Annali della Scuola Normale Superiore di Pisa Classe di Scienze

D. D. J. HACON

Manifolds of the homotopy type of a bouquet of spheres

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^e série, tome 24, nº 4 (1970), p. 703-715

http://www.numdam.org/item?id=ASNSP_1970_3_24_4_703_0

© Scuola Normale Superiore, Pisa, 1970, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

MANIFOLDS OF THE HOMOTOPY TYPE OF A BOUQUET OF SPHERES

By D. D. J. HACON

1. Introduction.

This note is concerned with manifolds homotopy equivalent to $v S_i$ (a bouquet of spheres of varying dimensions). In this connection a useful concept is that of *thickening* which is a homotopy generalization of the idea of regular neighbourhood. The reader is referred to [7] for definitions in the general case. Here we shall be concerned with the specific problem of describing the set of thickenings of $v S_i$ and it will be convenient to adopt a definition of thickening that differs slightly from that to be found in [6] (see § 2).

In [3] Haefliger classified thickenings of (simply-connected) bouquets of spheres subject to certain dimensional restrictions. Our purpose here is to improve on Haefliger's result in the piecewise-linear case and deal with the non-simply-connected case, reducing it to the problem of classifying concordance classes of embeddings of a number of solid tori in a certain manifold, as follows.

Denote by P^n the solid *n*-pretzel i.e. an *n*-ball with a finite number of 1-handles attached orientably. Then the classification of thickenings is reduced to the classification of concordance classes of embeddings of the disjoint union of solid tori in ∂P , which is a simpler question. For istance, if the bouquet in question is simply-connected then ∂P is a sphere and the problem is now to classify concordance classes of embeddings of solid tori in a sphere. See [3]. If, on the other hand, the bouquet consists of a circle and a sphere we need to look at knots of a solid torus in $S^1 \times S^q$ (q being dim P-2).

Suppose $f: \mathbf{v} \ S_i \longrightarrow W$ is a homotopy equivalence (and hence a simple homotopy equivalence since the Whitehead group of a free group is trivial). If f is homotopic to a piecewise linear embedding $g: \mathbf{v} \ S_i \longrightarrow W$ proceed as follows. Take a regular neighbourhood N of $g \mathbf{v} \ S_i$ in Int W, the interior of

Pervenuto alla Redazione il 6 Maggio 1970.

W (if $g \vee S_i$ meets ∂W isotop it into Int W). N is homeomorphic to W, for by the s-cobordism theorem [1], W-Int N is homeomorphic to $\partial N \times [0,1]$. We thus obtain a handlebody decomposition of W suffixed by the cell structure of $\vee S_i$.

In general, however, there exist homotopy equivalences $f: \mathbf{v} \ S_i \to W$ which are not homotopic to an embedding and consequently the above procedure cannot be followed. But a theorem of Stallings [5] allows us to factor $f: \mathbf{v} \ S_i \to W$ up to homotopy through a simple homotopy equivalence $f': \mathbf{v} \ S_i \to N$ where N is a $p_N + 1$ -dimensional polyhedron in W. We seek a simple description of N in terms of $\mathbf{v} \ S_i$ which will (as in the case when f is an embedding) provide a handlebody decomposition of W suffixed by the cell structure of $\mathbf{v} \ S_i$. In fact it will be shown (§ 3) that, if $f: \mathbf{v} \ S_i \to W$ is a homotopy equivalence, W may be expressed as P plus handles of index two or more and that handles of sufficiently large index are attached disjointly i.e. after a certain point in the construction of W the order in which handles are subsequently attached is immaterial.

2. The main theorem.

Throughout we restrict ourselves to the piecewise linear (PL) category [7].

Write $\bigcup S_i$ for the disjoint union $S_1 \bigcup \ldots \bigcup S_N$ of spheres S_1, \ldots, S_N of dimensions p_1, \ldots, p_N subject to the condition $1 \le p_1 \le \ldots, \le p_N$. Let $* = (*, \ldots, *)$ be a point of $S_1 \times \ldots, \times S_N$. Then $\mathsf{v} S_i = S_1 \mathsf{v}, \ldots, \mathsf{v} S_N$ is the subpolyhedron

$$(S_1 \times \{*\} \times, ..., \times \{*\}) \cup, ..., \cup (\{*\} \times, ..., \times \{*\} \times S_N)$$
 of $S_1 \times, ..., \times S_N$.

Let $\pi: \bigcup S_i \longrightarrow \bigvee S_i$ be the obvious identification map. If we write $\bigvee S_i$ in the form $S^1 \bigvee, ..., \bigvee S^1 \bigvee S_1 \bigvee, ..., \bigvee S_N$ it is understood that $p_i \geq 2$.

