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PROJECTIVE EMBEDDING
OF PSEUDOCONCAVE SPACES

ALDO ANDREOTTI and YUM-TONG SIU (*)

In [4] Tomassini and the first author investigate the projective embed-
ding of pseudoconcave manifolds (with maximal concavity) and, following
an idea of Grauert, prove that a pseudoconcave manifold X of dimension

_&#x3E; 2 can be embedded as an open subset of a projective algebraic variety
if and only if X carries a holomorphic line bundle L such that the graded
ring of sections of its powers

separates points and gives local coordinates at each point of X [4, Theo-
rem 2].

In this paper we continue the investigation of projective embeddability
in two directions.

Firstly we extend the above result to pseudoconcave normal spaces.
Secondly we show that for the projective embeddability of a pseudo-

concave manifold X of dimension &#x3E; 3 it suffices to assume that X carries

a holomorphic line bundle L such that A (X, L) gives local coordinates at
each point of X. This is done by using extension techniques. We extend

.g to a compact complex manifold X (by the methods of Hironaka [10] and
Rossi [13]) and, then, we extend the line bundle L to a holomorphic line

N N N

bundle L over X (by the method of Trautmann [24]). From Z we construct
a positive holomorphic line bundle on Y and show that X is a projective
algebraic manifold. It is essential that dim ~’ &#x3E; 3. A counter-example (which
was inspired by a remark of Grauert) is given to show this point.

Pervenuto alla Redazione il 18 Settembre 1969.

(*) The second author was partially supported by NSF Grant GP-7265,
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At the end of this paper we establish a result concerning the finite
generation of nl (X, .~). This result on finite generation is independent of
the result on finite generation obtained in [4]. A counter-example due to
David Prill is included to show this lack of relationship.

All complex spaces and subvarieties in this paper are reduced unless

specified otherwise.

§ 1. Pseudoconeavity and pseudoconvexity.

1. A real-valued C °° function V on an open set D of Cn is called

strongly q-pseudoconvex if the hermitian form

has at least n - g positive eigenvalues at each point of D (zi being
the coordinates of Cn).

A real-valued function 99 on a complex space X is said to be strongly
q-pseudoconvex if for every point xo of X there exist an open neighborhood
U of x, a biholomorphic map 0 of C onto an analytic subset of an open
set D of some Cn and a strongly q-pseudoconvex function 1p on D such that

i) q; = 1p 0 0,
ii) the closure of the set (x E 199 (x)  c) is (x E (x)  c) for

every c E R,.

DEFINITIONS. (a) A complex space X is called p-convex if there exists

a C °° map g from X to (- oo, b), where b E R U j-{- oo j, such that
(i) 199 ~ c) is compact for every c E (- oo, b),

(ii) for some is strongly q-pseudoconvex on (g &#x3E; b’).
(b) A complex space X is called q-coneave if there exists a C °° map g

from X to (a, + oo), where a E ( - oo ) U R, such that
(i) 199 ? c) is compact for c E (a, + oo),

(ii) for some is strongly q-pseudoconvex on (99 a’).
(c) A complex space X is called (p, q)- convex- concave if there exists a

proper C °° map g from X to (a, b), where a E ( - U R and b E R U ( -[- I

such that for some a  a’  b’  b, 99 is strongly p-pseudoconvex on

199 &#x3E; b’) and strongly q-pseudoconvex on IT  a’).
In all these cases we call q an exhaustion function.

2. The following proposition is due to Grauert [8, § 2].
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PROPOSITION 1.1. Let X be a 0-convex space. Then there exist a Stein

space S, a finite subset A of S, and a proper holomorphic surjection 7: ~--~ S
such that

(i) V-1 (x) is a connected nowhere discrete subspace of X for
xEA,

(ii) y : ~’ - y-1 (A) -+ S - A is biholomorphic,
Moreover, if X is normal, S can be chosen to be 

This statement can also be viewed as a consequence of the reduction

principle of Cartan [6]. In particular we note the following.

COROLLARY. A 0-convex space without compact positive-dimensional sub-
spaces is Stein.

The proofs of Propositions 21, 22 and Theorem 15 of [2] yield readily
the following :

PROPOSITION 1.2. Let X be a (,v, unreduced complex
space with exhaustion function (p from X to (a, b).

Let a  a’  b’  b and suppose is strongly p-pseudoconvex on
&#x3E; b’) and strongly q pseudoconvex on 199  a’).
Let ~’ be a coherent analytic sheaf on X with prof r on  a’).

