
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

WILLIAM D. L. APPLING
A Fubini-type theorem for finitely additive measure spaces
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 1,
no 1-2 (1974), p. 155-166
<http://www.numdam.org/item?id=ASNSP_1974_4_1_1-2_155_0>

© Scuola Normale Superiore, Pisa, 1974, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1974_4_1_1-2_155_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


A Fubini-Type Theorem for Finitely Additive Measure Spaces.

WILLIAM D. L. APPLING (*)

1. - Introduction.

If F is a field of subsets of a set U, then py denotes the set of all

functions from F into exp (R), denotes the set of all functions from F

into R that are bounded and finitely additive, and ptA denotes the set of all
nonnegative-valued elements of Throughout this paper all integrals
will be limits, for refinements of (finite) subdivisions, of the appropriate sums
(see section 2). Furthermore, Land G, with appropriate symbols affixed,
when necessary, to denote the particular field of sets under consideration,
will denote, respectively, the «sum supremum » and « sum infimum » func-
tional (see section 2).

Suppose each of Fl and F2 is a field of subsets of the sets Uh and U2,
respectively, pi and!-l2 are in PlÅ and pt.A’ respectively, and {Ul X F3, 
is the associated product space, i.e., fg is the smallest field of subsets of
Ul X ZI2 including X’ in Fl, in F2, and p,, is the extension to F3
of the function v defined on the immediately previously mentioned set by

Suppose a is a function from F3 into exp (R). Suppose P is a function

with domain

such that if I is in Fi , J is in F2 and (x, y) is in I X J, then I, y, J) ç
c oc(l x J).

In this paper we prove two theorems, the second of which is a con-

sequence and a generalization of the first and is an analogue, for finitely
additive measure spaces, of Fubini’s Theorem.

(*) North Texas State University.
Pervenuto alla Redazione il 24 Marzo 1973.
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We first treat (section 3) the « bounded » case; a very simple consequence
of very simple inequalities involving L-sums and G-sums with respect to
Fi , F2 and F~ :

THEOREM 3.1. Suppose a has bounded range union, and the integral
(section 2)

exists. Then if Q is either L or G, then each of the integrals

and

exists and is

Note, for example, that one consequence of the above theorem is the
equation:

which from basic considerations about upper and lower integrals (section 2)
implies that if for some m,

then the set of all x for which

does not exist (if any) has ,ul outer measure 0.

We then extend Theorem 3.1 to the « summable ~&#x3E; (section 2) case

(section 4):
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THEOREM 4.1. Suppose 0153 is 3-summable and spa is the 

bility operator (section 2). Suppose that if then denotes

max {min q~, p} and denotes max {min ffl, q~, p}. Then, if Q is L

or G, then

and

We close this introduction with some remarks, partly heuristic, to clarify
certain respects in which Theorem 4.2 is an analogue of Fubini’s Theorem.
First let us observe (section 2) that the notion of set function summability,
which we shall discuss in section 2, is an analogue of Lebesgue integrability;
the number

for a ,u-summable set function a corresponding to the Lebesgue integral

for a Lebesgue integrable point function f. With this in mind, then, we
see that the conclusion of a summability analogue of Fubini’s Theorem
would ideally have the form, given the hypothesis of Theorem 4.2,

« ...))(U2))(UI) = U2) = J))(UI))(U2))). .

Naturally, in a fashion analogous to Fubini’s Theorem, I, ... ) ) ( U2)
and Spl(P(..., y, J))( Ui) are not necessarily defined for all x, I and y, J,
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respectively, in the sense that it is not necessarily true that 9,a(..., y, J),",
r 

and ...)/2 exist for all p, q with and y, J and x, I, and it
U, 

is not necessarily true that y, as q)  00 and

r U1

I, .")#2) as q, - oo exist for all y, J and x, I. We
U.

seek a conclusion « of the form »

With this in mind, let us examine the left side of the immediately preceding
« equation »; similar remarks will clearly hold for the right side. If by

I, ...)}t2) » we mean an element § of PFI with respect to which-D.Q

U,

and the function « sequence »

the hypothesis of a certain dominated convergence theorem [3] (see section 2)
holds, so that T) is pi summable and

then we are done, inasmuch as it follows (section 4) that the function

satisfies such conditions and (see section 2) has the further property that

2. - Preliminary theorems and definitions.

