@article{ASNSP_1973_3_27_1_53_0, author = {Fu\v cik, S. and Ne\v cas, Jind\v rich and Sou\v cek, J. and Sou\v cek, V.}, title = {Upper bound for the number of eigenvalues for nonlinear operators}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {53--71}, publisher = {Scuola normale superiore}, volume = {Ser. 3, 27}, number = {1}, year = {1973}, zbl = {0263.58007}, mrnumber = {372918}, language = {en}, url = {www.numdam.org/item/ASNSP_1973_3_27_1_53_0/} }
Fučik, S.; Nečas, J.; Souček, J.; Souček, V. Upper bound for the number of eigenvalues for nonlinear operators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 3, Tome 27 (1973) no. 1, pp. 53-71. http://www.numdam.org/item/ASNSP_1973_3_27_1_53_0/
[1] Analytic operation8 in real Banaoh apaces, Studia Math. XIV, 1954, 57-78. | Zbl 0052.34601
, :[2] An eigenvalue problem for nonlinear elliptic partial differential equations, Trans. Amer. Math. Soc., 120, 1965, 145-184. | MR 181821 | Zbl 0142.08402
:[3] Infinite dimensional ananifolds and nonlinear elliptic eigenvalue problems, Annals of Math. 82, 1965, 459-477. | MR 203249 | Zbl 0136.12002
:[4] Bxistence theorearas for minimax points in Banach apaces (in Russian) Trudy Mosk. Mat. Obšč. 2, 1953, 235-274. | MR 55574
:[5] Fredholnt alternative for nonlinear operators in Banach spaces and its applications to the differeaatial and integral equations, Cas. pro pest. mat. 1971, No. 4.
[6] Note on the Fredholm alternative for nonlinear operators, Comment. Math. Univ. Carolinae 12, 1971, 213-226. | MR 288641 | Zbl 0215.21201
[7] Ljusternik-,Sch,nirelmann theorem and nonlinear eigenvalue probletit8, Math. Nachr. 53, 1972, 277-289 | MR 333863 | Zbl 0215.21202
- :[8] Functional analysis and semigroups, Providence 1957. | Zbl 0078.10004
- :[9] Topological methods in the theory of nonlinear integral equations, Pergamon Press, N. Y. 1964. | Zbl 0111.30303
:[10] Fredholm alternative for nonlinear operators, Comment. Math. Univ. Carolinae 11, 1970, 337-363. | MR 267429 | Zbl 0198.18602
:[11] On a class of nonlinear operators in Hilbert space (in Russian) Izv. Ak. Nank SSSR, ser. mat., No 5, 1939, 257-264.
:[12] Application of topology to variationat problems (in Russian) Trudy 2. Vsesujuz, mat. sjezda 1, 1935, 224-237. | Zbl 0015.21403
- :[13] : Topological methods in variational problems and their application to the differential geometry of surface (in Russian) Uspechi Mat. Nank II, 1947, 166-217.
-[14] Les methodes direcfes en thérie des équations elliptiques, Academia, Praha 1967.
:[15] Sur l'alternative de Fredholm pour les operateurs non lineairee avec applications aux problèmes aux limites, Ann. Scuola Norm. Sup. Pisa, XXIII, 1969, 331-345. | Numdam | MR 267430 | Zbl 0187.08103
:[16] The Morse-Bard theorem for real-analytic functions, Comment. Math. Univ. Carolinae, 13, 1972, 45-51. | MR 308345 | Zbl 0235.26012
- :[17] Variational methods for the study of nonlinear operators, Holden-Day, 1964. | Zbl 0122.35501
:[18] On the discreteneas of the spectrum of nonlinear Sturm-Liouville equation (in Russian) Dokl. Akad. Nank SSSR, 201, 1971, 1045-1048. | MR 291547 | Zbl 0252.47071
:[19] On the dieoreteness of the speotrum of nonlinear Sturm-Liouville equation of the fourth order (in Russian) Comment. Math. Univ. Carolinae, 12, 1971, 639-653. | MR 291882 | Zbl 0229.34015
- :[20] Fredholm alternative for nonlinear operators and applicationa to partial differeittial equations and integral equations (to appear). | Zbl 0234.47050
:[21] Remark on the Fredholm alternative for nonlinear operators with applioation to sntegrat equations of generalized Hammerstein type (to appear).
: