
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

ERIC BEDFORD

DAN BURNS
Holomorphic mapping of annuli in Cn and the associated
extremal function
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 6, no 3
(1979), p. 381-414
<http://www.numdam.org/item?id=ASNSP_1979_4_6_3_381_0>

© Scuola Normale Superiore, Pisa, 1979, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1979_4_6_3_381_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Holomorphic Mapping of Annuli in Cn
and the Associated Extremal Function.

ERIC BEDFORD (*) - DAN BURNS (*)

Introduction.

For a complex manifold Q, Chern, Levine and Nirenberg [6] have de-
fined a seminorm on the homology groups H*(Q, R) that has the property
of decreasing under holomorphic maps. Thus a holomorphic mapping
f: QI -+ Q2 is restricted by the norm-decreasing property of its induced

action on homology f*: H*(Qi , R) -+ H*(Q2’ R). In this paper we will show

that for certain domains S2,, Q2 ç Cn, f * is an isometry of the homology
groups if and only if f is a biholomorphism. (In fact we will use only the

top-dimensional homology group H2n-I.) In the case where QI, Q2 c Care
annuli, this result was established by Schiffer [22] and was extended to the
case of d-to-1 mappings by Huber [12].

We will consider domains S2 of the following special form:

(*) Do and Di are strictly pseudoconvex with smooth boundary, , Do is

connected and holomorphically convex in DI.

(If Q is multicircular and 0 rtQ, then Q is actually a topological annulus.)
The norm of the homology class r == [3Do] == [8Di] is defined as

where the family consists of v E 02(Q), 0 C v  1 which are plurisub-
harmonic and satisfy (ddev)- = dd’VA...Addlv = 0. This is a higher-dimen-

(*) Department of Mathematics, Princeton University.
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sional analogue of harmonic measure, and it may be shown that this

supremum is achieved by the solution u of (1.1) if u E C2(Q). We will refer
to N{T} as the norm Nfs2} of Q.

THEOREM 1. Let f : Qi - [J2 be a holomorphic mapping, with Q, and Q2
as above, and let Q1, Q2 be Reinhardt (i.e. multicircular) domains. If N{QI} ==
= N{,Q,} and the mapping f*: H2n-I([JI, R) - H2n-l(il2, .R) is not zero, then f
is a biholomorphism.

This theorem is proved by showing that the solution of (1.1) is the

unique function of Y which attains the supremum in NJ-VI. This technique
was used for Riemann surfaces by Landau and Osserman [17]. In fact the

proof (see Theorem 2.1) yields

THEOREM 1’..Let ill, , 02 be simply connected domains of the form (*),
and assume that the solutions ul and U2 of (1-l-) on ill and Q2 are of class
C4(Dj) and satisfy (1.4). If N{Q1} == N{Q2}’ and f : 0D, --&#x3E;- Q2 is a holomor-
phic mapping with f* =1= 0, then f is a biholomorphism.

The restriction to the class of Reinhardt domains in Theorem 1 arises

because it is not known whether the solution of (1.1) is smooth and satis-

fies (1.4) on more general domains. Another approach to the study of holo-
morphic mappings via a related Dirichlet problem has been described by
Kerzman [16].

If u satisfies (dd°u)n-1 =A 0, (ddcu)n == 0 on a domain D c Cn, there is an
associated foliation Y= :F(u) on D : each leaf M of Y is a Riemann surface,
and UIM is harmonic on M. The foliation Y is an important part of the
proof of Theorem 2.1 and seems to be the main feature which distinguishes
the cases n == 1 and n&#x3E;2. In Section 4, several remarks are made about F.

They center around the observation that if the normal bundle X of Y is
given the fiber metric ddcu, then the Ricci curvature of this metric measures
the antiholomorphic twist of Y. The reason for studying Y in more detail
is Theorem 4.6, which yields

THEOREM 1". Theorem l’ remains valid if the hypothesis (1.4) is replaced
by the assumption that Uj is real analytic on S2j, j = 1, 2.

In the beginning of Section 4, it is shown that there is a topological
obstruction which prevents the solution of (1.1) from satisfying (1.4) if Do
has more than one component. Some information is also obtained concerning
the real Monge-Ampere equation det (a2UIaX,aXj) - 0.