Set

Then

(a) the restriction map .H ~ (X, ~’) - H (X d , ~) is bijective for c E [a, a’),
dE(b’,b] 

(b) for c E [a, a’) the restriction map ‘~) -+ £F) is bijective
for l  r - q -1 and injective for l = r - q -1.

The following proposition is adapted from Trautmann [24, (3.1)].

PROPOSITION 1.3. Let X be a (0, 0)-convex- concave unreduced space with

exhaustion function 99 from X to (a, b) which is strongly 0-pseudoconvex on
the whole of X.

Let ~’ be a coherent analytic sheaf with prof 3 on 199  a’~ for
some a’ E (a, b).

Let 9 be a coherent sheaf of ideals on X whose zero-set is disjoint from
(99  a") for some a" E (a, b). Then the natural map

is surjective,
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PROOF. We can assume a’ = a~". Set Y = ~q~ C a’~. From the short
exact sequence of sheaves

we derive the following commutative diagram with exact rows :

Now v is an isomorphism, because on Y, = 0 and hence 7. Since

prof 3 on Y, by proposition 1.2 both A and ,u are isomorphisms. Hence
y is an isomorphism. Thus fl = 0 and a is surjective.

3. We end this section by the study of (0, 0)-convex-concave spaces X
in which prof 0 &#x3E; 3, C~ being the structure sheaf of X.

LEMMA 1.1..Let (X, 0) be a (0, 0)-convex-concave space with exhaustion
function 99 from X to (a, b) which is strongly 0-pseudoconvex on the whole of X.

Let prof 0 &#x3E; 2 on X. Set for a __ c  d __ b, ic  99  d). Then
for any f E 1-’(Xa , 0) we have (1)

PROOF. Clearly ~ f ? ~ f (Xc) I since Xd c Suppose that

. Then there exist an and a real number M

such that

Now for n oo, 0 uniformly on Xd while

This is a contradiction since, by Proposition 1.2, the restriction map

being bijective and continuous, must be an isomorphism of Fr6chet spaces.

(’) By I f (Y) I we denote -
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PROPOSITION 1,4..Let (X, Õ) be a (0, 0)-convex-concave complex space
with exhaustion function 99 from X to (a, b) which is strongly 0-psoudoconvex
on the who le of X.

Suppose prof C) &#x3E; 3 on ((p  a’) for some a’ E (a, b). Then
(a) the holomorphic functions on X separate points,
(b) the holomorphic functions on X give local coordinates at every point

of X,
(c) for every d E (a, b) we can find d’ E (a, b) such that the holomorphically

convex hull of (q~  d) is contained in ~c~ _ d’j.
PROOF. We denote by m (x) the sheaf of ideals defined by the subspace

~x~ constituted by the single point x 
(a) Fix x =1= y in X. 111 (y) and apply Proposition 1.3

we conclude that

is a surjective map. Thus holomorphic functions separate points on X.
(b~ Fix z E X and apply Proposition 1.3 

We get a surjective map

This shows that holomorphic functions give local coordinates at x.
(c) For d E (a, b) set Kd = (q  d). Suppose that the holomorphically

convex hull Kd of gd is not contained in any Kd, for d’ E (a, b).
We can then find a sequence of distinct points in gd such

that (p -+ b.
00

Now U is a subspace of X and 1I tn (x) is a sheaf of ideals
v 1’=1

on X. By the same Proposition 1.3, taking 9= 0~ we conclude that

is a surjective map. Thus in particular there exists on X a holomorphic
function f with lim I f (x,,) = oo. On the other hand f must be bounded on Kd .
Indeed, by Lemma 1.1, for a  c  d  d’  b we get

This leads to a contradiction since I by the assumption
.........

that E Kd -
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§ 2. Gap-sheaves and p normalization.

4..Relative gap-sheaves. Let (X, 0) be an unreduced complex space and
let 9 c y be analytic sheaves on X.

A subset is said to be thin of at a point xo E X, if

there exist an open neighborhood Uxo of xo in .~’ and an analytic set A c: UXo
such that

This notion involves only the germ of the set M 

DEFINITION. Given an integer n &#x3E; 0~ the nth relative gap-sheaf of g in
J, denoted by is the analytic subsheaf of defined as follows :

(9[n] support of B (s) is thin of dimension  n at x),

where fl: J- 7/g is the quotient map.
This notion is due to Thimm [23].
Clearly gc We set

From [23] and [17] we borrow the following propositions :

PROPOSITION 2.1. if 9 and 7 are coherent, then, for any n, the sheaf
is coherent and (~, )) is an analytic set of dimension  n in X.