We refer the reader to [1] for the notions of subdivision, refinement,
integral, 1-boundedness, sum supremum functional and sum infimum func-
tional. The statement « 0152 ~~ » shall mean (S is a refinement of ~. The
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sum supremum functional and sum infimum functional will be denoted

respectively, by Land G, and when there is no possibility of confusion with
respect to which field of subsets of a given set each is defined, identifying
subscripts will be omitted. We also refer the reader to [1] for the basic in-
equalities for « L-sums» and and the resulting existence asser-
tions for the corresponding «upper integrals » and «lower integrals ». The

reader is referred to [1] for a statement of Kolmogoroff’s differential equi-
valence theorem [4] and its implications about the existence and equivalence
of the integrals that we shall use. We further refer the reader to [1] for cer-
tain refinement-sum inequalities involving various set functions, as well as
certain integral existence assertions that follow from these inequalities. In

this paper, when the existence of an integral or its equivalence to an integral
is an easy consequence of the above mentioned material, the integral need
only be written or the equivalence assertion made, and the proof left to the
reader.

Let us note that in most of the references cited, the definitions and
theorems referred to are usually for « single-valued » set functions. Never-

theless, these definitions and theorems carry over for the « many-valued »
set functions that we consider in this paper with only minor modifications,
and we therefore take the liberty of stating all cited definitions and theorems
in « many-valued » form.

We shall also take certain notational liberties, when there is no danger
of misunderstanding, particularly with functions defined in terms of in-

tegrals, e.g.,

can, in one expression, denote the value for I of the function

and in another expression, such as

denote the above defined function itself. Furthermore, throughout this

paper we shall, in various expressions involving integrals, again when
misunderstanding can be avoided, not write the « variable of integration », e.g.,
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We now make some remarks about the notion of set function summa-

bility [1]. is a finitely additive measure space. If a is

in PF, then the statement that a is p-summable is equivalent to a’s being
of the form ~82 , such that if y is ~1 y then y is a function from F
into a collection of nonnegative number sets such that for some number z
and all 

exists and does not exceed z. We state a previous characterization theorem
of the author [2].

THEOREM 2.A.l. If a is in PF, then a is ,u-summable iff there is an

element 0 of pF4.B, absolutely continuous with respect to ,u, such that if

then

exists, and

It is easy to see that for each a in P F which is ,u-summable, the lS asso-
ciated with a by Theorem 2.A.1 is unique, and we shall denote this 0

by s, (,x).
We state a condensation of a few of the results of [1].

THEOREM 2.A.2. If each of e and P is in ,pF and is ,u-summable, then
so is e -~- P, c~ for each c in R, min{e, fl) and max{o, Furthermore,

-or each c in R, and for each V in F,

and
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We now discuss the dominated convergence theorem mentioned in the

introduction. In a previous paper [3] the author proved the following:

THEOREM 2.A.3. Suppose § is in PF, is a sequence of elements

of PF, x is in .tJtA and absolutely continuous with respect to It such that if n
is a positive integer, then fl,, is ,u-summable and is nonnegative-
valued. Suppose if 0  min fe, d), then there is a positive integer N such
that if n is a positive integer ~ N, then there is ~~~(~7) such that if

for each I in 0152, is in §(1) and is in and

then

Then § is ,u-summable and

It is easy to see that Theorem 2.A.3 can be put in the following extended
form, and it is this form to which we shall refer in our closing remarks fol-
lowing the proof of Theorem 4.1.