In order to discuss self maps of domains Q C Cn, one may use a continuous
(generalized) solution of (1.1 ), which is known to exist. Thus it is possible
to show that certain bounded domains Q C Cn are holomorphically  rigid &#x3E;&#x3E;
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in the sense of H. Cartan [5]. For this purpose one may define several semi-
norms Ñ on H2n-l(il, R) which are similar to that of Chern, Levine and
Nirenberg. Let us suppose that the bounded components of Cn"""Q consist
of Ki U ... u .KJ U E where the Ki and E are closed and pairwise disjoint.

THEOREM 2. Let Q be a bounded domain in Cn, and assume that 2Z is not
identically zero on H2n-I(Q, R) but that 2Z is identically zero on

The following are equivalent for every holomorphic mapping f: S2 Q:

(i) f is an automorphism

(ii) f* is injective

(iii) f * is an isometry.

This theorem applies, for instance, to the case where n&#x3E;2 and at least one
of Kj has nonempty interior (Corollary 3.2). Section 3 contains examples
where various norms 9 are zero (or nonzero) and examples of singularities
which are removable (or not) for plurisubharmonic functions. Rigidity
theorems for plane domains have been proved by Huber [13] and Landau
and Osserman [17]; these results are more general than Theorem 2 in the
case n = 1. The reader should also compare these results with related results

of Eisenman [8, p. 72].
A different measure on homology classes, which we discuss only briefly,

may be defined in terms of the Caratheodory metric. If y is a k-dimensional
homology class on Q, then Cfy} is the infimum of the k-dimensional Hausdorff
measure (with respect to the Caratheodory distance) taken over all chains
representing y. Let Bn be the unit ball in Cn, and let Ki, K2 be compact
subsets that are convex in the Caratheodory metric of Bn.

THEOREM 3. Let /: BnBK, -&#x3E; BnBK2 be holomorphic, and assume that
C{aK,l = O{oK2}. If f* =F 0, then f is an automorphism of Bn.

Examples are given to show that N{yl and C{y} are not functionally
related.

1. - The Cauchy problem for the complex Monge-Ampère equation.

We use the notation de = iCa - a) so that dde, = 2iôä and (dd,,)n =

== dde /B ... /B dde . Let us summarize some known results (see [4] for details).
The operator (ddc)n has a continuous extension to the space of continuous,



384

plurisubharmonic functions, with (ddw)n being defined as a measure on Q.
If we consider the class of functions

!F’ = fv E C(D), 0  v  1, v plurisubharmonic and (ddev)n = 0}

then we may define a seminorm Ny using (**) with F replaced by thc
larger class f" and the integration being taken with respect to a smooth
current representing y. In connection with this, one is led to consider the
extremal function u = sup v, where the supremum is taken over the func-

tions v  IL which are plurisubharmonic on Qi and satisfy v  0 on S20: (This
function has been studied by Siciak [23] and Zaharjuta [26] in other con-

texts.) The function u thus obtained is Lipschitz continuous and is a

generalized solution of the Dirichlet problem 

The following estimate holds:

where the integral is interpreted in a generalized sense. The problem (1.1)
has been solved explicitly in several examples and the solution is regular
and satisfies (ddcu)n-1 0 0 in each case (but cf. § 4 on this point). If U E C2(s2),
it follows that equality holds in (1.2) and

If u E C2(Q) satisfies

there is further structure associated with u. The (n - .1, n - I)-form
(dd,lu)n-1 may be integrated by the Frobenius theorem to yield a foliation
:F = Y(u) of S2 by complex manifolds of dimension one (Riemann surfaces).
This foliation has the property that UIL is harmonic on L for each leaf L of Y
(see [2] for details). We note that the solution u of (1.1), if it is smooth,
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always satisfies (1.4) in a neighborhood of aS2 since it is constant on each

(strictly pseudoconvex) boundary component.
Let 8 = {z c- C-: r(z) = 0}, dr =A 0 on 8, r E C2(C-) be a real hyper-

surface. We will say that S is non-characteristic for a solution u of (1.4) if

This is equivalent to the condition that each leaf L c- Y intersects trans-
versally. This leads to uniqueness in the Cauchy problem.

