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Finiteness Properties of Topological Algebras, I 

A. V. FERREIRA (*) - G. TOMASSINI (**)

Doubtless the most challenging problem in commutative topological alge-
bra theory is the following: how are related the algebraic properties of such
an algebra A, the nature of its structure space and the behaviour of the
Gel’fand transform of the elements of A ~ An answer to this question for
Banach algebras is given by a theorem due to Gleason which became clas-
sical and states that the subset of the structure space of a complex Banach
algebra A formed by the finitely generated (over A) maximal ideals is open
and can be given a (finite-dimensional) complex analytic space structure
which makes the Gel’fand transforms of the elements of A holomorphic.

Results of this kind for general topological algebras are lacking, even
for Fréchet algebras of holomorphic functions. A theorem similar to the
Gleason’s one just quoted, would provide a powerful tool for the study of
the envelope of holomorphy of general complex analytic spaces, an essentially
open domain of research (cf. [1], [11], [14]).

This paper concerns the above mentioned problem. It contains preli-
minary results which are important for the later work and are of an inde-
pendent interest.

The contents of the paragraphs included in this article can be summa-
rized as follows. § 0 contains only some notations, conventions and known
results used in the paper. In § 1 we prove two structure theorems (Th. 1.3
and Th. 1.5) for topological algebras which satisfy a « maximum modulus
principle », and as a consequence we obtain a finiteness principle of Banach
algebra theory under much weaker hypothesis than those of Douady (cf. [6]
and [8]). In § 2 we establish that barrelled noetherian algebras have com-
pact structure space (Th. 2.1) and we give some simple properties of noethe

(~) Lavoro eseguito nell’ambito del gruppo G.N.S.A.G.A. del C.N.R.
(*) Istituto Matematico « L. Tonelli », University di Pisa, Pisa.

(**) Istituto Matematico « U. Dini », Università di Firenze, Firenze.
Pervenuto alla Redazione il 2 Settembre 1976 ed in forma definitiva il 26 Gen-

naio 1977.



472

rian topological algebras. This allows us to formulate the following con-

jecture : every Fréchet noetherian algebra with a topology defined by algebra
semi-norms is semi-local. However for the time being we could only prove
our conjecture by adding some natural hypothesis on the Fréchet topology.

The importance of the conjecture consists in that it is a crucial test

for the possibility of the formulation for Fréchet algebras of some « Gleason

type » theorem: indeed in view of §2 the structure space of a noe-

therian Frrechet algebra A is compact; hence, if a Gleason type theorem

holds, must consists of a finite number of points.
We are very grateful to E. Bombieri for his interest and kind help in

our research.

0. - Prehnfnaries.

Let A be a unitary C-algebra and p a semi-norm on A ; we say that p
is an algebra semi-norm iff p(l) = I and p(x) p(y) for every x, y
in A. In the sequel, if not otherwise stated, « topological algebras means
a C-algebra with a multiplicative identity 1 and endowed with a locally
convex Hausdorff topology defined by a system of algebra semi-norms that
is filtering for the relation . We shall identify the set Cl of scalar elements
of such an algebra with the complex field and the expression « morphism
of topological algebras &#x3E;&#x3E; will stand for a not necessarily continuous C-algebra
homomorphism.

It is easy to see that our topological algebras are just the Hausdorff
topological unitary complex algebras called usually «locally m-convex » in
the literature. For a detailed account of the basic properties of these alge-
bras we refer the reader to [10] and in this § we merely introduce some nota-
tions and recall a few results systematically used in the text.

Let A be a topological algebra and be a family of algebra semi-
norms which is filtering for the relation , and defines the topology of A.
For any y E Ker py is a closed ideal in A and py induces on an

algebra norm so that the completion Av of (A/Ker py, py/Ker py) is a

Banach algebra. If y, 6 E V are such that then Ker p6 c Ker py and
we have a continuous morphism hya of the Banach algebra Aa into the Banach
algebra Ay. The mappings hya form a projective system of morphisms and
the natural monomorphism h : A --~ lim (AY, 1 hY,5),,,,,cr is an topological iso-

morphism of A onto h(A) so that lim (A, is a completion for A

and we have lim (A,, whenever A is complete.
Now, let X be the set-valued functor defined on the category of com-

mutative unitary complex algebras which associates to each algebra the set
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of its characters, i.e. the set X(A) of all (unitary) homomorphisms of the given
algebra onto C. For every topological algebra A, we denote by Xo(A) the
subset of the dual space A’ of A formed by the elements of X(A) that are
continuous. If we write hay for the transposed linear mapping 
y, ~ E 1’, we get an inductive system (AY, hay) and an isomorphism h’ of