PROPOSITION 2.2. Suppose that q and 7 are coherent. For any x E X,
is the intersection of all primary components of a primary 

sition of belonging to prime ideals of n.

PROPOSITION 2.3. Let 7 be coherent, g E Ox is a zero divisor for 7,, (i.e.
such that f ~ 0 and gf = 0) if and only if g roanishes on some irre-

ducible germ of some Ell (0, ~’) at x. (0 denotes the zero sheaf on X.)

5. Absolute gap-sheaves. Let (X, Õ) be an unreduced complex space and
let 9 be an analytic sheaf on X.

For any open set Uc X we can consider the group

where A runs over all analytic subsets of U of dimension  n.
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If W c U is open we have a natural restriction map

We obtain in this way a presheaf on X for any integer n &#x3E; 0.

We define the nth absolute gap sheaf of:F, denoted by as the

sheaf associated to the presheaf 
This notion was introduced in [18] from which we borrow the following

proposition.

PROPOSITION 2.4. Let 7f be a coherent sheaf. The sheaf coherent

if and only if dim (0, ~)  n.
Set

If 9 is a coherent sheaf, Sk (7) is an analytic set of dimension  k in X
[16, Satz 4]. Combining the Corollary to Satz III of [15] and Proposition
19 of [20] we get the following proposition.

PROPOSITION 2.5 Let 9 be coherent. Then :1[n] if and only if
dim (7) :!~ k for - 1 -:::: k  n.

(Proposition 2.5 can also be derived from [25, Satz 2].)

6. p-normalization. Let (X, 0) be a complex space. We say that X is

at a point x E X if = Ox. We say that X is p.normal if

0.
This means the following: X is p-normal at x if, given an open nei-

ghborhood IJ of x, an analytic subset A of Uof dimension  p and a
holomorphic function f on U - A we can find a neighborhood W of x and

a holomorphic function f on W such that = f 
Making use of Proposition 2.5 we obtain the following criterion for

p-normality :
(X, 0) is a p-normal space if and only if

In particular (X, 0) is 0-normal if and only if prof C) &#x3E; 2.
’ 

If X is an irreducible normal space of dimension n, then X is p-nor
mal for 2.

The following proposition is adapted from the usual proof of existence
of the normalization of a complex space (cf. for instance [12, § 4]).
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PROPOSITION 2.6..Let X be a complex space whose irreducible compo-
nents all have dimension &#x3E; p -~- 2. Then

(a) the set A of points of X where X is not p-normal is an analytic
subset of X of dimension _ p,

(b) there exist a p-normal complex space X’ and a proper surjective hol-
omorphic map with finite fibers a: g’ ---~ X suclv that

(i) n-l (A) is of dimension  p at each point,
(ii) n: X’ - n-l (A) -+ ~’ - A is biholomorphic
(iii) any proper holomorphic surjective w : Y - X of a p-nor-

mal complex space Y onto X and verifying property (i) factors through
n, i. e. 3 ~ : Y--~ X’ holomorphic such that w = n o~.

Clearly the universal property (iii) defines the space ~’ up to an isomor-

phism. We will call n : X’-+X the p.normalization of X.

PROOF OF (a). Since every irreducible component of X has dimension

~~-t-2~ it follows that Or _~~o===0y where 0 is the zero sheaf. There-

fore, (0, ~) _ ~ and, by Proposition 2.4, the sheaf is coherent.

Now A = EP (0, and thus, by Proposition 2.1, A is an analytic
subset of X of dimension _ p.

PROOF OF (b). Since the p-normalization of a complex space .X (if it
exists) is unique, we need only to prove its existence for a sufficiently small
neighborhood of every point of X.

Let xo E X. Since is finitely generated over OXo and is noe-

therian, must be integral over 0,. Thus for some neighborhood U
of X0 in ~ there exist 91 , ... , such that

and

Let ~’ be the conductor sheaf of 0 into i. e. the maximal sheaf of ideals

~ such that c 0. Since is coherent, 9 is also coherent and the
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zero set of J is A. Taking U sufficiently small, we may assume that

with ul , . 1. 1 um E r (U, 9).
We set

so that bli E r (U, ~).
We may assume, without loss of generality, that X = U. We consider

in X X Ck the set 11 defined by the following equations

and

where (Wi’’’. , U"k) E Ck and x E X.
Let .X’ be the union of those irreducible components of JT which are

not contained in A X Ck.
Let n : X’ - X be the map induced by the natural projection 
Since no irreducible component of X’ is contained in A X Ck it follows

that n-l (A) is of codimension &#x3E; 1 in each component of X’. Since X’ is con-
tained in the set defined by the equations (3) the map n is proper and its