PROPOSITION 1.1..Let us suppose that u, v are C3 and satisf y (1.4) in a

neighborhood of S. Suppose that u(z) = v(z) and du(z) = dv(z) for z E S, and
let 8 be non-characteristic for u at zo E S. I f u, v satisfy (1.4) in a neighborhood
of zo , u = v in a neighborhood of zo.

PROOF. We will show that there is an open set -W containing zo such that
the foliations :F(u) and Y(v) concide on W in the following sense: if z EyY
and L, Z’ are the leaves containing z, then the connected components of
L r) -W and Z’ r1 W containing z are the same. By the non-characteristic
condition, the leaves are transverse to S, and it suffices to show this for
z c- S r)-w.

Thus we suppose that z E S r)-W, and that .L, L’ are the integral curves
of (ddeu)n-l (respectively (ddv)n-1) which pass through z. Since u - v van-

ishes to second order on S, it follows that all second partial derivatives of
(u - v) except (u - v)rr vanish on S. From the non-characteristic condition
and from (ddeu)n = 0, we may solve for Urr in terms of all the other se-
cond partial derivatives at z. Thus it follows from (1.4) that (U - v)rr = 0
on -Wr) S.

Finally, if 3;’r) 8 and 5,-’r) S denote the foliations of 8 obtained by
intersecting the leaves of T and :F’ with S, then we observe that these
foliations have normal bundles (dd,,u)n-’Adr and {ddw) nw /B dr respectively.
We have seen that for z c- S (-)TV, the second derivatives of u and v at z
are equal, and thus the foliations n Sand :F’ n S have the same tangent
spaces. By the uniqueness theorem for ordinary differential equations,
we see that Y r) S r) W = 5,"’ n S n -W. It follows that Y and Y’ must

agree in a neighborhood of zo, since z E L n L’ implies that L n .L’ contains
a curve in S; and L n L’ can contain a curve only if L = L’.

COROLLARY 1.2..Let the function r defining S be strictly plurisubharmonic,
and set
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If zo E S == aSZ and there is a neighborhood W containing zo such that

u, v E C3(S2) satisfy (1.4) on W n ,S2 and u(z) = v(z), du(z) = dv(z) for
z E Wn S, then there is a smaller neighborhood W’ containing zo such that

u = v on W’ r1 Q.

PROOF. Since S is strongly pseudoconvex at zo, we may make a change
of coordinates such that Zo = 0, X is given near Zo by a convex function
Re Zl = gg(Im Zl, z2, 7 ..., zn) &#x3E; 0, and q &#x3E; b &#x3E; 0 on the set

We claim that for z c D such that Re Zl  ð and (1m zl) 2 + )znJ2  8,

u(z) = v(z). To see this, let L be the leaf of :F(u) containing z. Since u

satisfies (1.4) on D, it follows that L may be extended to Q with a con-
tinuous tangent plane. By the maximum principle, .L must intersect 8 in
a point’ = (C,, ..., in) with Re ’1  6 and (Im ’1)2 + "212 + ... + )Sn )2  8.

Since S is strongly pseudoconvex, L can be tangent to S only at an iso-
lated subset of L n S. Thus, moving to a nearby point i’ G L r1 S if neces-
sary, we find a point where is non-characteristic for u. By Proposition 1.1,
it follows that u = v on L.

COROLLARY 1.3 Suppose S21, Q2 are domains of the form ( *), and suppose
D., , S22 have the sacme inner or outer boundary. If S211 5 -Q2, if the solution

Ul of (1.1) is C3(Dj) for j = 1, 2, and i f deiiAd°uiA(dd°ui)"-1 # 0, then

N{S2,} &#x3E; N{D2}.

PROOF. By the norm decreasing property of holomorphic mapping, it

follows that N{[Jl}&#x3E;N{Q2}. To show that this inequality is strict, we ob-
serve (cf. equation (3.14) of [4])

where F= {r = 0}, dr 0 0 on F, the common boundary of Ql and S2,.
Since Qi § Q2 it follows that OUl(z)/or&#x3E; OU2(z)/or for z E T. If the norms

are equal, then it follows that 8uif8r = au2/ar on F. By Proposition 1.1 it
follows that u, = U2, which is impossible since Ql =1= il2 and uj satisfies (1.1).

We remark that this will be a special case of Theorem 2.1.