(AY, onto A’. Every haY maps Xo(Ay) injectively into Xa(Aa)
and h’ induces a bijection of lim (X(Ay), haY)y.aEr onto .Xo(A). This fact

gives us the possibility to put on Xo(A) several (in general not equivalent)
topologies which are induced by the natural topologies currently considered
on the space A’. In the next §§ 1, 2, the topology considered onXo (A) is

that induced by the weak topology of A’ and Xo(A) will be a compact space
for this topology.

Let A be a topological algebra. Xo(A) is clearly a weakly closed subset
of A’, and by an easy argument we can see that, if the set A* of the units
of A is open, then Xo(A) is an equicontinuous set and so a weakly compact
subset of A’. For barrelled algebras we have a converse to this statement:

LEMMA 0.1. Let A be a complete barrelled topological algebra. Then the

following conditions are equivalent :

(i) A* is open,

(ii) Xo(A) is a compact subset of A’ for the weak topology,

(iii) the topology of A can be de f ined by a family (Py)yer of algebra semi-
norms such that for each y E .1~, Xo(A) is homeomorphic to X (Ay) when these

spaces are endowed with the weak topologies.

PROOF. The proof that the chain of implications (i) - (ii) - (iii) 2013~ (i)
holds is simple and we just outline it.

We know already that (i) - (ii). Suppose Xo(A) is weakly compact;
since A is barrelled, Xo(A) is equicontinuous. Let (py),c, be a filtering family
of algebra semi-norms which defines the topology of A ; since Xo(A) is equi-
continuous, there exists yo in r and a positive number a such that Xo(A)
is contained in the polar set of Therefore Ker py. c
Ker X for every X in Xo(A), and every X induces a character on A/Ker p,.
which is continuous for py)Ker pYo. Hence, if we denote by To the subset
formed by the y for which we see that every operator hsY with
y, 6GT maps bijectively onto and Xo(A) is

homeomorphic to each X (Ay), y E ho, with respect to their weak topologies.
To see that (iii) - (i) it is enough to remark that, when (iii) holds an

element a in A is invertible iff x(a) 0 0 for every X E Xo(A) and since there
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is also a neighborhood V of 0 such that Xo(A) is contained in the polar
set of V, we must have 1 + § V C A*.

By the general Gel’fand-Mazur theorem, every topological algebra which
is a field, is necessarily isomorphic to C. It follows that every closed max-

imal ideal is an hyperplane and the kernel of a continuous character. Thus
the correspondence x H Ker y is a bijection fJ of Xo(A) onto the set 
formed by the closed maximal ideals of A. E(A) will be called the struc-
ture space of A. Let (Py)yer be a filtering family of algebra semi-norms
which defines the topology of A; consider on each X(Ay) the topology induced
by the weak topology of A’ for each y E 1~, and put on lim the

inductive limit topology. The image by h’ of this topology will be called
the inductive limit topology of Xo(A) and does not depend upon the filtering
family of algebra semi-norms chosen to define the topology of A ; the image
of the inductive limit topology of Xo(A) by fl is called the inductive limit

topology of E(A).
These considerations enable us to define the Gel’fand transform on A and

to interpret A as an algebra of continuous functions on a nice space. For
each element a in A we shall denote by 4 the complex-valued function on

which sends every maximal ideal ~f to #-’(M)(a); d, is said to be the

Gel’fand transform of a and it is continuous for the inductive limit topology
of I(A). From now on L(A) is assumed to carry its inductive limit topo-
logy.

