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Global Existence for the Hamilton-Jacobi Equations
in Hilbert Space.

V. BARBU - G. DA PRATO

1. - Introduction.

In this paper we are concerned with the Hamilton-Jacobi equation

in a Hilbert space H. Here .F’ is a convex Frechet differentiable function

,on H and - A is the infinitesimal generator of a strongly continuous semi-
group of linear continuous operators on H. The subscripts t and x denote

the partial differentiation with respect to t and x and g, qo are given real
-valued functions on [0, T] x H and H, respectively.

The contents of this paper are outlined below.

In section 2 we shall exhibit several properties of the operator rp ---&#x3E; F(qx) .
In particular it is shown that it arises as the generator of a semigroup of
.a contractions on an appropriate subset E of the space C(H) defined below.

In section 3 it is studied equation (1.1) with A = 0. An explicit form
of the solution in term of the semigroup 8(t) is given for the homogeneous
equation and it is proved the existence and uniqueness of a weak solution
in the class of continuous convex functions 99 satisfying the conditions

Section 4 is concerned with equation

Pervenuto alla Redazione il 9 Giugno 1980.
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The main results of this section, Theorems 3 and 4 give existence and
uniqueness of weak and classical solutions in the class of continuous convex
functions on H. In particular, some existence results for the operator equation

are derived. Particular cases of equation (1.3) have been previously studied
in [4], [5]. The situation in which G is a linear continuous self-adjoint oper-
ator on .g (the Riccati equation) has been extensively studied in the past
decade and we refer the reader to [12] and [15] for significant results and
complete references.

In section 5 the relevance of eq. (1.1) in control theory and calculus of
variations is explained. In section 6 we give some regularity properties
for equation (1.3).

As far as we know, the present paper is the first attempt to study the
Hamilton-Jacobi equations in Hilbert spaces. As regards the study of these
equations in Rn the fundamental works of Kruzkov [16], Douglis [13],
Fleming [14] must be cited. In [10] Crandall proposed a new method in the
study of hyperbolic conservation laws equations based on the theory of
nonlinear semigroup of contractions in Banach spaces (see also [6], [11]).
The semigroup approach has been subsequently used in the study of Hamilton
Jacobi equations in Rn by Aizawa [1], Burch [7], Burch and Goldstein [8]
and other authors.

We conclude this section by listing briefly some definitions and notations
that will be in effect throughout this paper. Let g be a real Hilbert space
with norm [ . I and inner product ( -, -).

Given a lower semicontinuous convex function 99: H ---&#x3E; R = R’ U + f ool
we shall denote by agg: H --&#x3E; H the subdifferential of rp, i.e.,

and by T* the conjugate of cp,

If 99 is Frechet (or more generally Gâteaux) differentiable at x then 8q(z)
consists of a single element, namely the gradient of 99. In the sequel we
shall use either the symbol 99’ or 99., for the gradient of 99 instead of the more
conventional symbol Vq.
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For each .R &#x3E; 0 we shall denote by E, the closed ball

0(.E,) will denote the Banach space of all continuous and bounded functions
qJ: l:R --* RI = ]- oo, oo[ endowed with the norm

Let C(H) be the space of all continuous functions 99: H --* RI which are

bounded on bounded subsets, topologized with the family of seminorms

{lcpIB; R&#x3E; 0}. By C-(H) we shall denote the space of all Fréchet differen-
tiable functions 99 on .g with Frechet differential cpx continuous, bounded
on every bounded subset of H and with gg,,(O) = 0. C’(H) is a locally convex
space endowed with the family of seminorms

By Lip (H) we shall denote the space of all functions 99: H --&#x3E;- Ri such that

Further, we shall denote by ek(H, H), k a natural number or zero, the
space of all continuously k times differentiable mappings f: H -&#x3E; H such
that j;)(O) = 0 for j = 0, 1... k -1 and

Here i(i) denotes the Frechet differential of order j of f and II . II L(H,H) the
norm in the space L(H, H) of linear continuous operators from H into itself.