Uniqueness in the Cauchy problem also holds for solutions of
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with f &#x3E; 0, and d V is the volume form on Cn. (In our applications to holo-
morphic mappings, however, we will only be concerned with the case f = 0. )

PROPOSITION 1.4. Let u, u’ E C°° be plurisubharmonic acnd satisfy (1.6)
for some f &#x3E; 0. If u(z) = u’(z), du(z) = du’(z) for z E S, then u = u’ in a
neighborhood of S.

PROOF. Since u, u’ satisfy (1.6), then w = u - u’ satisfies

dd"wA[(ddeit)n-1 + (dd,,u) ,-2 Addeul + ... + (ddcu’)n-1] = 0 .

Let us write this as

Since (ddeu)n&#x3E; 0, it follows that OJ is a strictly positive form, and so L is
a strongly elliptic operator. It is known (see Nirenberg [20]) that unique-
ness in the Cauchy problem holds for second order strongly elliptic operators
with 000 coefficients, and so we conclude that w = 0 in a neighborhood of S.

PROPOSITION 1.5. Let the function r defining S be real analytic, let Qo , Q1,
be real analytic and let f be analytic in a neighborhood of S. If

on S, then there exists a real analytic function u in a neighborhood of S such that

for z E S and (dd°u)n = f in a neighborhood of S.

00

PROOF. If we write the solution u = ’I (piri as a formal power series
;=0

with cpj analytic on S, then the condition (1.7) allows us to solve for ggj in
terms of CPo, ..., ggj-, in the equation

The proof that the formal power series converges is a special case of the
Cauchy-Kovalevsky theorem.
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From this, one may obtain special exhaustion functions for pseudo-
convex domains with real analytic boundary.

COROLLARY 1.6. Let Q be a bounded, strongly pseudoconvex domacin with
real analytic boundary in Cn. Then there exists a f unction O E C°°(SZ) such
that Q = {e  01, de =F 0 on ôQ, and (ddee)n = 0 in a neighborhood of aS2.

PROOF. By Proposition 1.5, there is a plurisubharmonic real analytic
function n defined in a neighborhood of 8Q such that (ddcu)n = 0 and

aular = 1, u = 0 on 8Q. For 8 &#x3E; 0 small, we let X(t) be a convex func-
tion that is 0 for t  - 8 and such that X’(t) = 1 for t &#x3E; - 8/2, and thus
e = X(u) - x(o ) is the desired function.

2. - A uniqtleness theorem and some corollaries. 

Here we show that the plurisubharmonic measure (i.e., solution of (1.1))
is the unique function that gives equality in (**).

THEOREM 2.1. Let Q c Cn be a domain o f the f orm (*), and suppose that the
solution u of (1.1) is smooth of class 04(Q) n C3(Q) and satisfies (1.4). Let

v E C4( Q) n 03(Q u aDO) be acnother plurisubharmonic function with 0  v  1,
(ddcv)n = 0 and (ddev)n-1 =A 0 off o f a proper analytic subvariety of Q. If
F = [ôDl] and

then u = v.

Let us note some corollaries.

COROLLARY 2.2. Let Ql, Q2 be annuli (satisfying (*)), and assume that
the harmonic measure u, of S2 j is in C4 ( SZ j ) and satisfies (1.4). I f f : Qi -&#x3E; Q2
is a holomorphic map with N {f*Fl} = ’N{r2}, then f is a proper, unrami-

f ied covering of Q2 by Q,. Further, f has some smoothness at the boundary :
if U2 C2k(fl2), then f C- Ck-1, -it U2 C- C2k(SG2), then f E Ck-1’1 (SGx).

PROOF. We apply Theorem 2.1 with Q = S2,, n = ul, and v = /*U2,
and we conclude that U.1 = u2( f ). Thus f is proper. To see that f is un-

ramified, we use the argument of Kerzman, Kohn, and Nirenberg [16]:
exp (ul) = exp (u2(f)) is a strictly plurisubharmonic function, and if we

compute the complex hessian using the chain rule, we obtain If’ I =F 0.
Taking further derivatives with the chain rule and using another trick
of [16], we obtain the boundary regularity of f. Let us note that if f is first
known to be smooth at 8Qi, then Fornaess [10] shows that f is unramified.
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REMARK. If SZl and 92, have C- boundaries, then Naruki [19] shows
that f is smooth of order m - 4, provided that f is 04(Ql).