Now, let us denote by the space of the complex-valued functions
on which are continuous for the inductive limit topology of I(A).
Take a filtering family of algebra semi-norms which defines the topo-
logy of A and for each y let xy be the canonical morphism 
The topology on of the uniform convergence on the sets 

depends only on the topology of A and not on the particular system (py)yEr-
Endowed with the topology just described, C(Z(A)) becomes a topological
algebra and it is straightforward to verify that is a continuous

homomorphism of A into The kernel of .!1 is the topological radical
R(A). When A is complete, .R(A) is the Jacobson radical of A and A = Im A
is a full subalgebra of C(Z(A)) i. e. for every a E A, 1i E.1* iff a’ E C (~(A )) *~ .
The joint spectrum SPA(a,, ..., a,) for any family a,,..., an of elements in A
is also equal to ..., and, in particular, for each

sPA(a) = â(E(A).
Let us assume moreover that A* is open in A. Then, the closure of a proper

ideal is a proper ideal, each maximal ideal is closed, every character of A
is continuous, and the proof of 0.1 we have given previously, shows that
the conditions (ii), (iii) hold. It follows that E(A) is just the maximal
spectrum of A, the inductive limit topology is the same as the image by fl
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of the weak topology induced on Xo(A) = X(A) by A’, and the topological
algebra C(Z(A)) is the Banach algebra of the complex-valued continuous
functions on the compact space with the uniform norm.

We round off this § 0 by recalling a symbolic calculus Lemma. This is

a consequence of the general theory of Waelbroeck [17], but in the special
situation that concerns us in this paper, it can be deduced at once from the

Banach algebra version.
In the statement below, A denotes a complete barrelled topological

algebra with weakly compact character space Xo(A), and K will be a com-
pact subset of Cn which is the joint spectrum of a family of elements of A.
We consider the algebra of germs of holomorphic functions on K
endowed with its natural topology of Silva inductive limit and put zi for
the i-th-coordinate function on Cn. We have the following

LEMMA 0.2 Theorem and idempotent Theo-

rem). There is a unique coherent way to associate to each f inite family
a, , ,.. , a, , of elements of A, a continuous unitary C-algebra homomorphism
~ : 0 (K) - A, K = sp,(a,, ..., an), such that = ai, i = 1, ..., n. If e is

an idempotent of A, e is the characteristic function of a closed and open subset
of ~(A). Conversely if Q is a closed and open subset of there is ac unique
idempotent element e in A such that e is the characteristic function of Q.

PROOF. Let (p,),,r be a filtering family of algebra semi-norms which
defines the topology of A and satisfies the conditions (iii) of 0.1.

For any we = an) for every finite family of ele-
ments of A, and by the 0160ilov-Ârens-Calderón theorem for Banach algebras,
there exists a unique coherent way to associate to each such a family a con-
tinuous unitary C-algebra homomorphism ~y : that maps zi onto

ai, i =1, ... , n. If y, 6 are such that we must have lsv = hence,
the family defines a continuous C-algebra unitary homomorphism
~ : c~ (I~) --~ A which maps zi onto ai. The uniqueness part is also clear.

The first assertion of the second part is obvious. The second follows

immediately from the corresponding theorem for the Banach algebras and
from the fact that A I"J lim (Ay, 

1. - Some structure theorems.

Let X be a topological space, C(X) the algebra of complex-valued con-
tinuous functions on X and consider a subalgebra A of C(X).

We say that A satisfies the maximum modulus principle (m.m.p.) at a
point xo E X iff each f E A such that I is constant on a

neighborhood of xo. 
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We say that A satisfies the maximum modulus principle locally at a
point xo E X iff there is a neighborhood V of xo such that A satisfies the
m.m.p. on V, i.e. A satisfies the m.m.p. at each point of V.

It is easily seen that the following property holds: If Y c X is connected
and A satisfies the m.m.p. on Y, any f E A such that If I reaches its

maximum value at a point xo E Y is constant on a neighborhood of Y.
Let ~’ be a topological space, Y a subspace of X and Yo a subset of Y.

For an algebra A of complex-valued continuous functions neither of the
statements (a), (b) below implies the other:

(a) A satisfies the m.m.p. on Yo,

(b) satisfies the m.m.p. on Yo.

However, for any algebra A of complex-valued continuous functions
which contains the constant functions and separates the points of a com-

pact (Hausdorff) space X we can prove the following:

LEMMA 1.1. If A satis f ies the m.m.p. on a subset S of its boundary
~(A), then also satisfies the m.m.p. on S.

PROOF. Let f E A be such that = sup Also we
x jS(A) &#x3E;

obtain = sup f (x) j, so that f is constant on some neighborhood
V n S(A) of xo in S(A).