We shall denote by C’,,,(H, H) the space of all continuous mappings
/: H --&#x3E; H which are Lipschitzian on every bounded subset, endowed with
the family of seminorms

By C);(H, H), where k is a natural number, we shall denote the space of
all f E Ck(H, H) such that
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Given a Banach space Z we shall denote by C([0, T ] ; Z) the space of
all continuous functions from [0, T] to Z. If Z is one of the spaces C(H),
C1(H), Ck (H, H) or Ck ,(H, H) we set

(here I - Iz,R is one of the seminorms (1.5), (1.6), (1.7), (1.8), (1.9) or (1.10)) and

By L1(o, T ; C(H)) we shall denote the space of functions f : [0, 1] - C(H)
having the property that f(t, x) E LI(O, T) for every x E H and

for every R&#x3E; 0.

2. - Assumptions and auxiliary results.

To begin with let us set forth the assumptions which will be in effect
throughout this paper.

(a) .g is a real Hilbert space with norm /.1 and inner product (’y’).

(b) The function F is convex and belongs to Ol(H). F’E CO,,,,,(H, H)
and

(d) The linear operator - A is the infinitesimal generator of a strongly
continuous semigroup of contractions exp (- At) on H. By A* we shall
denote the dual operator and by D(A) the domain of A endowed with the

graph norm.
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We shall denote by .g the set of all convex functions E C(H) satisfying
the following two conditions

LEMMA 1. Let F satisfy assumptions (b) and (c) and let 99 E K be a given
function. Then for every t &#x3E; 0 the equation

has ac unique sol2ction y = y,(x) satisfying

Moreover, for each t &#x3E; 0 the mapping x ---&#x3E; yt(x) belongs to et,,(H, H).

PROOF. According to a well-known perturbation result due to Browder
(see e.g. [2], p. 46) the operator Ty = ôf{J(Y) - (F’)-I(t-I(X - y)) is maximal

monotone on H. Since F’ E C°(H, H), (F’)-l is coercive and therefore r is.
onto H. Hence eq. (2.4) has for each t &#x3E; 0 at least one solution y = yt(x).
Writing (2.4) as

and using condition (2.3) it follows (2.5). The uniqueness of y as well as,
the Lipschitzian dependence of y(x) with respect to x follows by assump-
tion (c).

In particular if (p E C1 (.H) then by (2.4) it follows that

Since lim (cp*(x) + tF(x)) / )z) I = + 00, we may infer that for each f{J E .K-r1-cxJ
and t &#x3E; 0, 8(t) 99 is a continuous convex function on H as well. Moreover
by Fenchel’s duality theorem (see e.g. [3], p. 188), S(t) can be equivalently-
defined for t &#x3E; 0, as
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It turns out that (S(t) ; t&#x3E;O} is a semigroup of contractions on C(H). More
precisely, one has

LEMMA 2. Let (S(t) ; t &#x3E; 0) be the family of nonlinear operators on C(H)
defined by formula (2.7). Then

Moreover, for every t &#x3E; 0, S(t) maps K into C’(H) and

for each (p E K n C’(H) such that q/ is uniformly continuous on, every boun-

ded subsct of H.

PROOF. Let q; be fixed in K. As observed earlier, S(t)q; is a continuous
real valued convex function on H. By Lemma 1 and formula (2.8) it fol-

lows that S(t)p is bounded on every bounded subset of g (because by
assumption (2.1) F* is bounded on bounded subsets). Moreover, by (2.7)
it follows that (see e.g. [3], p. 100)

Since F’ is strictly monotone on H, for each t &#x3E; 0, the map (agg* + tF’)-i
is single valued and Lipschitzian on every bounded subset as well. Hence