fibers are finite. Since A is the set of common zeros of u1, ... , um , equations
(4) and (2) imply that, for x E X - A, ~ 1 (x) _ (x, g~ (x), ... , gk (x)) and,
since gi is holomorphic on X - A, ~c : g’ - w1 (A) --~ ~ - A is an iso-

morphism. Since n is proper, the image (X’) of ~c is an analytic set con-

taining X - A, which is dense in X. Hence ~c is surjective.
We show now that X’ is p-normal. Let x’ E X’. Let W be an open

neighborhood of x’. Let B be an analytic subset of W of dimension _ ~
and let f be holomorphic on W - B. Let n-l (~c (X,)) = s§) where

xi = x’. Choose a Stein open neighborhood D (x’) and disjoint open

neighborhoods D! in X’ such that

Let 
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Then f o ~c~ D~ is a holomorphic function on D - 0 and, since dim

it defines an element lz E Since D is Stein, we can find

tl ... , tk E F(D, 0) such that

Set f = (ti o on Di . This is a holomorphic function on Di . Be-

cause ui (x) gi (x) = bu (x) = ul (x) and (u, u. (x)) # (0, ... , 0) A,
we have gi _ Wi on Hence Di - n-1 (C).
Since each component of is of dimension&#x3E; p, the extension f off is
unique. Thus f extends f from to J9{. This proves our assertion.

, 
«

Finally we have to verify that X - X satisfies the universal property
(iii). Without loss of generality we may assume that X’ is an analytic
subset of some open Stein set in a numerical space CN. Let x1, ... , ZN be
the coordinate functions. On Y - w-1 (A) the functions zi o n-l o 60 = ~i
are holomorphic. Since (0-1 (A) is of dimension  p and Y is p-normal,
these functions extend to holomorphic functions on the whole of Y and
they define a map 7:: Y -+ CN. We claim that z (Y)C X’. By construction

7: ( Y - m- (A)) = g’ - n-I (A). Let now yv - y E wl (A), yv E Y - (A).
If r (yy) is not convergent in X’, we can find an unbounded holomorphic
function f on {T ( y+)). But f o z on Y - co-’ (A) extends to a holomorphic
function gf on the whole of Y. Thus f o z (yv) = gf(y+) -+ gf(y) which is a

contradiction.

By construction m I Y - (A) _ ~ o 1’. By continuity we must have

w = on the whole of Y.

The idea of using gap-sheaves to investigate problems on removable

singularities is due to Thimm [22] although p -normalizations are not consi ~

dered in that paper. The p-normalization ,X’ of X is the same as the par-
tial normalization of X with respect to A introduced in [19, § 3].

§ 3. Stein completion.

7. Let X be a (0,0).convex-concave complex space with exhaustion

function 99 from X to (a, b). We suppose that 99 is strongly 0-pseudoconvex
on the whole space X. As usual we set, for a  c  d  b,
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DEFINITION. A complex space Y is called a Stein co?npletion of X if
(i) X is an open subset of Y,

(ii) Y is a Stein space,

(iii) ( Y - X) is conrpact for any d E (a, b) .

PROPOSITION 3.1. -Let (Y, Õ) be a Stein completion of X and let 9 be
a coherent analytic sheaf on Y with 2. Then the restriction map

is bijective. In particular, if (Y, Õ) is 0-normal then F (Y, Õ) ~ T(X, ~),

PROOF. Let c E (a, b) and let yc = (Y - X ). Then Yl is a Stein

completion of Xac. Also we have

If we prove that, for any c, r (Y c, ~’ ) --~ r (Xa , ~) is bijective, then the
same conclusion holds for - 

We can thus replace Y by by Xa and therefore it is not re-

strive to assume that Y is imbedded in some C n as an analytic subset so

that on Y we can find a strongly 0-pseudoconvex function 1p such that

(~  d) is compact for any d E (- oo, + oo). Set Yd = (y &#x3E; d) and consider
the commutative diagram of restriction maps

where d E (- oo, + oo~ and e E (a, b) are so chosen that

By virtue of Proposition 1.2 and y are bijective. Since fl = Am, oc
must be injective. Since y = ph, I must be injective. Thus, given f E r (X, 7),
we can find g E r ( Y, such that fl (g) = A ( f ), i. e. A ( f - a (g)) = 0, and
therefore f = a (g). This shows that « is also surjective. Hence, oc is bijective.

The last statement follows from the fact that, if (Y, C)) is 0.normal,
then prof 0 &#x3E; 2.
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Let S, Z be complex spaces. We denote by Hol (S, Z) the set of all
holomorphic maps from S to Z.

