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Surfaces of Minimum Capacity for a Knot.

LUIS A. CAFFARELLI (*)

In [2] G. C. Evans constructed the surface of minimum capacity spanned
by a prescribed Jordan curve T of capacity 0, with the pair (R3, r)
homeomorphic to (R3, C), where C is a circle.

Evans considers a double valued harmonic function f in such

that if we loop once around 1~ we pass from one value of f to the other,
and at infinity takes alternatively the values -1 and 1. The sum of the

two values of f at a given point is identically 0 and the set of points where
the two values of f are 0 defines the surface of minimum capacity.

In this paper, we construct a multiple valued harmonic function in R3
minus a general closed curve of zero capacity given its asymptotic behavior
at infinity in each leaf, and in particular the surface of minimum capacity.
But, in general, Evans’ surface of minimum capacity does not yield an
absolute minimum.

Hence, the family of surfaces competing for the minimum is characterized
by a local condition.

I would like to thank Professor H. Lewy for his many suggestions.

1. - In this paragraph, we construct a multiple valued function asso-
ciated with a given family of single-valued harmonic functions.

In order to do that, we use the method of balayage, whose properties
we collect in the following lemma.

LEMMA 1. Let be S2 c Rn an open domacin, qo a continuous superharmonic
function, B c closed ball. The function qJl defined by

(*) University of Minnesota.
Pervenuto alla Redazione il 24 Gennaio 1975.
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(where P(X, Y) is the corresponding Poisson kernel) verifies :

a) 92, is continuous and superharmonic.

b) 

If now, we repeat the process with a sequence of balls Bn, and if a neighborhood, U,
,of a point Y, verifies U c Bnk for some subsequence nk, the sequence qJn con-
verges in U to a harmonic f unction or diverges to - oo . W e also need the

following lemma.

LEMMA 2. Given .gl, K2, two compact sets in Rn, there exists

a compact set K such that

a) Kl c KO, K c Ko 2 (KO means the interior of K).

b) K has smooth boundary (in fact analytic) and if Ug denotes the con-
ductor potential of K, (alav) Ug never vanishes (where (alav) U denotes the

outer normal derivative of U in ag) .

PROOF. Let .K be a finite union of closed subes, such that Kl c (.K)°,
K C Ko. Let Ug be the conductor potential of K and Sa the equipotential
surface 8~ = {X, Ug(X) a}. Then, Yoe &#x3E; 1, a constant), Sa c K2’ ,
and, 8K being regular, K c 8f = ~X ; Ug(X ) &#x3E; Also, except for a finite
number of a’s (See Kellog [7], pg. 276), we can choose such that (alav) Uk
does not vanish on Sa.o. Then, our compact set K is K = {X: 
and its conductor potential Ug= (1 /oc°) U$ in Q.E.D.

Let us consider now a compact set h c Rn, such that is con-

nected and the capacity of F is zero.
Instead of the k-covering space used by Evans in [3], we must consider

the covering space HG,, associated with a subgroup G’ of the fundamental
group G of Rn _ .1~ (See Hu[6], pg. 93). In fact, let us call II the natural
projection II: then II is locally a homeomorphism and de-
fines an Euclidean-structure on H G’7 hence the concept of harmonicity
(Super-harmonicity and sub-harmonicity) is well defined in any open sub-

set of 

More than that, suppose that B is a closed ball in Rn _ r, then its
inverse image by 11 is a family of disjoint closed balls and if some of them
are included in the domain of definition of a superharmonic function qJ,
lemma 1 still applies.

We want to prove the following theorem.

THEOREM 1. Let G’ and T be as above, that is F compact and of capacity 0,
G’ a subgroup of the fundamental group of Rn ~ F. Suppose that Rn", r is
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connected and .Kl, .K2 are two compact sets of Rn such that

a) is connected and simply connected.

b) Ki c .g2 .

Then we can prove :

i) If is a family of harmonic functions in Rn, uniformly
bounded in K2, there exists a unique harmonic function qJ in such that

a) q is bounded in lI-1(.Kl) and

means i.

ii) Conversely, given g~, harmonic in and bounded in II-l(K2),
there exist functions hg, such that 99 is the function constructed in part i).

iii) If the are constants, then

and

REMARK. If has only k elements, the preceeding theorem establishes
a correspondence between the sets of k single valued harmonic functions
and the harmonic functions on bounded in a neighborhood of 1-’.

PROOF. Let .g be as in lemma 2, then, on K, all the derivatives of hg of
order m are bounded by C(m) M dist (K, eK2)-m, where M is the constant
that bounds in .g2 . Hence, if hg is the solution of the Dirichlet problem:

= 0 in - 0 at oo and = the outer normal deriv-

ative of on aK is bounded by a constant

(See Courant-Hilbert [1], pg. 335), y therefore the function

34 - Annali della Scuola Norm. Sup. di Pida
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is superharmonic (sub-harmonic) as soon as is taken big enough,
(small enough) to make strictly negative (positive) on 8K. This
choice depends only on M, K, X2.