Now let M be a compact, connected, oriented manifold with nonempty boundary ∂M and such that

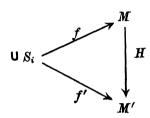
- (1) $\dim M \ge \operatorname{Max} (6, \dim U S_i + 3)$
- (2) $\partial M \subset M$ induces an isomorphism of fundamental groups.

We will be considering pairs (M, f), M as above and $f: \cup S_i \to M$ homotopic to $g \circ \pi$ where $g: \vee S_i \to M$ is a homotopy equivalence. We call such a pair (M, f) a thickening.

REMARKS (1). Since M is assumed connected any map $f: \cup S_i \to M$ factors up to homotopy through $\pi: \cup S_i \to \vee S_i$.

- (2) Suppose $f: \bigcup S_i \to M$ factors up to homotopy through a homotopy equivalence $g: S_i \to M$. Let $g': \bigvee S_i \to M$ be any other homotopy factorization. Then g' is also a homotopy equivalence.
- (3) If S_1, \ldots, S_N are all circles then all thickenings (M, f) are equivalent in the sense below.
- (M, f) and (M', f') are said to be equivalent if M M' are homeomorphic and the homeomorphism H can be chosen to preserve all the data i. e..
 - (a) H is orientation-preserving
 - (b) the diagram

homotopy commutes.



REMARK. In the simply-connected case $(p_i \ge 2)$ these definitions coincide with those of Haefliger [3].

Let P be the manifold defined in the introduction. That is a ball plus 1-handles. Let dim P=q where $q \geq p_N + 3$ and $p_1 \geq 2$. Any inessential orientation-preserving embedding $h \colon \bigcup_{i=1}^{N} \partial \Delta^{p_i} \times \Delta^{q-p_i} \to \partial P$ determines an oriented manifold of the homotopy type of a bouquet of spheres. The manifold is P plus handles $\Delta^{p_i} \times \Delta^{q-p_i}$ attached by means of the given embedding. Since the embedding h was assumed inessential we obtain a well-defined homotopy class of maps $f \colon \bigcup_{i=1}^{N} S_i \to P$ handles. It is easily seen that this f is in fact a thickening.

REMARK. The restriction that h be inessential is only a restriction if $p_i = 2$, since $\pi_i(P) = 0$ for i > 1.

Suppose h, k are concordant embeddings. It is an immediate consequence of the concordance extension theorem [4] that the two thickenings defined by h and k are equivalent.

Thus there is defined a function Φ from the set of concordance classes of embeddings of solid tori in ∂P to the set of equivalence classes of thickenings of VS_i .

Here is the main result of this note.

THEOREM. If, for the bouquet $S^1 \vee ... \vee S^1 \vee S_1 \vee ... \vee S_N$, dim $P=q \ge \max{(6,p_N+3)}$ then

- (1) Φ is surjective if $2p_N q + 1 < p_1$
- (2) Φ is injective if $2p_N q + 2 < p_1$.

The proof is deferred to section 3.

3. The factorization lemma.

In this section it will be shown that any thickening $f: \cup S_i \to W$ factors up to homotopy through a homotopy equivalence $g: \mathsf{v} \ S_i \to N$ where N is a subpolyhedron of Int W with special properties. But first some notation. Write X for $\mathsf{v} \ S_i$ and filter X by $* = X_0 \subset \ldots, \subset X_N = X$ where $X_i = S_1 \ \mathsf{v}, \ldots, \mathsf{v} \ S_i$ and * is the base point of X. Let $f_k = f \mid S_k$. Finally, denote by Σf the singular set of f i. e. the closure of the set $\{x \in X \mid f^{-1}fx \neq x\}$.

LEMMA 1. (factorization lemma) Let $f: X \to \operatorname{Int} W$ be a thickening (or more accurately let $f \circ \pi$ be one). Suppose that f is nondegenerate and that for k = 1, ..., N, dim $\Sigma f \cap S_k \leq p_k + p_N - q$. Then there exist polyhedra $Y_0 \subset Y_1 \subset \ldots \subset Y_N$ in Int W such that

- (1) $f \mid X_k \to Y_k \cup f S_k$ is a homotopy equivalence
- (2) Y_{k+1} collapses to $Y_k \cup f S_k$
- (3) $\dim Y_k \cap fS_{k+i} \leq p_k + p_N q \quad (i > 0)$
- (4) $\Sigma f \cap S_k \subset f_k^{-1} Y_k$ and the latter collapses to *.

REMARK 1. If the first few S_i of X have small enough dimension then f embeds them (by the general position hypotheses on f) and the first few Y_i are defined by $Y_i = f X_{i-1}$ satisfying conditions $(1), \ldots, (4)$.

