The ergodic theory of positive operators on continuous functions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 3, Volume 27 (1973) no. 1, p. 19-51
@article{ASNSP_1973_3_27_1_19_0,
     author = {Foguel, Shaul R.},
     title = {The ergodic theory of positive operators on continuous functions},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 3, 27},
     number = {1},
     year = {1973},
     pages = {19-51},
     zbl = {0258.47010},
     mrnumber = {372154},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1973_3_27_1_19_0}
}
Foguel, S. R. The ergodic theory of positive operators on continuous functions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 3, Volume 27 (1973) no. 1, pp. 19-51. http://www.numdam.org/item/ASNSP_1973_3_27_1_19_0/

[1] Dunford N., and Schwartz, J.T., Linear operators Parte I. Interscience Ptiblisbers, New York, 1958. | Zbl 0084.10402

[2] Yosida K., and Hewitt, E., Finitely additive rzeasures, Trans. Amer. Math. Soc. 72, 46-66 (1952). | MR 45194 | Zbl 0046.05401

[3] Neveu, J., Mathematical foundations of the calculus of piobability, Holden-Day, San Francisco. | Zbl 0137.11301

[1] Foguel, S.R., Ergodic decorrzposition of a topologioal space, Israel J. of Math. vol. 7 (1969) 164-167. | MR 249570 | Zbl 0179.08302

[2] Horowitz S., Markov processes on a locally compact 8pac6, to be published.

[3] Lin, M., Conservative Markov processes on a topological space. Israel J. of Math. | MR 265559 | Zbl 0219.60005

[4] Meyer, P.A., Theoi-io ergodiquo et potentiels, Annales de l'istitute Fourier(Grenoble) Vol. 15, 1, 89-96 (1965). | Numdam | MR 200413

[1] Chung, K.L., The general theory of Markov processes aocording to Doeblin, Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, Band 2 (1963-68), pp. 230-254. | MR 166835 | Zbl 0119.34604

[2] Foguel, S.R., Ergodic decompositdon of a topological space, Israel J. of Nath. | Zbl 0179.08302

[3] Horowitz, S., Markov processes on a locally compact space, Israel J. of Math, 7 (1969), 311-324. | MR 264759 | Zbl 0216.47102

[4] Kelley, J.L., General topology, D. Van Nostrand Co., New York, 1955. | MR 70144 | Zbl 0066.16604

[5] Lin, M., Conservative Markov processes on a topological space, Israel J. of Math. 8 (1970), 165-186. | MR 265559 | Zbl 0219.60005

[1] Ffogufl, S.R., Existence of invariant measures for Markov prooesses, Proe. Amer. Math. Soc. 13, 833-838 (1962). | MR 145590 | Zbl 0126.33901

[2] Foguel, S.R., Existenoe of invariant measures for Markov processes II. Proc. Amer. Math. Soc. 17, 387-389 (1966). | MR 193673 | Zbl 0168.16405

[3] Foguel, S.R., Positive operators on C (X), to appear in the Proc. Amer. Math. Soc. [4] Lin, M., Conservative Markov processes on a topological space, hrael J. of Math. | MR 243570

[1] Halmos, P.R., Measure theorem, Van Nostrand, 1950. | MR 33869 | Zbl 0040.16802

[2] Lin M., Conservatiroa Markov processes on a topological space, Israel. J. of Math. 8 (1970), 165-186. | MR 265559 | Zbl 0219.60005

[1] Foguel, S.R., Ratio limit theorems for Markov processes, Israel J. of Math., vol. 7, (1969). | MR 260017 | Zbl 0235.60069

[2] Kingman, J.F.C. and Orey, S., Ratio limit theorems for Markov chains, Proc. Amer. Math. Soc. 15, 907-910 (1964). | MR 173290 | Zbl 0131.16701

[3] Lin, M., Invariant measures and ratio limit theorems for Mat-kovproce88e8, to be published.