The collection of functions

being coincident in .g, defines a continuous superharmonic function q°(X)
in H 0’ .

In the same way defines a continuous subharmonic function 

We now consider a covering of r by a denumerable family of open
balls, Bn, such that Bn r1 -P = 0 and we renumber them, repeating each one
infinitely many times, Then, by lemma 1, we form a monotone sequence
of superharmonic functions by the method of balayage applied to

each one of the balls composing We have ~ and 92
is the desired harmonic function. To show uniqueness, we note that if qi
and qJ2 are two such solutions, is bounded in lI-1(.g1) (by hypo-
thesis), and as x - oo in each leaf; therefore 99, - qJ2 is uni-

formly bounded in all of Ho’. If B is a closed ball such that B r1 r 

qJ2) is, hence, bounded in II-1 (B). But, then,

is a bounded, continuous, sub-harmonic function in tending to 0
at infinity. Since 1~ has 0 capacity is negative. To prove ii) we invert
the process: Since is bounded in all the derivatives of p are
uniformly bounded in r1 Hg , for a fixed g, and we can construct,
for a leaf super and sub-harmonic functions h’ 9 and h,,,, with

and

The function hg is obtained by the method of balayage.
Finally, y as to iii), we just notice that restricting ourselves to the case

~,g ~ 0, dg, if we choose .K to be a ball of radius R, and begin the
process with the super-harmonic functions
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then and this three prop-

erties are preserved when the method of balayage is applied.

2. - We study now, the case in which .h is a tame knot, that is, there is
a homeomorphism: mapping 1’ into a poligonal curve It

is known that G/[G, G] - Z and hence, there is a unique subgroup G’, such
that 

Ho’ consists of two leaves, and hence, there is a unique bounded double
valued harmonic function 99 (a bounded harmonic function in .HG,) such

that in as x ~ oo, ~ -~ + 1 in as x -~ oo . To apply the
technique of Evans, the comparison surfaces must be cutting surfaces for H~a.
and it is also necessary to apply Green’s formula.

So, we will restrict ourselves to the following family of surfaces:

DEFINITION 1. ~’ belongs to the family Y(r) if

is a compact set of R3, Tc 

b) is connected,

c) if U is an open neighborhood of h, 8 - U can be decomposed into
VI U V, where

cl) V2 is a closed set of 2 dimensional Hausdorff measure 0.

c2) V, is locally homeomorphic to a plane. (Given there

exists B(x, O(x)) and a homeomorphism 0: (B(x, o(r)) 
such that 0(V) = where 1Z is a plane.

d) S is locally oriented in the sense that there

exists e(x)) such that
n

dl) B(x, o(r)) ~ S = U Dk, (where Dk are the connected components)
~2  ~ , ~2 ~ 2 

1

d2) x E aDk, dk and

d3) A sign (+1 or -1 ) can be defined on the Dk such that if

aDk n aDk n VL 0, sign (Dk ) ~ sign (Dk’).

The subfamily of surfaces such that VI is locally regular in the sense of
Kellogg [7] pg. 105, will be denoted ,~’(1~’).

REMARK. a) If an orientation as in (d3) exists it is uniquely determined
by the sign of one domain (let us say Dl).

To see this, we consider dl = U Dkl and d2 = B(x, Q(X)) - (s u 41),
where are the domains whose sign becomes defined in accordance with d3
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by that of Dx (but not necessarily equal). Then, if Ll2 * ø we consider a

family of parallel segments joining points of a small disk in d 1 with a small
disk in d2. Each segment intersects ad2n 2d1 and the set of these inter-
sections has 2-dimensional Hausdorff measure different from 0, because its

projection on a suitable plane is a disk. So, there is a point of Vi n 841 r1 ad2
that contradicts our assumptions.

In particular, this shows that given two balls, the assignments of +1
to can be defined in such a way as to be coincident in their intersection.

EXAMPLES. a) Given 7~, we can construct a surface ~’ without

self intersections (that is ~~7’==Vi). See Fox ([5], pg. 158). We project
the polygonal knot on a plane II in such a way that the projection has only
a finite number of double points. This divides the plane into two regions 41
and d 2 such that two connected components of d 1 (or have only double
points as common boundary. If d1 is the bounded region, we span it with
the surface, twisting it along the knot at the double points of the projection.
For a general tame knot 7~, we use the homeomorphism between 1~ and a
polygon.

b) Given 7~, and supposing that the projection of 1~ on a sphere of
center at P has at most isolated multiple points (but not double segments)
the union of segments AP with A E 7~, is a surface of the family Y.

When we consider the ball B(x, Q(x)), as in Def. 1, c) or d) the union of
the subdomains Dk of positive sign will be denoted by D+ and the union of
the negative ones by D-. Of course, this definition is local. In what follows

the roles of D+, D- are interchangeable.