S (t) 99 c C 1 (H) for all t &#x3E; 0 and by (2.6), (2.13) reduces to

Hence

and again by Lemma 1 it follows that (S(t)P)ae(O) = 0. Thus we have shown

that S(t) P E K for every t &#x3E; 0.
Let p, ’lfJ be two elements of K. Since in virtue of Lemma 1, yt(x) E};R
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whenever Ix I  B, it follows by (2.8),

(Here y,(x) is defined by Lemma 1). The latter implies (2.11).
Let us now prove the semigroup property (2.10). Using again the

Fenchel theorem we have by (2.7) and (2.8)

It remains to prove equality (2.12). To this end we fix (p c- K r) C’(H)
and observe that by (2.8) we have

Along with the well known conjugacy formula, (see e.g. [3], p. 91)

relations (2.6) and (2.4) lead to

On the other hand, since F is convex, one has the inequality

which along with (2.17) yields

Similarly, by (2.8) and (2.16) it follows that
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Hence

By (2.18) and (2.19) we see that

Since 99’ and F’ are bounded on every };R it follows by (2.6) that

Inasmuch as q/ is uniformly continuous on every LR, by (2.20) we deduce
(2.12) as claimed.

REMARK. Let .Lo be the operator defined in C(H) by

where D(Lo) consists of the set of all 99 E C’(H) r1 g such that ggf is uni-

formly continuous on every bounded subset of H.
By (2.11) and (2.12) it follows that Lo is accretive in C(H) i.e.,

for every pair (q;, V) E D(.Lo) X D(Lo).
On the other hand, (2.21) implies that Lo c Lip where Lip is the infinitesimal

generator of S(t).

3. - Equation (1.1) with A - 0.

We begin with the homogeneous Cauchy problem

where F satisfies assumptions (b), (c) and
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Define the function q : R+ x H ---&#x3E; R’,

where S(t) is the semigroup defined by formula (2.7).
By Lemma 1 it follows that 99(t, -) E 01(H) for every t &#x3E; 0 and

q;(t,.) E g for every t &#x3E; 0. Furthermore, it follows by (2.10) and (2.12) that
for each gg,, c K, the right derivative (d+jdt)S(t)q;o exists at every t &#x3E; 0 and

We have also used the fact that for each gg,, c- K, (S(t) gg,)., is uniformly
continuous on bounded subsets (see (2.14)). In (3.3) d+jdt is taken in the
sense of topology of C(H). If cpo E C’(H) then eq. (3.3) remains valid for
t = 0. In particular, it follows by (3.3) that 99 is a strong solution to eq. (3.1)
in the sense that

It is worth noting also that by (2.14) and Lemma 1 it follows that 99(t, .) e
E C’(H) for every t &#x3E; 0 and

for every

If f/Jo E CI(H) then by (2.6) and (2.14) it follows that 99 E C([0, T] ; 01(H)), i.e.,

On the other hand the accretivity of the operator Lo(q;) = F(99,) on C(H)
(see (2.22)) implies via a standard argument the uniqueness of the strong
solution e.

Summarising, we get

THEOREM 1. Let F satisfy assumptions (b), (c). Then for each 990 E K,
the Cauchy problem (3.1) has ac unique strong solution given by formula (3.2).
More precisely, 99(t, -) E C’(H) r1 K for all t &#x3E; 0, satisfies (3.5) and as a func-
tion of t from ]0, + oo[, 99(t) is continuous, everywhere differentiable from the
right and satisfies eq. (3.4). Moreover the map qo - 99 is a contraction from
C(H) to 0([0, T]; C(H)).

If in addition 990 E CII(H) then ffJ E 0([0, T]; Ci(H)) and equation (3.4) is

satisfied for all t&#x3E; o.
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REMARK. We have incidentally shown that the semigroup S(t) has

smoothing effect on initial data (see [3], [9] for other classes of contraction
semigroups having this property).

we shall consider now the nonhomogeneous Cauchy problem

where F satisfies assumptions (b) and (c).
One assumes in addition that

(e) K is a closed convex cone of C(H).