REMARK 2. Lemma 1 yields a minimal handlebody decomposition for W as follows. Define inductively handlebodies H_k in Int W(k=1,...,N) by first triangulating $f:X\to W$ so that $Y_0,...,Y_N$ appear as subcomplexes (to be denoted by the same symbols). Take the barycentric second-derived suddivisions of X,W. f remains simplicial being non-degenerate. Define $H_k=N^2(Y_k\cup fS_k;W)$, the simplicial neighbourhood of $Y_k\cup fS_k$ in the second-derived subdivision of W. Then H_{k+1} is H_k plus a handle. For $(Y_{k+1}\cup fS_{k+1})$ —Int $N^2(Y_{k+1};W)=fS_{k+1}$ —Int $N^2(Y_{k+1};W)$ and the latter is a p_{k+1} —disk in Int W that meets $N^2(Y_{k+1};W)$ in its boundary. This follows from condition (4).

And H_{k+1} — Int $N^2(Y_{k+1}; W)$ is a ball meeting $N^2(Y_{k+1}; W)$ in $N^2(fS_{k+1}; W) \cap \partial N^2(Y_{k+1}; W)$ which is a solid torus. By regular neighborhoods

uhoods theory, H_{k+1} is homeomorphic to

$$N^{2}(Y_{k+1}; W) \bigcup_{w} \Delta^{p_{k+1}} \times \Delta^{q-p_{k+1}}$$

where $\psi: \partial \Delta \times \Delta \to \partial N^2(Y_{k+1}; W)$ is an embedding. But by condition (2) Y_{k+1} collapses to $Y_k \cup f S_k$ and so $N^2(Y_{k+1}; W)$ and $H_k = N^2(Y_k \cup f S_k; W)$ are homeomorphic. Therefore H_{k+1} is H_k plus a handle and we obtain a handlebody decomposition of H_N (and hence of W) suffixed by the cell structure of X. Furthermore, (1) implies that the thickening $f: X \to W$ is filtered by a series of thickenings $f \mid X_k \to N^2(Y_k \cup f S_k; W)$.

As observed in the introduction, it is possible (under certain dimensional restrictions) to find a handlebody decomposition of W in which the handles are attached independently of one another after a certain stage. To show this we need a modification of the factorization lemma.

LEMMA 2. Let f satisfy the hypothesis of lemma 1. Suppose, in addition, that $p_{k+1} \ge 2p_N - q + 2$ for some $k (1 \le k < N)$, and that Y_0 ,, Y_k have been found satisfying conditions (1) through (4) of Lemma 1. Then there exists a polyhedron Y in Int W such that

- (a) Y collapses to $Y_k \cup fS_k$
- (b) $f: X \longrightarrow Y \cup fX$ is a homotopy equivalence
- (c) $\Sigma f \subset f^{-1} Y$
- (d) $f_{k+i}^{-1} Y$ collapses to * for all i > 0.

REMARK. As before we have a handlebody decomposition of W. Triangulate $f: X \to W$ so that Y_0, \ldots, Y_k , Y are subcomplexes of W. Define

$$H_j = N^2 (Y_j \cup f S_j; W \qquad (0 \le j \le k)$$

and

$$H = N^2 (Y \cup fX; W).$$

Then the handles $N^2(fS_j; W) - \text{Int } N^2(Y; W)$ are attached independently to $N^2(Y; W)$ i.e. $N^2(fS_j; W) \cap \partial N^2(Y; W)$ are disjoint solid tori $(k+1 \le j \le N)$. For, by (c) of Lemma 2, f embeds

$$\begin{split} f^{-1} \Big\{ \bigcup_{j=k+1}^N f S_j &- \text{ Int } N^2\left(Y\,;\,W\right) \Big\} \text{ and } S_j - f^{-1} \text{ Int } N^2\left(Y\,;\,W\right) \\ &= S_j - \text{ Int } N^2\left(f_j^{-1}\,Y\,;\,W\right) \\ &= S_j \text{ minus the interior of a ball, by } (d) \\ &= a \text{ ball, } (j=k+1,\ldots,N) \,; \end{split}$$

and the ball fS_j — Int $N^2(Y; W)$ meets $N^2(Y; W)$ in its boundary only, by (c). Thus $N^2(Y; W) \cup fX$ is $N^2(Y; W)$ plus balls fS_j — Int $N^2(Y; W)$ attached disjointly to $\partial N^2(Y; W)$. This completes the proof that H is H_k plus disjointly attached handles.

To prove Lemma 1 and 2 we will need some general position and engulfing lemmas.