Before stating the main theorem of this section it is useful to prove the
following

LEMMA 1.2. Zet L1 be the closed unit disc in C and let z,, ..., Zk E ad .
There rational function h such that :

(i) h is holomorphic on a neighborhood of L1,

PROOF. First of all let us observe that any two-factor Blaschke product

with C has the properties
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and, moreover = 1 where

The value of Il given by the equation (1- A)(1 - It) == 1 is it = - 2(l - A)-’
and jyj is certainly less than 1 if A belongs to the domain S~ _ 

A  1, 11 - I &#x3E; 1}. For real we get z°,~ _ -1 and it can be easily
verified that the image of S2 (with p = - ~,(1- ~,)~l~ con-

tains a neighborhood U° of the point - 1. Now let us suppose that

z’ E 3/t. If z’ can be expressed in the form z’= exp a = plq E Q,
we have z’a =1 and the function hz’(z) = zg satisfies the conditions (i),
(ii), (iii) with k =1, z’ = z1.

Let us consider the case when z’ = a c- RBQ. From the ap-
proximation theorem of Kronecker it follows that for some integer q &#x3E; 0,

Now take 2, /z with such that ztp==z’q
and put w = zq. It is clear that hx,(z) = ~~,~{zq) is a rational function, reg-
ular on d, which satisfies the relations hz, ( l ) = 1,

= 1.

Now we complete the proof by induction on k. The case k = 1 is obvious
in view of the above remarks. Suppose that k &#x3E; 1 and let us assume that

the lemma is true for any system of k - 1 points of ôL1. Let zx, ..., 7

Z1c be k points on oL1. By the induction hypothesis there exists a rational
function ’h, regular on d, such that: ’h(zl) = ...
... _ ’h(zk_1) _ ’h(1 ) = 1.

and take a rational function h,,, as above. The rational
function satisfies the conditions (i), (ii), (iii).

We can state the following « first structure theorem »:

THEOREM 1.3. Let A be a barrelled topological algebra with compact con-
nected structure space ~{A). Suppose that the restriction algebra satisfies
the maximum modulus principle locally at a point M° E SeA) and A is com-
plete (or more generally A is f ull in C (~(A )) ~ . Then reduces to a single
point and A is local.

PROOF. The proof reduces essentially to showing that == {Mo}.
Indeed let us suppose this has been proved and let a E M°. Since d van-

ishes on 9(A) we must have â == 0; it follows that Mo c R(A) c M. and
Z(A) = as well.

If SeA) =1= we can choose an open neighborhood Y of Mo in 
Y # ~S(A), such that if a E A, reaches its maximum value at a point
of Y, the closure of Y in is constant on some neighborhood of that
point in S(A). We will prove that this will lead to a contradiction.

31 - Annali della Scuola Norm. Sup. di Pisa
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For the sake of clarity we shall split our argument into two steps (A) &#x3E;

and (B).

(A) For each ae A and X c S (A ) we put:

The cardinal number of will be denoted by kX(a). We have the
obvious relation = Ta r1 X.
We shall check first that is actually finite for every a E A. Assume

the contrary, that is an infinite set for some a E A. Then we can pick
up a sequence from Y such that d,(M,,) is a 1 - 1 cor-

respondence between and 

Let M’ be a cluster point of (Mn) in the compact spaceY r1 T a =
- m Y. From the maximum modulus principle it follows that â is

constant on some neighborhood U of M’ in ~(A) because lâ(M’)1 = ya .
Since the sequence (£(Mn)) is injective this contradicts the fact that Man
must be in II for infinitely-many integers n. Thus kF(a) is finite for any
aEA.

(B) Let us consider an element a e A such that lâl takes its maxi-
mum value at some point in Y i.e. T: 0 Y =1= 0. Our aim, at this stage of
the proof is to show that also takes its maximum value at some point
in ~(A )B Y.