Further we shall assume that

where K is the closed convex cone of C([0, T] ; C(H)) defined by

Consider the approximating equation

or equivalently

By assumptions (e), (3.8) and by Lemma 2 it follows that the operator de-
fined by the right hand side of eq. (3.11) maps every C([0, T]; O(ER))
into itself and is contractant. Thus for every e&#x3E; 0, eq. (3.11) ((3.10)) has
a unique solution qs G X m Ci([0, T]; C(H)). Since, as proved earlier, S(s) 99 c-
E CII(H) for every T c- E and e &#x3E; 0 it follows by (3.11) that 99, E C([0, T];
E CII(H)). Furthermore, recalling that (see (2.6) and (2.14)),
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we see that (qJe)x = cp3 is the solution to

where

Then by an easy computation involving eq. (3.13) and the Gronwall lemma
it follows that

(By OR we shall denote several positive constants independent of e.) Paren-

thetically we notice that since by (3.14) and assumption (e) the mapping
x -+ lJ?:(X, Ye(t, x)) is Lipschitzian on every :ER, it follows by (3.13) that if

q§ G Otiv(H, H) and gx E C([0, T]; Oiv(H, H)) then

Next by (2.20), (3.12) and (3.13) one has

Integrating the latter over ]0, T[, we get by (3.15) the estimate

and therefore by (3.10)
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where

Now coming back to equation (3.11) it follows by Lemma 2 (part (2.11))
and the Gronwall lemma that the mapping (f/Jo, g) ’,- 99 is Lipschitzian from
C(H) X 0([0, T]; C(H)) to 0([0, T] ; C(H)). More precisely, one has

for all qo, ip,, c- K and g, h E . By (3.18) and (3.19) one concludes that

Hence lim gg,. = 99 exists in 0([0, T ] ; C(H)). Clearly q G X and by (3.15)6 1 0
we see that for each t E [0, T], 99(t, .) is Lipschitzian on every bounded subset
of Hand

Summarising, we have shown that there exists a sequence
c C([0, T] ; C(H)) satisfying

Here the convergence in the space Ll(O, T ; C(H)) is understood in the local
convex topology given by the family of seminorms (1.13).

DEFINITION 1. A function satisfying conditons (3.20) up to (3.24)
is called weak solution to the Cauchy problem (3.7). We notice that by (3.19), 
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(3.22), (3.23) and (3.24) the weak solution 99 = G(99,,, g) is unique and

for all ({Jo, ’lpo E K and g, h c X satisfying condition (3.8). We have there-
fore proved the following theorem

THEOREM 2. Assume that hypotheses (a), (b), (c) and (e) are satisfied.
Then for any pair of functions (q;o, g) E K x X satisfying condition (3.8), the

Cauchy problem (3.7) has a unique weak solution q which satisfies

.F’urthermore, the map (q;o,g) - q is Lipschitzian from C(H) X 0([0, T]; C(H))
to 0([0, T]; C(H)).

REMARKS. 1°) It is worth noting that another way to prove Theorem 2
is to apply the Benilan existence result (see [2], [6]) to nonlinear evolu-

tion equation

in the space C(H). Here L is the closure of Lo (see (2.22)) in C(H) X O(H).

2°) Assumptions (b), (c) and (e) are verified by a large class of func-
tions I’ which includes functions of the form

where C is a real valued, convex and differentiable function on [0, oo[ which
satisfies the following conditions

4. - Existence and uniqueness for equation (1.2).