DEFINITION. If Y_0 , Y, Z are polyhedra in the manifold M and $Y_0 \subset Y$, then $Y - Y_0$ is said to be in general position with respect to Z if dim $(Y - Y_0) \cap Z \leq \dim Y - Y_0 + \dim Z - \dim M$.

DEFINITION. If Y is a polyhedron and M a manifold, a map $f: Y \to M$ is in general position if

- (1) f is non-degenerate
- (2) dim $\Sigma f < 2$ dim $Y \dim M$.

COROLLARY TO THEOREM 15 [7]. If Y_0 , Y, A_1 , ..., A_n are polyhedra in a manifold M with $Y_0 \subset Y$ and $Y = Y_0 \subset \text{int } M$, then there exists a homeomorphism $h: M \longrightarrow M$ such that

- (1) $h \mid Y_0 \cup \partial M = Identity$
- (2) $h(Y Y_0)$ is in general position with respect to A_1, \ldots, A_n .

PROOF. By induction on dim $A_1 \cup \ldots \cup A_n$.

COROLLARY TO THEOREM 18 [7]. Let $f\colon Y \longrightarrow \operatorname{Int} M$ be a map and Y_0 a subpolyhedron of Y. Suppose $f\mid Y_0$ is in general position. Then f is homotopic to g, a map in general position, by an arbitrarily small homotopy that keeps Y_0 fixed.

LEMMA 3. If $f: X \to M$, X a sphere-bouquet, M a manifold, then f is homotopic to $g: X \to \text{Int } M$ where g is in general position and dim $\Sigma g \cap S_k \leq \dim S_k + \dim X - \dim M (k = 1, ..., N)$.

PROOF. First homotop fX into Int M and then use induction on N, the number of spheres in the bouquet. If N=1 apply the second corollary above. If not, the inductive step is proved by homotoping $f \mid S_N$ into general position keeping f* fixed and then applying the first corollary to minimize the dimension of $fS_N \cap fX_{N-1}$ by putting $f(S_N - *)$ into general position with respect to fX_{N-1} keeping f* fixed.

To state the engulfing lemmas we need

DEFINITION. A subpolyhedron C of a manifold M is called a k-spine of M if the pair M, C is k-connected.

DEFINITION. A polyhedron is called *t-collapsible* if it can be collopsed to a polyhedron of dimension not greater than t. The following lemma is a special case of Theorem 21 [7].

LEMMA 4 (Zeeman). Let C be an m-3-collapsible k-spine of the manifold M (dim M being m), Y a polyhedron in M and

$$\dim Y \cap \partial M < \dim Y < k < m - 3.$$

Then Y may be engulfed from C relative to ∂M i. e. there exists C^+ in M such that $C \cup Y \subset C^+$, $(C \cup Y) \cap \partial M = C^+ \cap \partial M$, C^+ collapses to C, and dim $C^+ - C \leq \dim Y + 1$.

ADDENDUM TO LEMMA 4. Suppose that A_1, \ldots, A_n are polyhedra in M. By the corollary to Theorem 15 we may insist that $C^+ - (C \cap Y)$ be in general position with respect to A_1, \ldots, A_n .

LEMMA 5. Let C be an m-3-collapsible k-spine of M and D a q-3-collapsible k+1-spine of Q and let $f:M, C \to Q, D$ be non-degenerate and proper (i.e. $f^{-1} \partial Q = \partial f^{-1} Q$). Suppose that $\dim (f^{-1} D - C) = x \le k \le m - 3 \le q - 6$ and that $\partial M \cap (f^{-1} D - C)$ is empty.

Then there exist polyhedra $C^+ \subset M$, $D^+ \subset Q$ such that

- (A) $C^+ = f^{-1}D^+$ (i.e. dim $f^{-1}D^+ C^+ < 0$)
- (B) $C^+ \cap \partial M = C \cap \partial M$; $D^+ \cap \partial Q = D \cap \partial Q$
- (C) C^+ collapses to $C: D^+$ collapses to D
- (D) dim $C^+ C \le x + 1$; dim $D^+ D \le x + 2$.

If, further, $A_1, ..., A_n \subset Q$ are polyhedra in general position with respect to fM, then C^+, D^+ may be chosen to satisfy (A), ..., (D) and the extra condition

(E) $D^+ - D$ is in general position with respect to A_1, \dots, A_n .

PROOF. The proof resembles that of Lemma 63 [7]. We will define inductively polyhedra $C_i \subset M$, $D_i \subset Q$ such that

- (a) $fC_i \subset D_i$ and dim $f^{-1}D_i C_i \leq x i$.
- (b) C_i collapses to $C: D_i$ collapses to D.