A large portion of the proof of Theorem 2.1 is spent proving Lemma 2.6.
Without Lemma 2.6, it is still possible to conclude, in Corollary 2.2, that
U,u,(f), and thus f is proper.

Theorem 1 is a consequence of the following corollary, since for a

Reinhardt domain satisfying (*) the solution of (1.1) is as smooth as

aD, U 8Di .

COROLLARY 2.3. Let S2,, Sd2 satisfy (*) with n&#x3E;2, and let the solution uj
of (1.1) satisfy (1.4) and Uj E 04(Q,), j == 1, 2. Let N{Ql} = mN{Q2} with m
an integer. If f : S2,, --&#x3E; SZ2 is a hoZomorphic mapping, then the degree of f
(i.e. f* -P, = (deg f ) .r2) is an integer 0  deg f  m. If S2, is simply connected
and if deg f = m, then m = 1 and f is a biholomorphism. In general, if
deg f = m = 1, then f is a biholomorphism.

PROOF. The degree of f is a non-negative integer since f is a holomorphic
mapping and n&#x3E;2. Since the norm decreases, deg f c m. If deg f = m,
then by Corollary 2.2, f is a covering which must be a biholomorphism since .82
is simply connected. Thus m = 1.

We begin the proof of Theorem 2.1 with a sequence of lemmas. If

it will ultimately be shown that Q+ = Q- = ø.

LEMMA 2.4. Let M be a leaf of :F(u), the u-foliation. Then M reaches

both the inner and outer boundaries of Q, i.e. M noD, =F 0 f or j = 1, 0.

PROOF. M must reach the outer boundary since D1 is pseudoconvex
(see [2]). For the inner boundary, let c = inf {u(z): z E M} = min lu(z):
z c- 9}. If c &#x3E; 0, let ze 9 be a point such that u(z’) = c. Let M’ be

the Y(u) leaf through z’. Now M’c 9, and so by the maximum principle
u = c on M’, since u is harmonic on M. This is a contradiction since M’

reaches the outer boundary, , and u comes arbitrarily close to 1 on M’.

LEMMA 2.5. I f Q- = 0, then u = v.

PROOF. If u&#x3E;v, then v = 0 on 8Do, and so aular&#x3E;avlar&#x3E;O there.
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However

where r is any smooth defining function for Do. It follows that u - v =

== 0 = d(u - v) on aDo, and so u = v in a neighborhood of aDo by Propo-
sition 1.1. Since the two foliations :F(1¿) and Y(v) must agree near aDo,
it follows by Lemma 2.4 that u = v on Q.

LEMMA 2.6. If SZ+ = 0y then u = v.

PROOF. If u c v, then v E C(D) and v =1 on 8Di: -. Let us = u/(,-,) for
ê &#x3E; 0 small, and set

We will show that

holds. We recall that 8Q = aDl - aDo and that dcUA (ddeu)n-1 is strictly
positive everywhere on aDo . By (2.1) it follows that v = 0 on 8Do. The

solution of (1.1 ) is unique (see [4]), so u = v on S2.

Let us first establish an inequality

for i &#x3E; 0. This is obtained by repeated integration by parts:
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The inequality arose because vl on Fe, 0 c v on aDo, and dcu,A(ddev)’A
A(ddcu,)n-i-i is a non-negative form on Fe and 8Dn .

Since u solves (1.1 ), we obtain

By repeated application of (2.3) to (2.4) we obtain

Thus, in order to prove (2.2) it remains only to show that the limit of the

right hand term is 0 as 6 - 0.
To prove that
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we proceed by induction on i. The case i = 0 is trivial. First we note that

Thus it suffices to show that

For this, we note that

and thus

Assuming, by induction, that (2.5) holds for i - J , we take lim of both
sides and get 

- 

By monotone convergence, we get

which implies (2.5), completing the proof.
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Next we discuss the set

LEMMA 2.7. On S,

PROOF. Let z, c- 8 be a point where the expression in (2.6) is strictly
positive. We set us = (u - E)/(1- 2e) and

An integration by parts and (2.1) gives

For 2 &#x3E; E &#x3E; 0, , Ye {z E Q: uE(z) = v(z)} is a compact subset of S2. If we

smooth u.., and v with a non-negative smoothing kernel xa , then the smoothed
function 4 and va define a compact set y&#x26; . By Sard’s theorem, ys is smooth
for almost all s. Thus we may replace T by the smooth cycle yf . By as-
sumption, d(u - v)(zo) =A 0, so that {u = v} is a smooth surface in a neigh-
borhood U containing zo . Furthermore, there are points z,,’ c yfl with z,,’ -&#x3E;+ zo .