We shall study here the Cauchy problem
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where

and

Further we shall assume that

In this case .g is the set of all convex functions 99 E C(H) such that agg(O) E 0.
We start with the approximating equation

where by formula (2.8), 8(e) is given by

and

Applying the contraction principle on the closed convex cone of C([0, T] ; C(H))

we see that eq. (4.5) has a unique solution 998 C- X. Moreover, in as much
as (S(e)’fJ)’(0153) = 991 (y,(x)), we see that (p, E 0([0, T]; OI(H)) and
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By (4.5) it follows that for each x E D(A), PB(t, x) is differentiable on [0, Tj
and satisfies the equation

By an easy computation involving the Gronwall lemma and eq. (4.9) it

follows

Next, since the mapping x -+y£(x) is nonexpansive and in virtue of (2.6),

it follows by (4.4) and (4.9) that q§(t) e Cil)(H, H) for every t e [0, T].
Moreover, using once again the Gronwall lemma one finds the estimate

(we recall that q/ = CfJae stands for the Frechet derivative with respect to . )
Next by inequality (2.20) and (4.11), (4.12)

for all x cE, and t E [0, T].
Since the mapping (99,,, g) -&#x3E;- T, is Lipschitzian from C(H) x C([O, T];

C(H)) to C([0, T] ; C(H)) (see (3.19)) we may infer by (4.13) that

and therefore lim P8 = cp exists in C([O, T] ; C(H)). Clearly p E X andBO

By (4.10)-(4.12) and (4.13) we see that the function (p is a weak solution to
problem (4.1) in the sense of Definition 1, i.e. there exists a sequence..
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Here the space D(A) is endowed with the graph norm.
Summarising, we have proved the following theorem

THEOREM 3. Suppose that assumptions (a), (e) are satisfied and qJo, g satisfy
conditions (4.2), (4.3) and (4.4). Then the Cauchy problem (4.1) has a unique
weak solution 99 E X which satisfies (4.14). Moreover, the map (CPo, g) -+ cp
is Lipschitzian from C(H) X 0([0, T]; C(H)) to 0([0, Tj; C(H)) and for every
x E D(A) the function 99(t, x) is absolutely continuous on [0, T].

Our next concern is a regularity result for the solutions to equa-
tion (4.1). To this purpose we return to approximating sequence {cpt;} c
c 0([0, T]; Ci(H)) n X and set

As seen above E8 E C([0, T] ; OO(H, H)) is the solution to (see (4.9))

where

In addition to (4.2), (4.3) and (4.4) we shall assume that
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We shall prove that under these conditions E8 E C([O, T] ; GliD(H, H)). ·
To this end we introduce the following convex cone of CO(H, H)

(4.22) H = {E c- CO(H, H); E monotone and E(O) = 0} -

For every .E EII we set Es = E(l + êE)-1 (1 is the identity operator in H).
We notice that for every ê&#x3E; 0 the operator (1-f- 8E)-l is well defined and

nonexpansive on H. In the next lemma we gather for later use some ele-
mentary properties of Es.

The proof is standard and relies on the formula

(By E’ we shall denote the Frechet derivative of the operator E.)
In the space C([0, T] ; C’(H, H)) consider the approximating equation

where Eo = 99’ 0 and G = g’. We consider the following closed convex cone
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Let T be the operator defined by the right hand of equation (4.27).
For the beginning we shall assume that IIE,11,,, and IIG(t)111,R0153R/2
for t E [0, T]. Then for all sufficiently small T, r maps Q into itself and

by (4.25) one has

for all E, f E Q. Here 0  f}R  1 for every R&#x3E; 0. Hence eq. (4.27) (equiv-
alently (4.19)) has a unique solution E == E6 E C([0, T’]; C’i,,(H, H)) where
[0, T’[ is some subinterval of [0, T[. Next after some calculations involving
equation (4.19), estimates (4.23), (4.25) and the Gronwall lemma it fol-

lows that

where CR is independent of T’. This implies by a standard procedure that
EE E 0([0, T]; OiiP(H, H)) and inequality (4.29) extends on the whole in-
terval [0, T].