- (c) $C_i \cap \partial M = C \cap \partial M$; $D_i \cap \partial Q = D \cap \partial Q$.
- (d) dim $C_i C_{i-1} \le x + 2 i$; dim $D_i D_{i-1} \le x + 3 i$.
- (e) $D_i D_{i-1}$ is in general position with respect to A_1, \ldots, A_n .

The induction starts with $C_i=C$, $D_i=D$ $(i\leq 0)$ and finishes with i=x+1 because then dim $f^{-1}D_i-C_i<0$. Condition (E) will be satisfied because $D^+-D=\bigcup_{i\geq 0}(D_{i+1}-D_i)$ and each $D_{i+1}-D_i$ is in general position with respect to A_1 , ..., A_n .

The inductive step $(i \geq 0)$.

Assume that C_j , D_j have been chosen satisfying $(a), \ldots, (e)$ for $j \leq i$.

By (a) dim $f^{-1}D_i - C_i \leq x - i$.

By (b) C_i is an m = 3-collapsible k-spine of M (since C is).

So by Lemma 4 there exists $C_{i+1} \subset M$ such that C_{i+1} collapses to C_i , $f^{-1}D_i \subset C_{i+1}$, $\partial M \cap C_{i+1} = \partial M \cap f^{-1}D_i$, dim $C_{i+1} - C_i \leq x+1-i$ and $C_{i+1} - f^{-1}D_i$ is in general position with respect to $f^{-1}A_1, \ldots, f^{-1}A_n$. This implies that dim $fC_{i+1} - D_i \leq \dim f(C_{i+1} - C_i) \leq x+1-i$; also that $\partial M \cap C_{i+1} = \partial M \cap C_i \cup \partial M \cap f^{-1}D_i$. But

$$\partial M \cap f^{-1}D_{i} =$$

$$= f^{-1} (\partial Q \cap D_{i}) \qquad (f \text{ is proper})$$

$$= f^{-1} (\partial Q \cap D) \qquad (\text{by } (c))$$

$$= \partial M \cap f^{-1}D$$

$$= \partial M \cap C \qquad (\text{by initial hypothesis}).$$

By (b) D_i is a q-3-collapsible k+1-spine of Q. So by Lemma 4, there exists $D_{i+1} \subset Q$ such that D_{i+1} collapses to D_i , $fC_{i+1} \subset D_{i+1}$, dim $D_{i+1} = D_i \leq x+2-i$, $\partial Q \cap D_{i+1} = \partial Q \cap (D_i \cup fC_{i+1})$ and $D_{i+1} = (D_i \cup fC_{i+1})$ is in general position with respect to fM, A_1 , ..., A_n . This implies that dim f^{-1} $D_{i+1} - C_{i+1} \leq \dim ff^{-1}$ $D_{i+1} - fC_{i+1} = \dim fM \cap (D_{i+1} - fC_{i+1}) = \dim fM \cap (D_{i+1} - (fC_{i+1} D_i)) \leq x+2-i-3$. Also we have that $\partial Q \cap D_{i+1} = \partial Q \cap D_i \cup \partial Q \cap fC_{i+1}$. But $\partial Q \cap fC_{i+1} = f(\partial M \cap C_{i+1}) = f(\partial M \cap C) \subset \partial Q \cap D$. So $\partial Q \cap D_{i+1} = \partial Q \cap D$. We have thus defined C_{i+1} , D_{i+1} satisfying $(a), \ldots, (d)$. The A also satisf A A A is and A A is in general position with respect to A A A is ince A A A are (by hypothesis) in general position with respect to A A and A A is and A A in A and A A in general position with respect to A A is and A A in A and A A in A are A in A and A A in general position with respect to A in general position with respect to A in A i

to be in general position with respect to $f^{-1} A_1, \dots, f^{-1} A_n$. This completes the proof of the inductive step and hence of lemma 5.

PROOF OF LEMMA 1. Let us write $Z_k = Y_k \cup f S_k$. Construct Y_k (and hence Z_k) inductively starting with $Y_0 = Z_0 = fX_0 = f*$. Suppose that we have found Y_0, \ldots, Y_k satisfying conditions (1), ..., (4). By lemma 4 and the fact that dim $\sum f \cap S_{k+1} \leq p_{k+1} - 3$ there exists C_{k+1} in S_{k+1} such that $\sum f \cap S_{k+1} \subset C_{k+1}$, C_{k+1} collapses to *, and dim $C_{k+1} \leq 1 + p_N + p_{k+1} - q$. Now Z_k is a $p_{k+1} - 1$ -spine of Int W and $1 + p_N + p_{k+1} - q \leq p_{k+1} - 2$. Therefore by lemma 4 there exists D_{k+1} in Int W such that $fC_{k+1} \subset D_{k+1}$, D_{k+1} collapses to Z_k , dim $D_{k+1} - Z_k \leq 2 + p_N + p_{k+1} - q$ and $D_{k+1} - (Z_k \cup f C_{k+1})$ is in general position with respect to fS_{k+1}, \ldots, fS_N . This and condition (3) imply that for i > 1

