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A REMARK ON HARMONIC ANALYSIS
OF STRONGLY ALMOST-PERIODIC GROUPS

OF LINEAR OPERATORS

S. ZAIDMAN(1)

1. Introduction.

Let us consider a Banach space 9~ and then take a one parameter
group of linear operators (~ (t), -  oo --~ Z 1-Y), which is strongly
almost-periodic ; this means that for any x E 9Cy the X-valued function y (t) ==
= G (t) x is (Bochner)-almost-periodic (see [2]).

It is a well-known result (see for example [1]), that for any x-valued
almost-periodic function f (t), the mean value

exists for any real number A.

Furthermore, this mean value equals 0 for all A with the possible ex-

ception of a set 1 which is finite or countable, and is denoted by o ( f ).
A natural problem is the following (2) :

Is there any strongly almost-periodic one-parameter group G (t), with the

property that

Answering to a letter of us, professor S. Bochner indicated a solution;
this will be explained here with some more details.

Pervenuto alla Redazione il 28 Luglio 1971. 
’

(i) This research is supported by a grant of the National Research Council of Canada.
(2) It arose in connection with onr paper [3].
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2. We shall remember here the de6nition of the space l2 [- coy 00].
It consists of all complex-valued functions ac (1), defined for -oo  ~  00,

having the property that

In fact, (2. 1) means, by definition, that for a certain constant c &#x3E; 0
we have

whenever arbitrary real Aj are choosen (and for any n = 1, 2, 3, ...).
Let us remark that if a (1) E Z2 [- oo, oo] there exists a sequence 

depending on a (1), such that a (1) = 0 if A # Aj, Bjj ---1,2, ...

This follows becouse, if we put (fj Ri, a , &#x3E; l we see thatJ () J 
00

every C; is a finite set; hence U d; = d is a countable set, and if a (1) # 0;=1
then 

Let us denote the set (A ; a (1) +- 0 ) by Sp a ( . ) ; so Sp a r- (f is a fini te
or countable set, (in)7 , and we take a fixed ordering of it.

It can be proved that 12 [- oo, 00] is a linear space on the complex
field. We can introduce a scalar product on this space ; if a (1), b (2) E
l2 [- 00, oo], and = Sp a (. ), (pn)§° = Sp b (.), then by definition (a (A),

00 
_

this sum becomes finite if one of Sp a, ( . ) or
j=l

Spb(.) is finite.

It can be proved in the usual manner that l2 [- oo, oo] is a (com-
plete) Hilbert space.

Let us consider now, for any real number t, the map of l2 [- oo, oo]
into itself which is defined by

We shall denote this map by Gt ; we see that Gtl+tt = Gtl Gt2 , Go = I for
any pair tj t2 of real numbers ; here I is the identity operator 

Furthemore, we have

so G, is an isometric map of l2, ~ real t.
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3. In this part of the paper we prove the following

THEOREM. The one parameter group Gt is strongly al1nost periodic in Z2
We need for the proof several Lemmas.

Consider, for a given Ào E (- oJ, the function qJÂo (I) which equals 1 for
À. = Ro , and equals 0 for À. # 10. Obviously E l2 y and Sp r ( . ) = 
Now, we have

LEMMA 1. Let a (l) be and (~n)i = Sp a (.). Then we 

(3.1) the convergence being in l2 [- 00, 00 1

w

Let us put in fact a (Â.n) (A).
n=i 

’~

It can be seen without difficulty that Sp bN (.) = (AN+l, N+2, ...). Hence
-

hence

This last expression tends to 0 as N- oo, because a (I) E 12. This proves
Lemma.

Then we remark the trivial fact that

Applying Lemma 1 we obtain that for any real t we have

the convergence being in l2 [- oo, ooJ.
Also we have the simple

LEMMA 2. Any functions - oo  t  oc -+ 12 [- oo, ooJ which is given by

This is a particular case of the fact that if % is a Banach space, x E X,
and a is a real number, the function - oo  t  oo -~ 9~~ given by eill x
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is St almost-periodic (in fact it is In our case a =

=~(~)~(~9C=~ ,

It follows from (3.3) that is l2-almost-periodic, if we prove that

the convergence in (3.3) is uniform with respect to t E (- oo, cxJ). This is

done in

LEMMA 3. The series 1- (A) is convergent to (a,) in l2-
n=1 

"

norm, uniformly for - 
Let us consider in fact the difference

We see that

moreover

Consequently Sp g N(’, t) = (AN+] , IN+2, .. ) and

which tends to 0 as 1~’--~ 00, obviously uniformly with respect to t E (- 00, oo).
This proves the Theorem.

Let us consider a ; ~) = for any fixed Ào E (- oo, oo).
Then

This is a 12-valued periodic function and ~~o ~ · )) _ ilo) Hence

U 1?1 g ((~t ~ryo( . )) = real line Ri and this solves the problem in the Introduction.
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