THEOREM 2.A.4. Suppose § is in .t3F, S is a set with partial ordering
« * », with respect to which S is directed, for each x in S, ~8x is in is

an element of .t3t.A absolutely continuous with respect to p such that if x is
in S, then #,, is ,u-summable and is nonnegative-valued. Sup-
pose if 0  min fe, d), then there is an X in S such that if y is in S and
X c * y, then there is ~~(~7} such that if 0152 «:I)y, for each I in 0152,
h(I ) is and is in and

then

Then § is ,u-summable and

the limit, of course, with respect to *.

11 - Annali della Scuola Norm. Sup. di Pisa
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We state a theorem, the proof of which is quite routine and which will
be left to the reader, that we will cite at the end of the paper.

THEOREM 2.1. Suppose S is a set with partial ordering « * » with respect
to which S is directed. Suppose that for each x in S, 113~ is an element of .B)F
with range union a subset of the nonnegative numbers, such that 
exists. Suppose u

limit with respect to *. Then, if then there is X in S

such that if y is in 8 and .X * y, then there is (U) such that if
0153 for each I in E, by(I) is in and

then

Finally, we end this section with a theorem [3] that substantiates the
final assertion of the introduction.

THEOREM 2.A.5. If p is in p’ , 0 is in PF.4B and absolutely continuous
with respect to p, then OIIA is p-summable and = ~’.

3. - The bounded case.

In this section we prove Theorem 3.1, as stated in the introduction.

PROOF oF THEOREM 3.1. Suppose 0  c. There is a subdivision IZ of

UI X U2 such that if 0152 ~~, then

There is a subdivision :1)1 of ITl and 2 of ZI2 such that
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First, suppose I is in is in I and J is in F2 . We see that

sup 

sup

so that

In a similar fashion,

Now, suppose 0153I and for each I in 0153I, x is in I.

Since

it follows that
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so that

Therefore, if Q is L or G, then

exIsts and is

In a similar fashion, it follows that if Q is L or G, then

exists and is

We close this section by stating the following corollary which we shall
use in section 4.

COROLLARY 3.1. The proof, and hence the statement of Theorem 3.1
remain valid of Ui and IT2 are replaced throughout, respectively, y with Vi
in Fl and TT2 in F2.

4. - The smmnable case.

In this section we prove Theorem 4.1, as stated in the introduction.

PROOF oF THEOREM 4.1. Let s denote The function
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is clearly bounded and finitely additive; also, if TT is in Fl and p  0  q, then

Furthermore, if :Ð « ~ U1~, then

Therefore

Furthermore, by Theorem 2.A.I,

Finally

0
A similar argument proves the remainder of the theorem.
We close by showing that the function and function « se-

quence ~
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satisfy the hypothesis of Theorem 2.A.3. As was shown above, if TT is in Fi
and then

Furthermore, the function is clearly absolutely continuous
with respect to Finally, the limiting assertion

together with the fact that the relation * on the set

given by

is a partial ordering with respect to which the above set is directed, show
that the hypothesis and therefore the conclusion of Theorem 2.A.4 are satisfied
with respect to the function  sequence »

Thus the remainder of the hypothesis of Theorem 2.A.3 is satisfied for the
function and function « sequence » given at the beginning of the paragraph
and for the partial ordering given above, and, as was made clear in the
introduction, we are done. Similar remarks hold for the « right side » of the
heuristic « equation» of the introduction.

REFERENCES

[1] W. D. L. APPLING, Summability of Real-Valued Set Functions, Riv. Mat. Parma,
(2), 8 (1967), pp. 77-100.

[2] W. D. L. APPLING, Continuity and Set Function Summability, Ann. Mat. Pura
Appl., (IV), 87 (1970), pp. 357-374.

[3] W. D. L. APPLING, A Dominated Convergence Theorem for Real-Valued Summable
Set Functions, Portugal. Math., (2), 29 (1970), pp. 101-111.

[4] A. KOLMOGOROFF, Untersuchungen uber den Integralbegriff, Math. Ann., 103
(1930), pp. 654-696.