$$\begin{split} p_N + p_{k+1} - q &\geq \\ &\geq \dim f S_{k+i} \cap [D_{k+1} - (Z_k \cup f C_{k+1}) \cup Z_k \cup f C_{k+1}] \\ &\geq \dim f S_{k+i} \cap D_{k+1} \,. \end{split}$$

Now $f_{k+1}: S_{k+1}, C_{k+1} \to W$, D_{k+1} , C_{k+1} is a $p_{k+1} - 2$ -spine of S_{k+1} , D_{k+1} is a $p_{k+1} - 1$ -spine of Int W and dim $f_{k+1}^{-1}D_{k+1} - C_{k+1} \leq p_N + p_{k+1} - q$. So, by lemma 5, there exists Y_{k+1} in Int W such that Y_{k+1} collapses to D_{k+1} , $f_{k+1}^{-1}Y_{k-1}$ collapses to * and dim $fS_{k+i} \cap (Y_{k+1} - D_{k+1}) \leq p_N + p_{k+1} - q$ (i > 1). It follows that dim $fS_{k+i} \cap Y_{k+1} \leq p_N + p_{k+1} - q$ (i > 1). Thus Y_{k+1} is defined and satisfies (2) (3) and (4).

The proof of the induction step will be complete once it has been shown that $f \mid X_{k+1} \to Z_{k+1}$ is a homotopy equivalence. First triangulate $f: X \to W$ and pass to the barycentric second derived triangulations of X, W. f remains simplicial.

We showed that $f_{k+1}^{-1} Y_{k+1}$ collapsed to *. Thus $N^2(f_{k+1}^{-1} Y_{k+1}; S_{k+1}) = f_{k+1}^{-1} N^2(Y_{k+1}; W)$ is a ball.

Further, $\Sigma f \cap S_{k+1} \subset f_{k+1}^{-1} Y_{k+1}$ and so f_{k+1} maps

$$S_{k+1}$$
 — Int $N^2(f_{k+1}^{-1} Y_{k+1}; S_{k+1})$

homeomorphically onto Z_{k+1} — Int $N^2(Y_{k+1}; W)$.

To prove that $f \mid X_{k+1} \longrightarrow Z_{k+1}$ is a homotopy equivalence, we show that (*) $f \mid X_{k+1} \longrightarrow N^2 (Y_{k+1}; W) \cup fS_{k+1}$ is a homotopy equivalence. (**) $N^2 (Y_{k+1}; W) \cup fS_{k+1}$ collapses to $Y_{k+1} \cup fS_{k+1}$. Composing (**) with (*), we obtain a homotopy equivalence:

$$X_{k+1} \xrightarrow{f \mid} N^2(Y_{k+1}; W) \cup fS_{k+1} \supset Y_{k+1} \cup fS_{k+1}.$$

PROOF OF (*). f maps the pair X_{k+1} , $X_k \cup N^2$ ($f_{k+1}^{-1} Y_{k+1}; S_{k+1}$) into the pair $fS_{k+1} \cup N^2$ ($Y_{k+1}; W$), N^2 ($Y_{k+1}; W$).

 $f \mid X_k \to N^2(Y_{k+1}; W)$ is a homotopy equivalence because $f \mid X_k \to Z_k$ is one and $N^2(Y_{k+1}; W)$ collapses to Z_k via Y_{k+1} .

Let us write $U(\)$ for «universal cover of ». All spaces to which $U(\)$ is applied will have isomorphic fundamental groups for [by Remark (1) following Lemma 1] p_{k+1} may be assumed to be greater than one. Therefore the map $f \mid X_{k+1}$ induces homology excision isomorphisms between $H_*(U(X_{k+1}), U(X_k \cup N^2(f_{k+1}^{-1} Y_{k+1}; S_{k+1})))$ and

$$H_{\pm}(U(fS_{k+1} \cup N^2(Y_{k+1}; W)), U(N^2(Y_{k+1}; W))).$$

So, by the 5-Lemma and Whitehead's theorem, the map $fX_{k+1} \longrightarrow N^2(Y_{k+1}; W) \cup fS_{k+1}$ induces isomorphisms of homotopy groups in all dimensions and is thus a homotopy equivalence.