On the other hand, using once again estimate (4.26) we see that

for t E [0, T] and k = 0, 1, where 0,(t, E,,, G) = .EE is the solution to (4.27).
On the other hand, we have

where Y8(X) = (1-f- EE)-lx. Along with estimates (4.29) and (4.30) the

latter yields

Then by (4.32) it follows that

Hence there exists jE’ E C([0, T] ; CO(H, H)) such that for 6 --* 0,
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By the uniqueness of the limit we infer that E(t, x) = f{Jae(t, x) where rp is

the weak solution to equation (4.1). We have therefore proved that

Then by (4.17) we may infer that

and

This amounts to saying that 99 is a classical solution to equation (4.1). We
have therefore proved

THEOREM 4. In Theorem 3 suppose in addition that cpo and g satis f y con-
ditions (4.21). Then 99 is a classical solution to equation (4.1).

Now we notice that by (4.10), E’ = q§ satisfy

Keeping in mind that the equation
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is the « mild » form of equation (1.3), we may say that .E = qJz is a weak

sotution to this equation.
We have therefore the following existence result

THEOREM 5. Under assumptions of Theorem 4, E(t, x) = qJae(t, x) is a

weak solution to operator equation (1.3) where .Eo = q§ and G = gz.

5. - An example in control theory.

The relevance of the Hamilton-Jacobi equations in control theory and
the calculus of variations is well-known (see e.g. [3] and [12] for recent
results concerning infinite dimensional problems). Here we shall study the
connection between equation (1.1) and the following optimal control problem:

Minimize

over all u E L2(0, T; U) and x E C([0, T]; H) subject to state equation

Here B is a linear continuous operator from U to H, g : H --&#x3E; R, h : U -* R,
lpo: H -Ri are given lower semicontinuous convex functions and U is a
real Hilbert space identified with its own dual and with inner product  -, - &#x3E;.

We shall denote by Wl°2(o, T; H) the space

where x’ is the derivative in the sense of distributions. We shall assume

that xo E D(A) and - A is the infinitesimal generator of an analytic semi-
group of contractions on H. Then for each control u c- L’(O, T; U), system
(5.2) has a unique solution x,, E -W’,,’(0, T ; H) with Ax. E L2(o, T ; H).
We associate with problem (5.1) the equation

where h* is the conjugate of h and B* is the dual operator of B.
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We observe that by substitution q;(t, x) = 1p(T - t, x), eq. (5.3) can be
written in the form (1.1) where I’(y) = h* (- B* y) for all YEH.

By analogy with Definition 1, we say that the function 1p e JG is a weak
solution to equation (5.3) if there exists a sequence {1pe} c C([0, T]; 01(H)) n X
such that for s - 0,

Here X is defined by (3.9) and K is the set of all convex functions E C(H)
such that 0 c- 99(0) and

The results proved in sect. 3 and 4 give existence and uniqueness of the
weak solution V to equation (5.3) in several situations. For instance if

A - 0 and K is a closed convex cone of O(H), Theorem 2 gives existence
and uniqueness of a weak solution under the following assumptions:

If h( u) = JU 12 /2 and the range of B is all of H we may apply Theorem 3
to obtain existence and uniqueness under conditions (4.2), (4.3) and (4.4).

Moreover, if u* is an optimal control in problem (5.1) then it is expressed as a
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f unction of the optimal state x* by the feedback formula

Here aV is the sub differential of V, (t, -) -
Formula (5.12) gives the optimal feedback law of control problem (5.1).

In particular if ip happens to be a classical solution to (5.3) (in particular
this is the case if the conditions of Theorem 4 are satisfied) then 8’w - lp,,
and it follows by (5.12) that u* E 01([0, T]; U). ,

PROOF OF PROPOSITION 1. Let t c [0, T] and U CE2 (t, T; U) be fixed.
Let x. the solution to (5.2) on [t, T] such that xu(t) = y. The obvious equality

along with (5.4) and (5.6) implies that ’Ip£(s, xu(s)) is absolutely continuous
on [t, T ] and

where 6,, -* 0 uniformly on [t, I].
Recalling that

we deduce by (5.13) that

Therefore

Now consider the Cauchy problem
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For each 8 &#x3E; 0 and y E D(A), problem (5.15) has a unique solution

x,, c- W1,2(t, T; H). Here is the argument.
Since (Vr;)., E C([0, T]; CLiD(g, H)) and (h*)x E C’Li,,(H, H), we deduce by a

standard argument that (5.15) has a unique continuous local solution aJ6.