This is obvious if li is constant. Thus we can assume that â =1= 0 and
also ya = 1. Suppose there is an a E A such that itil does not reach its max-
imum value at any point of ~(A )B ~. We first show that for such an element
a, Y = r1 Y is closed and open in ~’(A). W Y.a n Y = Ta n
n SeA) is clearly closed in On other hand, if Y, £ is
constant on some neighborhood U of ..M in SeA). Hence Y

and this shows that WY,a n Y is open in ~(A ) (we must have c Y~ be-

cause Idl =1= 1 off Y).
By 1.2 we can take a rational function h, holomorphic on d which sat-

isfies the conditions: and h(TY,a) = 1. We can eval-
uate h at a ; let us put b = h(a) ; we have b hod and this relation implies
Wy,b ~’1 Y = n Y, = ~l ~ and = 1, so that the function b

peaks on within i.e. and 

for any .~ in r1 Y) = Vy.,,,. Thus from the fact that f = b - 1
vanishes on Wy, r1 Y, a closed and open subset of 8(A), we can apply
Lemma 2.1 of I. Glicksberg (cf. [5]) which states that f must also vanish
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on the set Z = {if E E(A): lb(M)l &#x3E; a) where a C 1 is the constant sup Ibl-vy’.
Z is closed and open in because we also have Z = l E 
b ( ~VI ) =1 ~ . Since is connected and Z ~ ~, Z must be all of 

which implies that b = 1. This is impossible because by our hypothesis
lâl does not take its maximum value at any point of 

Thus 14 1 for every takes its maximum value at some point of the
closed subset ~(A)BY ~ 0. This is in contradiction to the definition of the
Silov boundary and the proof is complete.

As a consequence, we obtain a second «structure theorem » :

THEOREM 1.4. Let A be a Banach algebra with connected structure space
and let us suppose that there exist some .lVlo E ~(A) such that Mo is finitely
generated over A. Then A is a finite- dimensional vector space over C.

PROOF. According to Gleason’s theorem (cf. [16]), it follows from our
hypothesis that there is an open neighborhood U of Mo in which can be

given a structure of complex space in such a way that becomes an algebra
of holomorphic functions. Hence A verifies the m.m.p. locally at Mo and,
by Lemma 1.2, also verifies the m.m.p. locally at Mo. Thus, The-
orem 1.3 applies and we have = so that A is a local C-algebra.
We prove that A is actually a finite-dimensional C-vector space.

Let m1, ..., mr be a system of generators for Mo over A. If we consider

the algebra ..., zr~ of convergent power series endowed with the usual
Silva topology we will have a natural continuous homomorphism a : ...

..., zr~ - A which sends each z2 to mi, i = 1, ..., r, since the joint spectrum
of mI, ..., mr reduces to (0,..., 0). Let us prove that a is onto.

For this, let us consider the A-linear given by
r

(a,,... 7 ar) The Banach-Schauder theorem tells us that 0 (which
=1

is onto) is an open mapping and so a positive constant 6 can be chosen in
such a way that for any mEMo there is some (ai , ..., c~~.)
which satisfies the relation: (a) Now take a E A. We

must find a convergent power series which is mapped by a onto a. We

establish first, by induction, that the following holds: for any there

is a polynomial in C[ml, ..., mr] of degree ~ h

and a homogeneous polynomial in A[mi, ...
31 +...+3r=h+l

..., mr] of degree h + 1 which satisfy the relations:

(2) ]] for each (i,, ..., ir ) and (j,, ...
..., ir) such that i1 + ... + ir  h, ~1-~- ... -~- ~ r = h + IL respectively.
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Let be such that The case h = 0 is obvious
in view of the previous inequality (a) and the inequality Sup-
pose that our assertion has been proved for h and consider h + 1. We
have a = Ph + 

By substituting we have

We put also

For any (kl, ..., kr) with k1 + ... + kr = h + 2, each ak1...kr is the sum

of at most r coefficients bS1...ir.k with ~~ -~- ... -~- ?r = h -~- 1, 1 ~ 1~ ~ r, there-

fore

by the induction hypothesis. Proceeding analogously for (2) is easily
proved. As a consequence we obtain that 99 ... zrr is a con-

z,+...+,&#x3E;o

vergent power series and that u(q;) = a, since the generators can be so
.chosen in order that 6  1/2r.

Having proved the surjectivity of a we can now complete at once our
proof. Recall that with its Silva topology is a direct limit of
a sequence of separable Banach spaces. Hence ... , zr~ is a Suslin locally
convex space. Since A is ultra-bornological we must have A - Cjzi, ..., zr) /
/Ker a as topological vector spaces, by the Schwartz-Martineau or Grothen-
dieck open mapping theorem (cf. [7], [9]). As a consequence A is a metri-

zable Silva space and Corollary 2 (p. 401) of [12] implies that A is a

finite dimensional C-vector space. This completes the proof.