PROOF OF (**). $N^2(Y_{k+1}; W) \cup fS_{k+1}$ collapses to $Y_{k+1} \cup fS_{k+1}$ because we may factor the collapse from $N^2(Y_{k+1}; W)$ to Y_{k+1} through $Y_{k+1} \cup N^2(Y_{k+1} \cap fS_{k+1}; fS_{k+1})$. This proves (**) and completes the proof of Lemma 1.

PROOF of LEMMA 2. Suppose polyhedra Y_0 , ..., Y_k have been found satisfying conditions $(1), \ldots, (4)$ of Lemma 1. Recall that for i > 0 dim $\sum f \cap S_{k+1} \leq p_N + p_{k+i} - q$ and dim $f_{k+i}^{-1} Z_k \leq p_N + p_k - q$. So by Lemma 4 there exists C in $S_{k+1} \cup \ldots, \cup S_N$ such that $(\sum f \cup f^{-1} Z_k) \cap (S_{k+1} \cup \ldots, \cup S_N) \subset C$, C collapses to * and dim $C \cap S_{k+i} \leq p_N + p_{k+i} - q + 1$. Now Z_k is a $p_{k+1} - 1$ -spine of Int W and by hypothesis $1 + 2p_N - q \leq p_{k+1} - 1$. Therefore by Lemma 4 there exists D such that $fC \subset D$, D collapses to Z_k dim $D - Z_k \leq 2 + 2p_N - q$ and $D - (fC \cup Z_k)$ is in general position with respect to fS_{k+1}, \ldots, fS_N .

Then

$$\begin{split} \dim \, f_{k+i}^{-1} \, D - (C \cap S_{k+i}) &= \dim f \, S_{k+i} \cap (d - (f \, C \cup Z_k)) \\ &\leq p_{k+i} + 2 + 2p_N - q - q \\ &\leq p_{k+1} - 3. \end{split}$$

Now $C \cap S_{k+i}$ is a (collapsible) $p_{k+1} = 2$ -spine of S_{k+i} and D is a $p_{k+1} = 2$ -spine of S_{k+i} and $S_{k+i} = 2$ -spine of $S_{k+i} = 3$ -sp

— 1-spine of Int W and so there exists Y in Int W such that Y collapses to Z_k , $\sum f \subset f^{-1} Y$, and $f_{k+i}^{-1} Y$ collapses to *(i > 0). The proof of lemma 2 is completed by showing that (as in lemma 1) $f: X \to Y \cup f X$ is a homotopy equivalence.

It remains to prove the theorem of § 2.

PROOF OF THEOREM. (1) Surjectivity of Φ . If $f: X \to W$ is a thickening, homotop f into general position in the sense of lemma 3 and use lemma 2 to obtain a manifold W_0 in Int W such that $fX \subset \text{Int } W$ and $f: X \to W_0$ is a thickening representing an element in the image of Φ . See Remark after lemma 2. The S cobordism theorem provides us with an equivalence between the thickenings $f: X \to W_0$ and $f: X \to W$ and so Φ is surjective.

(2) Injectivity of Φ . Consider the special case $X = S^1 \vee, ..., \vee S^1 \vee S^p$; the proof for more spheres is similar.

Let * be the barycenter of the simplex Δ . Let h_0 , h_i be two embeddings of the solid torus $\partial \Delta \times \Delta$ in $\partial P(\dim \partial \Delta = p-1 \text{ and } \dim \partial \Delta \times \Delta = \dim \partial P)$. Let the handlebody corresponding to h_i be $H(h_i) = P \bigcup_{h_i} \Delta \times \Delta$ (i = 0, 1). Let

 $\delta_i \colon \varDelta \times \varDelta \longrightarrow H$ (h_i) and $p_i \colon P \longrightarrow H$ (h_i) be the associated embeddings (thus $p_i^{-1} \delta_i = h_i$ i. e. $\forall x \in \partial \varDelta \times \varDelta$, $\delta_i x = p_i h_i x$). Suppose that $h_0 h_1$ determine equivalent thickenings (the equivalence being a homeomorphism $G \colon H(h_1) \longrightarrow H(h_0)$). Then a relative version of the proof of surjectivity shows that there exist embeddings

$$\alpha:\varDelta\times \varDelta\times [0\ 1]\to H\,(h_0)\times [0\ 1]$$

$$\beta:P\times [0\ 1]\to H\,(h_0)\times [0\ 1] \text{ such that}$$

$$\alpha(x,0)=(\delta_0\,x,0)$$

$$\alpha(x,1)=(G\,\delta_1\,x,1)$$

$$\beta(x,0)=(p_0\,x,0)$$
 and
$$\beta\,P\times \{1\}=G\,p_1\,P\times \{1\}$$

$$\alpha^{-1}\,\mathrm{Im}\,\beta=\partial\,\varDelta\times \varDelta\times [0,1].$$

Thus we have a concordance $\alpha^{-1} \circ \beta \mid \partial A \times A \times [0 \ 1] \longrightarrow \partial P \times [0, 1]$ between h_0 and $\lambda \circ h_1$ where $\lambda : P \longrightarrow P$ is a self equivalence (i. e. an orientation — preserving homeomorphism homotopic to the identity). We need to show that $\lambda \circ h_1$ and h_1 are concordant.

