Cesari-Weierstrass surface integrals and lower k-area
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 3, Tome 25 (1971) no. 3, p. 423-446
@article{ASNSP_1971_3_25_3_423_0,
     author = {Breckenridge, J. C.},
     title = {Cesari-Weierstrass surface integrals and lower $k$-area},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 3, 25},
     number = {3},
     year = {1971},
     pages = {423-446},
     zbl = {0232.28011},
     mrnumber = {315092},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1971_3_25_3_423_0}
}
Breckenridge, J. C. Cesari-Weierstrass surface integrals and lower $k$-area. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 3, Tome 25 (1971) no. 3, pp. 423-446. http://www.numdam.org/item/ASNSP_1971_3_25_3_423_0/

[1] J.C. Breckenridge, Burkill-Cesari integrals of quasi additive interval functions. To appear. | MR 313482 | Zbl 0226.28011

[2] J.C. Breckenridge, Significant sets in surface area theory. To appear.

[3] L. Cesari, La nozione di integrale 80pra una superficie in forma parametrica. Ann. Scuola Norm. Sup. Pisa (2), vol 13 (1944), pp. 77-117. | Numdam | MR 24510 | Zbl 0029.29102

[4] L. Cesari, L'area di Lebesgue come una misura. Rend. Mat. Appl. Roma, vol. 14 (1955), pp. 655-673. | MR 73680 | Zbl 0065.28801

[5] L. Cesari, Surface Area, Princeton University Press (1956). | MR 74500 | Zbl 0073.04101

[6] L. Cesari, Quasi additive set functions and the concept of integral over a variety. Trans. Amer. Math. Soc. vol. 102 (1962), pp. 94-113. | MR 142723 | Zbl 0115.26902

[7] L. Cesari, Extension problem for quasi additive set functions and Radon-Nikodym derivatives, Trans. Amer. Math. Soc. vol. 102 (1962), pp. 114-146. | MR 142724 | Zbl 0115.27001

[8] L. Cesari and L.H. Turner, Surface integrals and Radon-Nikodym derivatives, Rend. Circ. Mat. Palermo. vol. 7 (1958), pp. 143-154. | MR 104781 | Zbl 0087.27103

[9] H. Federer, Currents and area, Trans. Amer. Math. Soc. vol. 98 (1961), pp. 204-233. | MR 123682 | Zbl 0187.31302

[10] R. Gariepy, Current valued measures and Geöcze area. Thesis. Wayne State University (1969).

[11] J.H. Michael, The convergence of measures on parametric surfaces, Trans. Amer. Math. Soc. vol. 107 (1963), pp. 140-152. | MR 146352 | Zbl 0138.03602

[12] T. Nishiura, The Geöcze k-area and a cylindrical property. Proc. Amer. Math. Soc. vol. 12 (1961), pp. 795.800. | MR 125941 | Zbl 0113.04202

[13] T. Nishiura, The Geöcze k-area and flat mappings, Rend. Ciro. Mat. Palermo. vol. 11 (1962), pp. 105-125. | MR 148855 | Zbl 0111.05702

[14] T. Nishiura, Integrals over a product variety and Fubini theorems, Rend. Circ. Mat. Palermo. vol. 14 (1965), pp. 207-236. | MR 197685 | Zbl 0154.05302

[15] T. Nishiura, Area measure and Radó's lower area. To appear. | Zbl 0226.28012

[16] T. Radó, Length and Area. Amer. Math. Soc. Coll. Publ., 30. (1948). | MR 24511 | Zbl 0033.17002

[17] T. Radó and P.V. Reicheldehfer, Continuous Transformations in Analysis. Berlin, Springer (1955).

[18] G. Warner, The Burkill-Cesari integral. Duke Math. Journal. vol. 35 (1968), pp. 61-78. | MR 219690 | Zbl 0165.06702

[19] G. Warner, The generalized Weierstrass-type integral ∫ ∮ (ζ, ϕ ), Ann. Scuola Norm. Sup. Pisa (2). vol. 22 (1968), pp. 163-192. | Numdam | Zbl 0174.09203