THEOREM 2. E cutting surface of r. (That is, any polygon
that loops r once, intersects S).

PROOF. Let 6(z) be a polygonial curve of R3 and the i-intervals
of [o, 1] such that is linear on Ik, Tk = (Fn U Tk = 0).

Then, if we consider a small tubular neighborhood U~ of T~, by the
preceeding remarks, we can give a sign to the domains of Uk ~ S in such
a way that

a) It is coherent with the orientation of S around any point of Tk n /S’.

b) They are coincident in Uk n 

Also, once we fix the orientation in a neighborhood of a(o), it becomes

uniquely determined.
So we may define the parity of the number of intersections of the closed
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polygonal curve as = 0 if the orientation of U1 and Um are coin-
cident in and ps (a) = 1 if not.

Now, if we consider a continuous deformation the set

of a’s such that = 0 (resp. ps(cr«) = 1) is open. Hence ps is a group

homomorphism.

Therefore, to show that ~’ is a cutting surface is equivalent to show that ps (a)
is not identically 0.

But, for any S we can find a a such that ps(a) = 1, in the

following way: R3_ S is open and connected and in a neighborhood of a

point of V,, the surface is two sided; so, joining points of both sides of ~’,
by a segment, and by a polygon in R"- 8, we obtain our a.

REMARK. The set VI * ø, because 8- T# ø, and if x E Y2 , there are

at least two different domains in J5(.r, ~)~~ (See d1 of definition 1). The-

refore, if we consider a family of parallel segments joining points of the
two domains we obtain a portion of 8 - T of non-zero 2-dimensional Haus-
dorff measure.

THEOREM 3. Let be ç the double valued harmonic function, (the harmonic
function in HG. with G/G’ = Z2) verifying

And let be S* = qJ(x) = 0~. Then 1-’ V and the capacity of S*

is a minimum among the surfaces of :F’(r). The conductor potential of S* is

PROOF. Evidently S* is a set in HG, but as M T(x) - 0, the two

values of 99 must vanish simultaneously. Therefore S* is a well defined set

in R3-T, the only possible accumulation points of S* but not on S* being
points of h.

On the other hand, looping once around 1~’, we pass continuously from a
negative value of 99 to a positive one. Hence the

image by the homeomorphism d between F and a polygon of any small

circle around h’, intersects S*. Therefore rc (S*) and is compact.
To prove b) of Def. 1, we notice that if there exists a bounded connected
component D of R3 - S* U u(xo) = 1- max qJ(x) would be harmonic on D
with boundary value 1 (recall that the capacity of (F) is zero), but then
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would be constant. To prove c) we put

So that Yl = (8* - Y1 is then locally analytic and V2 is locally
contained in a finite number of arcs and points (for instance, we can de-
compose V2 = U where gn is the set where the first nonvanishing

~c&#x3E;2

derivative of one of the branches of 99 is of order n (since ~j p(r) = 0,
the set is the same for both branches). 

Now, T being harmonic, if x E gn, .in a neighborhood of x, H n is a point
or a differentiable arc. On the other hand, V2 being compactly contained
in the domain of harmonicity of 99, H n = 0 for n large enough.

Finally the orientation of the point d) is given by the sign ~, where 9-9 is
one of the branches of ~9 in a neighborhood of the point.

To prove that ~’* is the surface of minimum capacity, we will sketch
the method of Evans (a detailed proof can be found in Evans [4]).

Notice first that U is a harmonic function in R3- (~’* and takes

the values 1 on S* and 0 at oo, hence u is the conductor potential of S* u F.
Let now being a cutting surface, it divides 99 in two branches

99., and qJ2, and if D(u, v) denotes the Dirichlet integral

we have, formally at least,

and, if oi is the conductor potential of S

(the integral being taken over both sides of the

surface, the normal being inward directed)

(~ is a sphere of large radius, the normal is directed inward). Hence,
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To perform this computation, Evans removes a small torus around JT and
then lets it shrink to T, utilizing the behavior of u or of Q upon approach to T.

In order to close this section we want to make some comments on the

topological character of the surface ~’*.

We notice first that the surface is not necessarily an absolute minimum.
Consider for instance the knot (k an integer)

and the surface

If k is odd, any vertical line intersecting the disk D = {0153î -~- (1- E) 2,
x3 = 0}, loops us an odd number of times and therefore must intersect our
surface ~S*. But then, C(8*) &#x3E; C(D) (Capacity decreases under projection).
On the other hand, when s - 0, 6(8s) -~ 0. If k is even, the surface ~Se

belongs to our family Y(8) and the above reasoning shows that for k = 2
and s small enough, the surface of minimal capacity cannot be homeomorphic
to a disc. In general, we do not know if the surface of minimum capacity
is of the type of See More than that, if we project the knot on the plane
x3 = 0, we can construct the locally two sided surface of example b, which
for k &#x3E; 2 is of different type than 8s, and whose capacity tends to 0 with s.
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