^{9.} Annali della Scuola Norm. Sup. - Pisa.

First we choose λ of a special type. Let $I^1 = [-1, +1]$ and $I^k = I^1 \times \dots \times I^1 \subset \mathbb{R}^k$. Then if $q \geq 3$ we take $P^q = P^3 \times I^{q-3} \cdot P^3 = B \cup H$ is the union of a 3-ball B and disjointly-attached 1-handles.

Let C be the union of the set of cores of these handles. Then the reader may verify the following.

PROPOSITION. Any self-equivalence $\lambda: P^3 \times I^k \to P^3 \times I^k$ is concordant to one of the form $\mu \times \mathrm{Id}$, where $\mu \mid B \cup C = \mathrm{Id}$. As for h_1 , we may clearly assume that Im h_1 lies in Int $P^q \times \{-1\} \subset \partial$ $(P^q \times I^4)$. It will suffice then to prove the following.

LEMMA. If $\lambda: P^q \to P^q$ is a self-equivalence and $\Sigma^p \subset \operatorname{Int} P$ a sphere $(p \leq q-3)$ then λ is concordant to λ where λ' fixes (pointwise) a neighbourhood of Σ in P.

PROOF. By the proposition above choose $\lambda = \mu \times \mathrm{Id}$, with $\mu \mid B \cup C = \mathrm{Id}$. Thus $\lambda \mid B \times I^{q-3} \cup C \times I^{q-3} = \mathrm{Id}$. The result of [2] is easily generalized to show that Σ can be compressed (by an ambient isotopy) into $B \times I^{q-3} \cup U \cap C \times I^{q-3}$ [the intersection of Σ with $C \times I^{q-3}$ being a set of disjoint cylinders (= homeomorphs of $S^{p-1} \times [0\ 1]$). Thus λ fixes Σ . It remains to show that after an isotopy λ fixes not only Σ but some neighbourhood of Σ in P.

Let \widetilde{P} be the universal cover of P with covering projection $\pi: \widetilde{P} \to P$. Since Σ is inessential in P choose a connected component $\widetilde{\Sigma}$ of $\pi^{-1} \Sigma$; thus $\Sigma, \widetilde{\Sigma}$ are homeomorphic via π . Furthermore, in a neighbourhood of $\widetilde{\Sigma}$, π is (1-1). Let $\widetilde{\lambda}: \widetilde{P} \to \widetilde{P}$ be the lift of λ that fixes $\widetilde{\Sigma}$ pointwise i. e. $\pi \circ \widetilde{\lambda} = \lambda \circ \pi$ and $\widetilde{\lambda} \mid \widetilde{\Sigma} = \operatorname{Id}$.

Since $\lambda \mid B \times I^{q-3} = \mathrm{Id}$ there is a q-ball R in \widetilde{P} with $\widetilde{\lambda} R = R$ and $\widetilde{\Sigma} \subset \mathrm{Int} \ R$.

It follows from Lemma 59 of [7] that $\widetilde{\lambda}$ is isotopic (fixing $\widetilde{\Sigma}$ to $\Lambda: \widetilde{P} \to \widetilde{P}$ that fixes R pointwise. Projecting down by π we see that there is an ambient isotopy of P that takes λ to λ' where λ' is the inclusion in a neighbourhood of Σ . This completes the proof of the lemma and hence of the theorem.

REFERENCES

- [1] D. BARDEN; Thesis, Cambridge.
- [2] D. D. J. HACON: Knotted spheres in Tori, Q. J. M. Oxford (2) 20 (1969), 431 445.
- [3] A. HAEFLIGFR: Enlacements de sphères en codimension supérieure à deux. Comm. Math. Helv. 41 (1966) 51-72.
- [4] J. F. P. HUDSON and W. B. R. LICKORISH: Extending PL concordances, to appear.
- [5] J. STALLINGS: The embedding of homotopy types into manifolds, to appear.
- [6] C. T. C. Wall: Classification problems in differential topology, IV, Topology 5 (1966) 73-94.
- [7] E. C. ZEEMAN: Seminar on Combinatorial Topology I. H. E. S. (1963), revised 1966).