@article{ASNSP_1981_4_8_1_157_0, author = {Shiga, Hironori}, title = {One attempt to the $K3$ modular function - {II}}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {157--182}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 8}, number = {1}, year = {1981}, mrnumber = {616904}, zbl = {0501.14019}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1981_4_8_1_157_0/} }
TY - JOUR AU - Shiga, Hironori TI - One attempt to the $K3$ modular function - II JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1981 SP - 157 EP - 182 VL - 8 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1981_4_8_1_157_0/ LA - en ID - ASNSP_1981_4_8_1_157_0 ER -
Shiga, Hironori. One attempt to the $K3$ modular function - II. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 8 (1981) no. 1, pp. 157-182. http://www.numdam.org/item/ASNSP_1981_4_8_1_157_0/
[1] Sur les fonctions de deux variables indépendentes analogues aux fonctions modulaires, Acta Math., 2 (1883), pp. 114-135. | JFM
,[2] Sur une extension aux fonctions de deux variables du problème de Riemann, Ann. de l'Ecole Normale, 10 (1881), pp. 305-322. | JFM | Numdam | MR
,[3] On compact analytic surfaces, II-III, Ann. of Math., 77 (1963), pp. 563-626; 78 (1963), pp. 1-40. | MR | Zbl
,[4] On the structure of compact complex analytic surfaces, I, Amer. J. Math., 86 (1964), pp. 751-798. | MR | Zbl
,[5] A Torelli theorem for algebraic surfaces of type K3, Math. USSR Isvestija, 5 (1971), pp. 547-588. | Zbl
- ,[6] Problème de Riemann et fonctions automorphes provenant des fonctions hypergéométriques de plusieurs variables, J. Math. Kyoto Univ., 13 (1973), pp. 557-578. | MR | Zbl
,[7] The period map of Abelian surfaces, J. Fac. Science Univ. Tokyo, 25 (1978), pp. 47-59. | MR | Zbl
,[8] Cours d'arithmetique, Presses universitaires de France. | Zbl
,[9] One attempt to the K3 modular function I, Ann. Scuola Norm. Sup. Pisa, 6 (1979), pp. 609-635. | Numdam | MR | Zbl
,