COROLLARY 3.1. Let S be any Stein space.

(a) If X is then the restriction map

is bijective for any c E (a, b).
(b) 1 f Y is a 0-normal Stein completion of X, then the restriction map

is bijective.

PROOF. For S = C this is the statement of Propositions 1.2 ~b) and
3.1 for 9= 0. From this it follows that the same is true for any S that
can be imbedded as a subspace of some Cn.

In the general case we carry out the proof for case (b). Case (a) is

treated in the same way. Now

If f , g E Hol (Y, S) agree on X, then they agree on Now and g (Ye)
are relatively compact in S, so we can find an open subset S’ imbedded in
some ~’~ as an analytic subspace, such It follows

then that 1= g on YI. This is true for any c. Hence in general 1= g on
Y, i. e. Hol (Y, S) --~ Hol (X, S) is injective.

Given f E Hol (X, S), we claim that, for any c E (a, b), is relatively
compact in S. Indeed, if this is not true ; there exist a sequence and

a holomorphic function g on S such that

By Lemma 1.1~ ~ 1 (g - f ) (Xa ) I = o f ) (X3) I for a  d  c. Therefore g o f
is bounded on X#. · This is a contradiction.

By replacing with S’ which contains f (Xac) and is imbeddable as analytic
subspace in some Cn , we see that f admits a holomorphic extension to
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Ye. Since this is true for any c E (a, b), it follows that there exists a

g e Hol (Y, S) such that g Ix = f, i. e. Hol (Y, S) Hol (X, S) is surjective.

COROLLARY 3.2. If Yl, Y2 are two 0-normal Stein completions of X,
there exist holomorphic maps f : Y2 and g : Y2 - Y1 such that

i. e. if X admits a 0-normal completion, then the 0-normal completion is

unique up to an isomorphism which is the identity on X.

8. Existence of Stein completions. Let (X, 0) be a (0, 0).convex-concav6
complex space with exhaustion function g~ from X to (a, b) which is strongly
0-pseudoconvex on the whole space X.

PROPOSITION 3.2. We suppose that X is 0 normal and that, for some
a’ E (a, b), prof 0 &#x3E; 3 on (99  a’). Then X admits a 0-normal Stein comple-
tion.

PROOF. Let c E (a, a’) and d E (a, c) and consider the holomorphically
convex hull of .A’d in By Proposition 1.4 (c) it is contained in for

some d* E (d, c).
For every point x on = d*) we can find f E F (Xac C~) and an open

neighborhood U of x such that

Replacing f by a convenient power of f, we may assume that f (Kd) ~ 1/2.
Since ~~ = d’~~ is compact, we can find a finite number of functions

[1 (Xa, Ô) and a finite number of open sets U1 ? for 1  i  k, such that

By Proposition 1.4 (a) (b) we can find ... , fi E F (X, 0) such that 
separate points and give local coordinates on (d _ ~ __ d*). It is not re-

strictive to assume that (Lemma 1.1) we also have

Consider the defined by oc (x) = (/~ (x)~ ... ~ f i (x)). For 0  6:!!5~ 1
set



244

Then

-- 

d*
Let For any K compact in G,
aw (K) fl .g = a-1 (.g) f1 is compact. Thus « I H is a proper

map and a (.g) is an analytic subset of G.
Now every irreducible component of H has dimension ( &#x3E; 3) &#x3E;_ 2 [2,

Proposition 4]. By [9, Theorem VII. D.6] we can find 6 E [1/2, 1) such that

« (H) n (Pl - can be extended to an analytic subset Y of Pl.
Set E = (Pa) n ~a *. Let X be the topological space obtained from

X - E and V by the following identification ;

One verifies that is a Hausdorff space so that (since the identifications

are holomorphic) ~ inherits a natural complex structure in which and V

are open subsets of For can be extended naturally to a
N N N

holomorphic function l on X (by setting fi = zi on V).
N

We claim that is a Stein completion of Xcb. For this it is enough to

verify the following conditions (cf. Corollary to Proposition 1.1):

(i) jc  ~  e~ U is compact for e E (c, b).
(ii) ~ has no compact positive dimensional subspaces.

Now for e E (c, b) the set (c  ~ ___ e) U (X - X~ ) is the union of the fol-

lowing three sets:

where s 1+6 &#x3E; 6. Of these sets the first two are obviously compact
2 

p

and the third is a closed subset of (d e). Hence (i) is verified.

Let e be a C°° function on X - B witb the following properties

for some 6 C s.