In as much as ip,.,(s, -) E g for all s E [0, T] it follows by (5.15) that

where [t, T’[ is the maximal interval of definition for xE .

Estimate (5.16) then implies by a standard device that x,, can be ex-

tended as a solution (in the « mild » sense) to (5.15) on the whole interval
[t, T]. Clearly Xe E Wt,2(t, T ; H) and equation (5.15) is satisfied a.e. on ]t, T[.

Now in (5.13) we take u = us = (h*)x(- B*(ys)x(s, zs)) and obtain

and therefore
m

Along with (5.14) the latter implies (5.11) as claimed.
Let u* E L2(0, T; U) be any optimal control of the problem and let

x* E -WI,2(o T; H) be the corresponding optimal state. By (5.11) it fol-
lows that

and by (5.6), (5.17) we see that

uniformly on [0, T]
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which implies in particular that

where nB -+ 0 for s --&#x3E; 0.

On the other hand, it follows by (5.7) that x*(t))} is bounded
in L°°(0, T ; H). Thus we may assume that

and letting 8 tend to zero in (5.18) we get (because the convex integrand is
weakly lower semicontinuous),

Equivalently,

Similarly by (5.19) it follows that

which along with (5.20) implies (5.12) thereby completing the proof.

6. - Additional regularity properties for the equation (1.3).
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PROOF. The proof is standard and relies on the formula:

where

LEMMA 5. Assume that Eo, Êo Ell n C2 ,(H, H) and G, l7 E C([0, T];
C2 H)) with G(t) Ell, Vt E [0, T]; then equation (4.27) has unique solu-
tions E R E C([0, T]; C2 )(H, H)) and it is:

where cR is independent f rom oc. 

PROOF. The proof is quite similar to that of Theorem 4 (using esti-

mates (6.1) and (6.2)).
THEOREM 6. Assume that EoEC£iD(H, H) and G E C ([o, T] ; C2 L i,,(H, H))

with G (t) Ell, Vt E [0, T]. Then there exists a unique solution E E C ([0, T] ;
CI(H, H)) to equation (4.37).

PROOF. Consider the approximating equation

where

We write ye in the following form:

where
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Recalling (6.6), (6.9) and estimating IE’(t, -) - Ell(t, -) 1,,, via the Gromwall
lemma we get:

and from (6.5) it follows that E is a solution to equation (4.37). To prove
uniqueness consider two solutions E, and E2 , then for every fl &#x3E; 0 it is:

Using again (6.6), (6.9) and the Gromwall lemma we get Ei = E2 .
Equation (4.37) is a « mild» form of equation (1.3). To find classical

solution we consider the semigroup in Co(H, H) defined by

We remark that G t applies II in itself; we put

LiF,mmA 6. - Assume that f E D(A) n 01(H, H) and x E D(A); then it i.s

f(x) E D(A* ) and moreover :
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therefore the linear mapping

is continuous; consequently it is f (x) E D(A*) and (6.11) is fulfilled.

We write now equation (1.3) in the following form

THEOREM 7. Assume that Eo E C2Li]D (H, H) rIII n D(A), A(Eo) E Ci(H, H),
G, Gt E 0([0, T] ; C2 1,,(H, H)) with G(t,.) Ell.

Then the equation (1.3) has a unique classical solution.

PROOF. We can solve (in the « mild» form) the following linear problem :

where B c- C([O, T]; C’(H, H)) is the solution to (4.37).
Let us consider the approximating problems:

this implies V = Et and the thesis follows.
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