may still draw a conclusion. Given an arbitrary Caccioppoli set .~’, let .~~
be the union of all discs of radius .R contained in F. Then the proof of
Theorem 3.4 shows that if h  h.(R), then FB x (0, ilk.

3.6 REMARK. The above remark shows that if F contains a disc of

any radius, then for h small enough, is non-trivial. This is an improve-
ment on Remark 1.2. 

3.7 THEOREM. Assume the same hypotheses as in 2’heorem 3.4, and in
addition assume that there is an open disc Bl in the base space so that outside

of £2:== Then Rn+l.

PROOF. Consider the set Dh. The map can only change Q.
in h) by the assumption on so that Qhv is a compact perturba-
tion of Dh. Moreover, S2’h’ still contains .F’ X [h, -[- oo), since from Theo-
rem 3.4, F X (0, +00) ç S2h. Therefore S2h’ is a member of the family of
sets over which S2~ minimizes I By Lemma 3.2,
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Also, if (where A is the symmetric difference), I must

have

since S2’ must have lower potential energy than S2,. Hence if 
then (since on

ôB1 X R), which contradicts the choice of Hence 

I will next show that for h~(_R), that particular liquid bridge Qh
obtained by the limiting procedure in Vogel [11] satisfies (It
is not known that all liquid bridges are obtainable in this manner, making
the above claim merely different from Theorem 3.7, not stronger.) I need

another technical lemma, whose statement is similar to Lemma 3.3, but
which applies to the finite symmetric sets 
a

3.8 LEMMA. Let the sequence {A i} be as defined in the proof of Theo-
3.4, with If then 

function of radius, sufficiently large.

PROOF. Since A i is symmetric, is smooth (see Vo-
gel [9], Gonzalez [3]). Therefore, if denotes the radius of aAi i at

height then ri(u) satisfies (2.1) with boundary conditions ri(h) = R,
== ~. (I am assuming that Ai is non-trivial, but this assumption must

be true for sufficiently large i, since A is non-trivial.)
Since the Aa’s are nested, it follows that (r((h)) is an increasing sequence,

and has a limit s ~r’(h), where r(u) is the radius of aA. Consider the func-

tion f(u) satisfying (2.1) with f(h) = B and r’(h) = ~. By the theorem on
continuous dependence of solutions of O.D.E.’s on their parameters, the
sequence converges almost uniformly to on some interval [6, h].

00

However, the ri’s are already increasing pointwise to r(u) (since A 
so = r (u) near h, and 1 m ri(h) = r’(h). 

~~

However, for h  h~(_R), r’(h) &#x3E; 0 from Lemma 3.3. Hence for large
enough r’(h) &#x3E; 0. From (2.1) it is clear that &#x3E; 0, so r’(u) &#x3E; 0 on

[0, h]. Thus I may invert ri(u) to obtain u as a function of r on [o, h], as
desired.

Now, define Qh,i to be a set which minimizes 6~ over the family of sets
equal to +00) U (- c&#x3E;o, 0 ], where the sequence consists of

concentric discs in the base plane of radius i with center some fixed point
beneath F.

3.9 LEMMA. Suppose F is ac bounded set in Rn satisfying an internal

sphere condition of radius .R. If h  hn(R) then, for large enough i, == 
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PROOF. Let .I (h) be such that i &#x3E; implies that ri(u) is a function
of radius for u e (0, h), where is as in Lemma 3.8. Pick i &#x3E; +
+ diam (F) + 1. Given any ball BR of radius R in F, consider the set ~~+1
minimizing 6~ with respect to the flat obstacles BB, and ~Si«~+1, where 
is the disc of radius + 1 in the base plane with center directly below
that of By Vogel [11], is another energy minimizing
set for the flat obstacles B~ and SI{h~ + 1, so ~I(h) + 1 n ~n,~ is symmetric.
Thus, by Lemma 3.8, Since BR was arbitrary,
lli 

It is now obvious that if then 

’ 

Q:,i will have a strictly
lower energy and will still contain the same obstacles. From this contradic-
tion, it follows that S2h,1 (at least up to sets of measure zero).

-

3.10 THEOREM. With as in Lemma 3.9, the set 
’ 

=i

which will be a liquid bridge by the existence theorem in Vogel [11 ], 
property that Qh = Q:.

PROOF. This is clear, since = Q:,i for i sufficiently large, and the
may be assumed to be nested from Theorem 5 of Vogel [11].

3.11 REMARK. When Q: and Qk is locally bounded in the posi-
tive direction, it follows by a result of Gerhardt ( [2 ], Theorem 2) that
the function f in definition 3.1 is Lipschitz continuous. Therefore, f is

analytic. That the set Qn in Theorem 3.10 is bounded in the positive Xn+l
direction away from FXR is clear, since each Qk,i lies beneath h)
away from The in Theorem 3.7 is not as well controlled, being
more general. An additional assumption must be made if is to be the

graph of an analytic function.
From this remark the previous theorem may be interpreted in a classical

P.D.E.’s light.

3.12 THEOREM. Given a region F C Rn satisfying an internal sphere con-
dition of radius R, and given function f E C°°(- .F) U
’U C°(- PO) 

and taking the value h continuously on 

PROOF. The only thing left to prove is the continuous assumption of

boundary values.’ But this follows by using the symmetric surfaces as

barriers, since 8Qa must lie below the plane = ~}.
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