Finally, since u and v are plurisubharmonic, dc(ufl - vf) A0fl is a nonnegative
form on yE , and

This is a contradiction since the left hand side of (2.7) approaches 0 as
8 --&#x3E; 0, and so (2.6) holds at zo.

LEMMA 2.8. Let M be a leaf of T(u). I f X 0 Q+ 0 0, then M c Q+.

PROOF OF THEOREM 2.1. This lemma will give a proof of the theorem,
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for by Lemma 2.4, M must reach some point z_ E aDo. Thus there is a

neighborhood U of zo with U n aDo C 8 r1 D+ and U n Q c D+. Since

n &#x3E; vi it follows that d(v - u) = adr on U r) aD,,. Since dr /B der /B (dd°u) "-1 &#x3E; 0
on aDo, it follows from Lemma 2.7 that d(u - v) = 0 on U r’1 aDo. Repeat-
ing now the argument of Lemma 2.5, we conclude that u = v on M,
which is a contradiction, proving the Theorem.

PROOF oF LEMMA 2.8. We will suppose that S2- n X =A 0 in order to
derive a contradiction. By moving M slightly if necessary, we may assume
that (ddcV)n-1 vanishes only at an isolated set of points of M. (Recall that
(ddcv),-’ = 0 is contained in a variety.) Thus we may consider a point
zo c- N r) S r) D+ r) S2 such that (ddev(zo))n-l =F 0. There are two cases

to handle :

(a) d(u - v) =A 0 at points of 8 arbitrarily near zo ;

(b) d(u - v) = 0 in a neighborhood of zo in S.

For case (a), we consider zj c- S close to zo such that d(u - v)(zj) =1= 0,
i.e. S is smooth at z,. Let M(z) be the leaf of f(n) containing z. The

condition (2.6) says that the tangent space of M(z) lies inside the tangent
space of S. Since this holds for all z E S sufficiently near Zj that d( u - v) # 0,
and since the foliation Y(,u) was obtained by integrating the (2n - 2) form
(ddeu)n-I, it follows that in a neighborhood Uj of z;, M(z) (’) U; c S. Fur-

thermore, v == u is harmonic on .M(z) r1 Uj, and it follows that M(z) n Uj
is also a leaf of :F(v) since (ddw)n-1 &#x3E; 0. Thus M(zj) is a leaf for both Y(’U)
and Y(v) and u = v on M(z,). It follows that u = v on M(zo), which means
that M(zo) c D+, a contradiction for case (a).

In case (b), we want to show that Si’(u) and :F(v) have the same tangent
spaec at zo, i.e. ddcu(zo) and ddwv(zo) have the same kernel. For a E 8, we
let Tan (8, a) denote the tangent cone of S at a, i.e. the cone in R2n gener-
ated by the limits of secants (zj - a)/Izj - a] I with zi c- S, (see Federer [9],
p. 233.) Let the tangent space TaS be the real linear span of Tan (S, a) -
We claim that on a dense set of points a E lJ+ n {j-, d’MR T,, 8  2n - 2
for z E S in some neighborhood of a point zo E S. In this once may show

(see Federer [9], Lemma 3.3.5) that S is a countably rectifiable (2n - 2)-
dimensional set. This cannot happen in a neighborhood of tJ+ n Q- since
a (2n - 2)-dimensional set cannot disconnect Q.

It suffices to show that ker ddeu(z) = ker ddev(z) for a point z E 8 ar-

bitrarily close to zo, so we may assume that dim Tzo S &#x3E; 2n - 1. If

dimR Tzo S = 2n, then dd°u(zo) = dd°v(zo), so we assume that T, 8 has

dimension 2n - 1. Choose coordinates Z j == x j + iy" , 1 c j c n, such that

the set {ô/ÔXj, ô/ôYj, l,jn-l, alax,,,} spans Tzo S. Since u- v =


